A CROSS-SECTIONAL STUDY TO INVESTIGATE

THE PREVALENCE OF OBESITY IN

ADOLESCENT GIRLS ATTENDING

GYNAECOLOGY OUT PATIENT CLINIC IN A

TERTIARY LEVEL HOSPITAL

A dissertation submitted in partial fulfilment of the requirements of the Tamil Nadu Dr
M.G.R Medical University for the degree of MS (Obstetrics and Gynaecology) examination to be held in May 2018

DECLARATION CERTIFICATE

I hereby declare that this dissertation titled "A CROSS-SECTIONAL STUDY TO INVESTIGATE THE PREVALENCE OF OBESITY IN ADOLESCENT GIRLS ATTENDING GYNAECOLOGY OUT PATIENT CLINIC IN A TERTIARY LEVEL HOSPITAL" is carried out by me under the guidance and supervision of Dr Elsy Thomas, Professor and Head of Unit, Obstetrics and Gynaecology Unit 1, Christian Medical College, Vellore.

This dissertation is submitted in partial fulfilment of the requirements of the Tamil Nadu Dr M.G.R Medical University for the degree of MS (Obstetrics and Gynaecology) examination to be held in May 2018.

Dr Evangeline Reeni Christian

Post Graduate Registrar

MS OBG

Department of Obstetrics and Gynaecology

Christian Medical College,

Vellore 632004, India

CERTIFICATE

This is to certify that the dissertation titled "A CROSS-SECTIONAL STUDY TO INVESTIGATE THE PREVALENCE OF OBESITY IN ADOLESCENT GIRLS ATTENDING GYNAECOLOGY OUT PATIENT CLINIC IN A TERTIARY LEVEL HOSPITAL" is the original research work done by Dr Evangeline Reeni Christian and was carried out under my guidance and supervision towards partial fulfilment of the requirements of the Tamil Nadu Dr M.G.R Medical University for the degree of MS (Obstetrics and Gynaecology) examination to be held in May 2018.

Dr Elsy Thomas

Guide

Professor and Head of Unit 1

Department of Obstetrics and Gynaecology

Christian Medical College,

Vellore 632004, India

CERTIFICATE

This is to certify that the dissertation titled "A CROSS-SECTIONAL STUDY TO INVESTIGATE THE PREVALENCE OF OBESITY IN ADOLESCENT GIRLS ATTENDING GYNAECOLOGY OUT PATIENT CLINIC IN A TERTIARY LEVEL HOSPITAL" is the original research work done by Dr Evangeline Reeni Christian and was carried out under the guidance and supervision of Dr Elsy Thomas, Professor and Head of Unit, Obstetrics and Gynaecology Unit 1, Christian Medical College, Vellore, towards partial fulfilment of the requirements of the Tamil Nadu Dr M.G.R Medical University for the degree of MS (Obstetrics and Gynaecology) examination to be held in May 2018.

Dr Annie Regi	Dr Anna Pulimood
Professor and Head of the department	Principal
Department of Obstetrics and Gynaecology	Christian Medical
college	
Christian Medical College,	Vellore 632002
Vellore 632004, India	India

OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical)
Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D.
Chairperson, Research Committee \& Principal
Dr. Biju George, M.B.B.S., MD., DM., Deputy Chairperson,
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

January 28, 2017
Dr Evangeline Reeni Christian, PG Registrar,
Department of OG - 3,
Christian Medical College,
Vellore - 632004.
Sub: Fluid Research Grant NEW PROPOSAL:
A cross-sectional study to investigate the prevalence of obesity in adolescents, which will employ a case control framework to evaluate for risk factors for obesity.
Dr Evangeline Reeni Christian, Employment Number: 28168, PG Registrar, Dr Elsy Thomas, Employment Number: 50312, Dr Jessie Lionel, Professor and HOU, OGIN, 14520. Grace Rebekah J, Lecture II, 32070, Biostatistics

Ref: IRB Min No: 10419 [OBSERVE] dated 05.12.2016
Dear Dr Evangeline Reeni Christian,
I enclose the following documents:-

1. Institutional Review Board approval
2. Agreement

Could you please sign the agreement and send it to Dr. Biju George, Addl. Vice Principal (Research), so that the grant money can be released.

With best wishes,

Dr. Biju George
Secretary (Ethics Committee)
Institutional Review Board
Dr. BIJTU GE
MBB MD
SECRETARY -
Institutione
istiew

Cc: Dr Elsy Thomas, Dept. of OG - 3, CMC, Vellore
1 of 4

[^0]
OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical)
Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D.,
Chairperson, Research Committee \& Principal
Dr. Biju George, M.B.B.S., MD., DM., Deputy Chairperson,
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

January 28, 2017
Dr Evangeline Reeni Christian, PG Registrar, Department of OG-3, Christian Medical College, Vellore - 632004.

Sub: Fluid Research Grant NEW PROPOSAL:
A cross-sectional study to investigate the prevalence of obesity in adolescents, which will employ a case control framework to evaluate for risk factors for obesity.
Dr Evangeline Reeni Christian, Employment Number: 28168, PG Registrar, Dr Elsy Thomas, Employment Number: 50312, Dr Jessie Lionel, Professor and HOU, OGIN, 14520. Grace Rebekah J, Lecture II, 32070, Biostatistics

Ref: IRB Min No: 10419 [OBSERVE] dated 05.12.2016
Dear Dr Evangeline Reeni Christian,
The Institutional Review Board (Blue, Research and Ethics Committee) of the Christian Medical College, Vellore, reviewed and discussed your project titled "A cross-sectional study to investigate the prevalence of obesity in adolescents, which will employ a case control framework to evaluate for risk factors for obesity" on December $05^{\text {th }} 2016$.

The Committee reviewed the following documents:

1. IRB Application format
2. Consent forms (English, Tamil, Bengali, Telugu and Hindi)
3. Cvs of Drs. Elsy Thomas, Grace Rebekha and Jessie Lional.
4. Questionnaire and Proforma
5. No. of documents 1-4

The following Institutional Review Board (Blue, Research \& Ethics Committee) members were present at the meeting held on December $05^{\text {th }} 2016$ in the BRTC Conference Room, Christian Medical College, Bagayam, Vellore 632002.

[^1]
OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical)
Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D.,
Chairperson, Research Committee \& Principal
Dr. Biju George, M.B.B.S., MD., DM., Deputy Chairperson,
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

Name	Qualification	Designation	Affiliation
Dr. Biju George	MBBS, MD, DM	Professor, Haematology, Research), Additional Vice Principal , Deputy Chairperson (Research Committee), Member Secretary (Ethics Committee), IRB, CMC,Vellore	Internal, Clinician
Dr. B. J. Prashantham	MA(Counseling Psychology), MA (Theology), Dr. Min (Clinical Counselling)	Chairperson, Ethics Committee, IRB. Director, Christian Counseling Centre, Vellore	External, Social Scientist
Dr. Ratna Prabha	MBBS, MD (Pharma)	Associate Professor, Clinical Pharmacology, CMC, Vellore	Internal, Pharmacologist
Dr. Rekha Pai	$\mathrm{BSc}, \mathrm{MSc}, \mathrm{PhD}$	Associate Professor, Pathology, CMC, Vellore	Internal,Basic Medical Scientist
Rev. Joseph Devaraj	BSc, BD	Chaplaincy Department, CMC, Vellore	Internal, Social Scientist
Mr. C. Sampath	BSc, BL	Advocate, Vellore	External, Legal Expert
Dr. Simon Pavamani	MBBS, MD	Professor, Radiotherapy, CMC, Vellore	Internal, Clinician
Dr. Rajesh Kannangai	$\mathrm{MD}, \mathrm{PhD}$.	Professor, Clinical Virology, CMC, Vellore	Internal, Clinician
Ms. Grace Rebekha	M.Sc., (Biostatistics)	Lecturer, Biostatistics, CMC, Vellore	Internal, Statistician
Mrs. Pattabiraman	BSc, DSSA	Social Worker, Vellore	External, Lay Person
Dr. Anuradha Rose	MBBS, MD, MHSC (Bioethics)	Associate Professor, Community Health, CMC, Vellore	Internal, Clinician
Dr. Balamugesh	MBBS, MD(Int Med), DM, FCCP (USA)	Professor, Pulmonary Medicine, CMC, Vellore	Internal, Clinician

IRB Min No: 10419 [OBSERVE] dated 05.12.2016

[^2]
OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical)
Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D.,
Chairperson, Research Committee \& Principal

Dr. Biju George, M.B.B.S., MD., DM., Deputy Chairperson, Secretary, Ethics Committee, IRB Additional Vice-Principal (Research)
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Dr. Santhanam Sridhar } & \text { MBBS, DCH, DNB } & \begin{array}{l}\text { Professor, Neonatology, } \\
\text { CMC, Vellore }\end{array} & \begin{array}{l}\text { Internal, } \\
\text { Clinician }\end{array}
$$

\hline Mrs. Emily Daniel \& MSc Nursing \& \begin{array}{l}Professor, Medical

Surgical Nursing,

CMC, Vellore\end{array} \& Internal, Nurse\end{array}\right]\)| Professor, Neurosurgery, |
| :--- |
| CMC, Vellore | | Internal, |
| :--- |
| Clinician |, | Dr. Mathew Joseph |
| :--- | MBBS, MCH \quad| CM, |
| :--- |

We approve the project to be conducted as presented.
Kindly provide the total number of patients enrolled in your study and the total number of withdrawals for the study entitled: "A cross-sectional study to investigate the prevalence of obesity in adolescents, which will employ a case control framework to evaluate for risk factors for obesity" on a monthly basis. Please send copies of this to the Research Office
(research@.cmcvellore.ac.in).

Fluid Grant Allocation:

A sum of 5,000/- INR (Rupees Five Thousand Only) will be granted for 6 months.

Yours sincerely,

Dr. Biju George
Secretary (Ethics Committee)
Institutional Review Board

Dr. BIJU GEORGE

$$
\begin{aligned}
& \text { SECRETARY - (L - } \\
& \text { Institutional Rev view soardi, }
\end{aligned}
$$

Christian Medical College, Vellore - 632002.

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt thanks and deep sense of gratitude to my guide Dr Elsy Thomas, Professor and Head of Unit 1, Department of Obstetrics and Gynaecology, CMC, Vellore for all her encouragement, guidance, help and support at every stage of this study and preparation of this dissertation.

I am extremely grateful to Dr Jessie Lionel, my co-guide for her guidance and encouragement and her willingness to spare her valuable time to help me in this study.

I am extremely thankful to Mrs Grace Rebekah for helping me out with the statistical analysis.

I would like to thank Dr Lilly Varghese and Dr Jessie Lionel for permitting me to conduct the study in the department.

I would like to thank the medical record officers -Mr Kusmose and Mr Shanthakumar for their corporation and timely help in recruiting patients for the study.

I would like to thank my colleagues, friends and other faculty of the department of Obstetrics and Gynaecology for help, advice and encouragement.

I am grateful to Mr Madhan in the department of clinical epidemiological unit for the help rendered.

I am indebted to the patients without whose consent and cooperation, this study would not have been possible.

A special thanks to all my family members, especially my daughter Sanjana and nephew Enoch who helped me in completing this study.

I thank God almighty for giving me strength to go through this period of study.

Table of Contents

SL. No.	Contents	Page No.
1.	Title	12
2.	Introduction	13
3.	Abbreviations	15
4.	Aims and objectives	17
5.	Literature Review	18
6.	Materials and methods	41
7.	Analysis and results	44
8.	Discussion	95
9.	Conclusion	100
10.	Limitations of study	101
11.	Bibliography	102
12.	Annexures Questionnaire	108
	Patient information sheet	114
	Informed Consent	115
	Informed assent form	117
	Master sheet	123

TITLE

A CROSS-SECTIONAL STUDY TO INVESTIGATE THE PREVALENCE OF OBESITY IN ADOLESCENT GIRLS ATTENDING GYNAECOLOGY OUT PATIENT CLINIC IN A TERTIARY LEVEL HOSPITAL.

INTRODUCTION

'Obesity is becoming an epidemic'. This is a statement often heard in the health circles today. But is obesity really a problem of such great magnitude or is this just an overstatement? That is a question that needs an answer. The alarming fact is that this 'disease' seems to be as much a problem of the adolescents as of the reproductive age group women. A report presented by NHANES for the year 2007-2008 stated that 16.9% of children and adolescents in the age group of 2-19 years were obese. Childhood obesity prevalence among preschool children increased from 5.0 to 10% between 1976-1980 and 2007-2008 and it increased from 6.5 to 19.6% among the age group of 6-11 years. Data from the same study also showed that in the adolescent age group (12-19 years) obesity increased from 5.0 to 18.1%. (1)

A study conducted among 24,000 school children in south India showed that the proportion of overweight children increased from 4.94 per cent of the total in 2003 to 6.57 per cent of the total in 2005, demonstrating the time trend of this rapidly growing 'epidemic' (2).

A study from northern India reported a childhood obesity prevalence of 5.59 per cent in the higher socio-economic strata compared to 0.42 per cent in the lower socio-economic strata.(3)

Though it is reasonable to assume that childhood obesity would carry over into the adolescent period, an objective measure of this problem in adolescent girls is not available, especially in the Indian subcontinent. This study aims to determine the prevalence of obesity in adolescent girls attending the gynaecology out-patient clinic in a tertiary level hospital. Though the prevalence of obesity in a hospital set up would not be an accurate estimate of the problem in the community, it would still reflect in great measure the magnitude of the problem in the community.

Menstrual irregularities are common in the adolescent period and this problem is aggravated in obese adolescents. The most common cause for irregular menses in adolescents is polycystic ovarian disease (PCOD). Patients with Polycystic Ovarian Disease (PCOD) present with oligo-ovulation (menstrual irregularity), features of hyperandrogenism and polycystic ovaries on ultrasonography. Women with polycystic ovarian disease tend to be obese but are not universally so(4). We aim to evaluate obese adolescent girls who have oligo-ovulation with ultrasonography to look for the presence of polycystic ovaries.

The problems related to obesity are many and can be evident in the present or will make itself known in the future. An objective evaluation of the problem of obesity in adolescent girls would go a long way in encouraging both the patients and their carers in taking positive steps to deal with this 'epidemic'.

ABBREVIATIONS

ACOG	American College of Obstetricians and Gynaecologists
AE-PCOS	Androgen excess- polycystic ovary syndrome
BMI	Body Mass Index
CAH	Congenital Adrenal Hyperplasia
CDC	Centre for disease control and prevention
DHEAS	Dehydroepiandrosterone sulphate
DSD	Disorder of Sexual Development
FPG	Fasting plasma glucose
FSGS	Focal segmental glomerulosclerosis
FSH	Follicle Stimulating Hormone
HDL	High Density Lipoprotein
IASO	International Association for the study of obesity
IGF	Insulin like growth factor
IOTF	International Obesity Task Force
LDL	Low Density Lipoprotein
LH	Luteinizing Hormone
NAFLD	Non- alcoholic fatty liver disease
NASH	Non- alcoholic steatohepatitis
NHANES	National Health and Nutrition Examination Survey
NIDDM	Non-insulin dependent diabetes mellitus
OCP	Oral contraceptive pill
OHA	Oral hypoglycaemic agent
OHS	Obesity hypoventilation syndrome
OSA	Obstructive sleep apnea
PCO	Polycystic ovary
PCOD	Polycystic ovarian disease
PCOM	Polycystic ovarian morphology

PCOS	Polycystic ovarian syndrome
SCFE	Slipped capital femoral epiphysis
SHBG	Sex Hormone Binding Globulin
T2DM	Type 2 diabetes mellitus
TSH	Thyroid Stimulating Hormone
TV	Television
USA	United States of America
WHO	World health organisation

AIMS AND OBJECTIVES

To determine the prevalence of obesity in adolescent girls attending gynaecology out-patient clinic.

To assess the menstrual pattern in obese adolescent girls.

To find the proportion of obese adolescent girls with menstrual irregularity, who have PCOM.

To assess the risk factors for obesity in adolescent girls.

LITERATURE REVIEW

Introduction

Obesity is a serious public health problem(2). The term obesity refers to excess body fat, but since there are no direct methods of measuring body fat, in clinical practice, relationship between anthropometric measures like body weight and height are used to assess the body fat.(5) The prevalence of obesity has gone up both nationally and internationally. India, a "developing" country, has got its 'double burden' of obesity on one hand and undernutrition in the other. (6)

Epidemiology

Epidemiological data shows an increase in the prevalence of obesity globally. According to the International Association for the Study of Obesity (IASO) and International Obesity Task Force (IOTF) around 300 million people all over the world are obese, out of which 200 million come under the school going age group. (7) The WHO recently stated that "the growth in the number of severely overweight adults is expected to be double that of underweight during 1995-2025" (WHO 1998) (7) India is one of the fastest growing economies, experiencing transitions at epidemiological, demographical and nutritional level, along with increasing obesity in every age group. At the same time, due to its wide geographical, ethnic and socio-cultural variations, robust data on the prevalence of adolescent obesity is lacking in India.(6)

The data regarding adolescent obesity trends in India is shown in the table below.

Adolescent (10-18 year) obesity trends in India(6)

S. No.	Author	Year	Region	Age group (yr)	Sample size(n)	Methodisenpoints ${ }^{\wedge}$	Overweight prevalence (\%)			Obesity prevalence (\%)			
							Overall	Boys	Girls	Overall	Boys	Girls	
1	Gupta efam ${ }^{\text {m }}$	1998	Jaipur, NI	13.17	237	WHO	-	-	-	10.1	-	-	
2	Kapil $\\|_{\text {a }}{ }^{p}$	2002	New Dellii. NI	10.16	870	10TF-Cole ef al	24.7	23.1	27.7	7.4	8.3	5.5	
3	Ramachandran et ap	2002	Chennai, SI	13.18	4700	10TF-Cole et ar	.	17.8	15.8	-	3.6	2.9	
4	Subrammyans et $a^{\text {a }}$	2003	Chemai, S!	10.15	707^{17} (1981)	1OTF-Cole et al	9.6	.	-	5.9	.	.	
					6104 (1998)		9.7	-	-	62	-	-	
5	Chhatwal et alit	2004	Punjab, NI	9.15	2008	WHO'	14.2	15.7	12.9	$11.1{ }^{\prime}$	12.4	9.9	
6	Mohan er apt	2004	Punjab, NI	11-17	3326	10TF-Cole erat ${ }^{\text {a }}$	11.6 (U)	.	.	2.4 (U)	.	.	
							4.7 (R)	-	-	3.6 (R)	-	-	
7	Khadialar 2 Khadilkar ${ }^{31}$	2004	Pune, WI	10-15	1228	10TF-Cole et of	19.9	19.9	-	5.7	5.7	.	
8	Sillu ef al	2005	Pumpor NI	10-15	640	Mister a/t ${ }^{\text {b }}$	10.9	9.9	12.0	5.6	5.0	6.3	
9	Grpta ef ar	2006	Jaipm, NT	11.17	1224^{2} (1997)	10TF-Cole et al	10.9	-	10.9	5.5	.	5.5	
					$915{ }^{2}(2003)$		10.5	-	10.5	6.7	*	6.7	
10	Kaveris af $\mathrm{Pr}^{\text {p }}$	2006	Rajashan, NI	12-17	268	IOTF-Colceal ${ }^{\text {ar }}$	3.25	-	-	3.73	*	-	
11	lyer ef al $^{\text {P }}$	2006	Barods, WI	12-18	5329	1OTF-Cole et al	8.5	8.0	9.0	1.5	14	1.7	
12	Singh ed ar	2006	New Delli, NI	12-18	510	CDC Growth Charts	.	-	.	-	18.6	16.5	
13	Scoder alir	2007	Baegalore, St	9.18	7941	10TF-Cole et ar	13.1	-	13.1	4.3	.	4.3	
14	Rao etar ${ }^{\text {r }}$	2007	Pue, WI	$9 \cdot 16$	2223	10TF-Cole en ar	.	27.5	209	*	*	-	
15	Laxmaiah et $a^{\text {Pr }}$	2007	Hyderabad, St	12-17	1208	10TF-Cole en ar	-	6.1	8.2	-	1.6	1.0	
16	Global Sebool Based Student Health survey (CBSE) ${ }^{n /}$	2007	*	13.15	8130	WHO'	10.8	11.6	9.7	21	2.5	1.5	
17	Unuthan \& Syamskumar ${ }^{\text {² }}$	2007	Keraln, St	10-15	3886	10TF-Cole et al'	17.7	.	.	5.0	*	.	
18	Aggarwal et al ${ }^{\text {m }}$	2008	Punjab, NI	12.18	1000	Romer et al'	12.7	.	-	1.4	-	.	
19	Bharati ef ap ${ }^{\text {p }}$	2008	Wardla, WI	10.17	2555	CDC Growth Charts	3.1	-	-	1.2	*	-	
20	Goyal etar	2010	Ahmedabad. WI	12.18	5664	1OTF-Cole et ar	-	14.3	9.2	-	2.9	1.5	
21	Jain etapr	2010	Meerut, NI	10-16	2785	EHPA ${ }^{\text {* }}$	-	18.4	19.7	-	10.8	5.3	
22	Gupta d $^{\text {P }}{ }^{\text {P }}$	2011	New Delli, NI	14-17	3493 (2006)	Pandey etal	24.2	-	.	98	.	.	
					4908 (2009)		25.2	-	*	11.7	*	.	
23	Sarawwathi et $a^{\text {m }}$	2011	Mysore, SI	13.17	1439(U)	WHO'	.	-	.	8.8 (U)	7.7 (U)	10.4 (U)	
					750(R)		.	.	-	0.8 (R)	0.5 (R)	1.0 (R)	
24	Kumar ef $a^{P 4}$	2011	Udipi Dist., SI	12-15	500	WHO'	3.0	-	.	2.6	.	-	
25	Kimare etam	2012	Surat, WI	13	$277{ }^{1}$	LAP	.	.	12.6	.	.	6.5	
				14	$271{ }^{2}$,	-	13.3	,	,	6.6	
				15	2158		.	-	14.0	.	.	6.7	
26	Jain er $a^{\text {P1 }}$	2012	Chathegarh, E!	$13-17$	500	CDC Gromth Clarts	.	-	23.8	.	-	8.4	
27	Alok et at ${ }^{\text {F }}$	2012	Surat, WI	14-16	213 (U)	1OTF-Cole et al	26.3 (U)	27.4 (U)	24.9 (U)	14.6 (U)	14.3 (U)	15.0 (U)	
					176 (R)		25.8 (R)	25.6 (R)	26.2 (R)	12.8 (R)	11.2 (R)	14.1 (R)	
28	Gupta etalt	2013	Bankura, EI	$10-18$	452	WHO ${ }^{*}$	7.7	8.9	6.3	4.0	4.0	3.9	

"Most studies include age group 10 years onwards in the adolescent age group except for two studies which inchaded age 9 years ouwards.
 or $>90^{\circ}$ percentile $=$ obesity, $\geq 85^{\circ}$ or 80° percentile $=$ overweight \& obesity; NI, Noeth India; NEL, North East India; SI, South India; CL, Central India; EI, East India; WL, West India
Various cut-points usedl?
Must ef al (1991) w, Intemational Obesity Task Forse (IOTF)-Cole ef al (2000) ${ }^{\text {s }}$, World Health Organization (WHO) Age and Gender Specific Cut-offs for Overweight \& Obesity ($1995^{\text {e }}, 2000^{6}$) , Centres for Disease Control and Prevention (CDC), Atlants, USA, CDC Grouth Charts for the United States ${ }^{6}$, Eliz Healdh Path for Adolevcents and Adults (EHPA), ${ }^{-1}$, Pandey et al", Indian Academy of Paediatrics (LAP) 2001", Rosner et a F^{74}

Definition of obesity

WHO defines obesity in adults as 'BMI of greater than or equal to $30 \mathrm{~kg} / \mathrm{m}^{2}$.'(8)

Obesity is further categorised as:(9)

- Class 1: BMI of 30 to $<35 \mathrm{~kg} / \mathrm{m}^{2}$
- Class 2: BMI of 35 to $<40 \mathrm{~kg} / \mathrm{m}^{2}$
- Class 3: BMI of $40 \mathrm{~kg} / \mathrm{m}^{2}$ or higher.

Class 3 obesity is sometimes categorized as "extreme" or "severe" obesity.

CDC criteria for obesity in children and adolescents

In children obesity cannot be defined as in adults, age has to be taken into consideration. The following criteria has been used to define obesity in children using the CDC growth chart where age and sex are taken into consideration.(10)

Underweight- $\mathrm{BMI}<5^{\text {th }}$ percentile for age and sex

Normal weight- BMI between $5^{\text {th }}-85^{\text {th }}$ percentile for age and sex

Overweight- BMI between $>85^{\text {th }}-95^{\text {th }}$ percentile for age and sex

Obese- $\mathrm{BMI} \geq 95^{\text {th }}$ percentile for age and sex

Severe obesity-BMI $\geq 120 \%$ of the $95^{\text {th }}$ percentile value or $\mathrm{BMI} \geq 35 \mathrm{~kg} / \mathrm{m}^{2}$.

Body mass index-for-age percentiles, girls, 2 to 20 years, CDC growth chart (United States):

Etio-pathogenesis of adolescent obesity

Etio- pathogenesis of adolescent obesity is multi-factorial. Several factors like genetic factors, neuroendocrine factors, metabolic factors, behavioural factors, environmental and various socio- cultural factors have been identified as contributing agents for childhood obesity. (11)

Genetic factors

Evidence shows that genetic factors play a role in the pathogenesis of obesity. In polygenic mouse models (closely related with human obesity phenotypes) it was shown that leptin deficiency can cause obesity. Multiple polygenic mutations were associated with cholesterol elevation, body fat alteration and tendency to increase in body weight after high fat consumption. (11) Genetic factors influence obesity in children by altering the body metabolism of the child.

Several genetic conditions are associated with obesity, like Prader-Willi syndrome, BardetBiedl syndrome and Cohen syndrome. Another pointer to genetic factor involvement is the observation that obesity shows a familial tendency. The Avon Longitudinal Study which was conducted among 8234 children, showed that the odds of children having obesity were 2.93 , 4.66 and 11.75 , respectively if the father or the mother or both the parents had obesity. (12) A study done in Washington among 854 subjects showed that parental obesity was a better predictor of adult obesity as compared to the child's weight itself till the age of 3 years. (13)

Neuroendocrine factors

Peptides like leptin, insulin and neuropeptide Y play a role in the etio-pathogenesis of obesity. Low levels of leptin and insulin stimulate neuropeptide Y that in turn inhibits different catabolic pathways seen during fasting and hypoglycaemic state. This results in a tendency to increase food intake. Increased level of leptin and insulin increases energy expenditure by releasing hormones like melanocortin and corticotropin-releasing hormone. Some humans are genetically leptin deficient and this may lead to their tendency to become obese. Few other peptides associated with increased feeding tendency are orexins A and B from hypothalamus and ghrelin from the stomach-(14)

Environmental and Social factors

Evidence strongly points towards environmental and socio cultural factors as important agents in the etio-pathogenesis of adolescent obesity. Sub-optimal level of cognitive stimulation by parents and choice of diet at home have a direct influence on food preferences of the children and can contribute to unhealthy eating habits and subsequent obesity. (15) Short sleep pattern in childhood was also shown to affect fat metabolism leading to obesity in children. (16)

Urbanization has been associated with obesity and it promotes obesity by encouraging fastfood consumption and accessibility of high calorie foods and beverages. (17) Television watching and sedentary lifestyle are other important factors contributing to obesity in childhood and adolescence. (18)

Factors contributing to obesity at different levels of evolution

Obesity in adulthood could have its origin at any time, starting from the intrauterine period itself. Intrauterine growth patterns determines obesity in adulthood by affecting fat and lean body mass, controlling pancreatic enzyme functions and altering neuroendocrine mechanisms. High birth weight is an independent risk factor for obesity later in life. (12) Low birth weight was also found to be associated with increased risk of obesity in early adulthood and it added to cardiovascular risk factors too. (19)

Different studies have shown that breastfeeding has a protective influence on childhood obesity. (20) A study conducted in USA among 6507 adolescent girls showed that the twofold rise in the rate of early menarche had an associated BMI of more than the $85^{\text {th }}$ percentile. (21) It was found that almost 80 per cent of obese adolescents have the risk of becoming obese in their adulthood as well (22)

Risk factors for adolescent obesity

Studies conducted in school settings from 1990-2013 in three countries - India, Pakistan and Bangladesh showed some key individual risk factors as having significant association to childhood and adolescent overweight and obesity. These include lack of physical activity, prolonged hours of TV watching or prolonged playing of computer games and eating of junk food. Consumption of calorie dense food, higher socio-economic status and positive family history of obesity are also contributing factors for childhood obesity, as determined by various studies.(23) The National Centre for Chronic Disease Prevention and Health Promotion, CDC, USA has stated that several factors like higher costs of healthy food as compared to that of unhealthy foods and lack of safe places for children to play and/or exercise contribute to the increasing trend in obesity. (24) Childhood obesity is generally due
to discrepancy between calorie intake and calorie loss (25). Behavioural factors like excessive consumption of energy rich beverages and food, in large portion sizes, along with lack of physical activity contribute to childhood and adolescent obesity. Sedentary lifestyle, especially watching television for long time and snacking more while watching television is found to be an important cause for obesity. (25) Media also has a role in promoting obesity in children as it often encourages unhealthy eating habits. (26)

Comorbidities

There are various comorbidities associated with being overweight and obese and this affects the functioning of most of the systems of the body like- endocrine, cardiovascular, gastrointestinal pulmonary etc.

Endocrine

Endocrine comorbidities like impaired glucose tolerance or prediabetes are common abnormalities seen in obese adolescents, followed by growth and pubertal abnormalities in girls. (27) (28) In a study conducted in USA in more than 6000 students with an average age of 11.8 years, impaired fasting glucose ($\mathrm{FPG} \geq 100 \mathrm{mg} / \mathrm{dL}$) was seen in 15.5% in the overweight category, 20.2% in the obese category, and 22.5% in the severely obese category. Type 2 diabetes mellitus (T2DM) is also a common comorbidity of obesity in adolescents. In another study conducted in United States 4 percent out of 167 students with $\mathrm{BMI} \geq 95^{\text {th }}$ percentile for age and sex was diagnosed to have asymptomatic T2DM. (29) Moreover, this group of people presenting with T2DM in their adolescence were found to have faster development of diabetes-related complications, in comparison to people
presenting with T2DM later in life. A study based in Oklahoma showed that adolescent patients who were found to have T2DM, were also diagnosed with other comorbidities likemicroalbuminuria 13.0%, dyslipidemia 80.5% and hypertension 13.6\%.(30) Adolescent obesity in girls is often associated with hyperandrogenism and can give rise to early onset polycystic ovary syndrome (PCOS), which can result in decreased fertility in adulthood. (27)

Cardiovascular

Obesity in adolescence can lead to different cardiovascular changes that result in increased cardiovascular risk later in life, the most common being hypertension and dyslipidemia, which are also a part of the metabolic syndrome. (31) A study done in Texas showed that students having a body mass index $(\mathrm{BMI}) \geq 95^{\text {th }}$ percentile for age and sex had three times higher risk for hypertension compared to those having $\mathrm{BMI}<95^{\text {th }}$ percentile for age and sex. Ambulatory blood pressure monitoring was used in this study and almost 50% of obese students were found to have hypertension.(32) Studies have also shown that there is significant association between childhood obesity and hypertension which persists even if the person loses weight in his or her adulthood.(33) Dyslipidemia is another association of adolescent obesity and is characterised by elevated serum low-density lipoprotein (LDL), serum cholesterol, serum triglycerides and low level of high-density-lipoprotein (HDL). Risk of dyslipidemia increases as the severity of obesity increases. (34) Obese children also show cardiac structural changes similar to that seen in middle-aged adults. Some of these abnormalities include left ventricular hypertrophy, increase in left atrial and ventricular diameter, increased amount of epicardial fat and diastolic dysfunction. (35) (36) Adolescent obesity is not only associated with progressive atherosclerosis but it can also lead to increased carotid intima-media thickness. (37) Insulin resistance, a frequent metabolic
abnormality seen in obesity, is by itself an independent risk factor for premature carotid atherosclerosis.(38) A study done in USA demonstrated that cardiovascular risk factors increased in overweight adolescents (BMI $85^{\text {th }}$ to $95^{\text {th }}$ percentile) and increased further with obesity ($\mathrm{BMI} \geq 95^{\text {th }}$ percentile). These risk factors were associated with acute coronary disease in adulthood.(39) A population-based study conducted in Denmark demonstrated the linear rise in risk for both fatal and non-fatal adulthood cardiovascular events associated with increased BMI value in adolescent period. (40) A predictive model study in USA estimated that by 2035, the prevalence of coronary heart disease in the United States would rise from 5 to 16 percent, resulting in more than 100,000 excess incidences of coronary heart disease due to the rise in childhood obesity. (41)

Gastrointestinal

Obesity is associated with non-alcoholic fatty liver disease (NAFLD), an umbrella term used for a group of liver diseases which have different clinical presentations. This may present as steatosis or non-alcoholic steatohepatitis in the initial stages or as fibrosis or cirrhosis in the later stages or ultimately as liver failure. (42) Insulin resistance as seen in obesity is found to be a risk factor for NAFLD. (43) An autopsy study done in California among 742 children and adolescents showed that the prevalence of NAFLD was 9.6 percent in the general population while it was found to be 38 percent in obese children. (44) Obesity is the commonest risk factor for cholelithiasis in adolescents and girls are at a higher risk as compared to boys. A cross-sectional study based on medical records of more than 5 lakh patients in the age group 10 to 19 years, reported a sevenfold higher risk for cholelithiasis among severely obese girls as compared to girls having normal BMI (45)

Pulmonary

Obstructive sleep apnea (OSA) and the obesity hypoventilation syndrome (OHS) are two common obesity related pulmonary comorbidities found in obese children and adults. In a study done in Belgium, out of 64 obese adolescents, 8 percent showed moderate to severe OSA. The pathology in obesity hypoventilation syndrome is alveolar hypoventilation while the person is awake and this is a potentially life-threatening disorder requiring early diagnosis and management. Obesity is a contributing factor as it causes restrictive ventilatory effort in these patients. In the same study, 17 percent subjects showed episodes of hypoventilation, sometimes associated with severe oxygen desaturation. (46) Some obese children may even need continuous positive airway pressure on a regular basis until weight loss is adequate to restore normal ventilation. (47)

Orthopaedic

Obese children are more prone to develop slipped capital femoral epiphysis (SCFE), genu valgum, tibia vara and musculoskeletal pain. (48) These children are also more susceptible to fractures than normal weight children. (49)

Neurologic

The risk of idiopathic intracranial hypertension (pseudotumor cerebri) increases with the severity of obesity. (50)

Dermatologic

Conditions like intertrigo, furunculosis and hidradenitis suppurativa are some of the common dermatological comorbidities associated with obesity. Acanthosis nigricans is also a frequent accompaniment of obesity and serves as a surrogate marker for insulin resistance, which is commonly seen in obesity. Striae distensae are caused by skin distension (mechanical factors), possibly along with higher level of adrenocorticosteroids as associated with obesity.

Psychosocial

Obesity has a lot of psychosocial effects like social marginalisation, poor peer relationships, low self-esteem, (52) body image anxiety and depression. (53) All these psychosocial morbidities increase with age and is commoner in girls than boys. (54) In a community-based study conducted in San Diego, obese adolescents and their families reported decreased quality of life as compared to those of non-obese adolescents. In the same population, quality of life in the aspect of health in case of severely obese adolescents was comparable to that of cancer patients belonging to the same age group. (55)

It was found that girls suffering from obesity often develop a low self-image that continues even into adulthood.(56) Data from the National Longitudinal Survey of Youth showed that adolescent women suffering from obesity had lesser years of advanced education, lower family income in adulthood, lower marriage rates, and higher poverty rates as compared to non-obese women belonging to same age group. (57)

Information pertaining to adverse outcomes is shown in the table below.

Adverse outcomes in childhood obesity(11)

Cardiovascular	High blood pressure Early onset atherosclerosis Left ventricular hypertrophy
Endocrine	Insulin resistance Diabetes mellitus (NIDDM) Menstrual abnormalities Polycystic ovarian syndrome (PCOS)
Gastrointestinal	Gallstones Non alcoholic steatohepatitis (NASH) Hepatic fibrosis Cirrhosis
Neurological	Pseudotumor cerebri
Orthopaedic	Slipped capital femoral epiphysis Tibia Vara Osteoarthritis
Psychosocial	Obsessive concern about body image Expectation of rejection Progressive withdrawal
Pulmonary	Low self esteem Depression
Renal	Increased bronchial hyperactivity Asthma exacerbation Obstructive sleep apnoea Pickwickian syndrome Pulmonary embolism
	Increased sensitivity to sodium Decreased natriuresis Proteinuria Focal segmental glomerulosclerosis (FSGS)

Obesity and its effects on fertility and reproduction (59)

In addition to all the comorbidities mentioned above, obesity in adolescent girls can have an adverse effect on fertility and future reproductive potential.

Menstrual irregularities due to chronic oligo or anovulation is common in adolescent girls with obesity. Anovulation is caused by the higher levels of circulating oestrogen (due to
increased aromatisation in the periphery), interfering with the feedback mechanism. Other metabolic abnormalities like insulin resistance and hyperinsulinemia associated with obesity could also contribute to anovulation. Early onset obesity can result in infertility in adulthood. In addition there is increased incidence of miscarriages, recurrent pregnancy loss, congenital anomalies and preterm deliveries associated with obesity, in pregnant women. The outcomes of assisted reproductive techniques are also impaired in obese individuals. All these adverse outcomes are more in the presence of PCOS.

Complications like foetal macrosomia and post term pregnancy are common in obese women. This often results in an increase in the perinatal morbidity and mortality. The incidence of stillbirth increases as the class of obesity increases.

Obese women are also prone to develop more obstetrical, medical and surgical complications as compared to non-obese women. The obstetric medical complications which are increased are gestational diabetes mellitus, preeclampsia, non-alcoholic liver disease, proteinuria, sleep apnea and cardiac dysfunction. (58) There is also an increased incidence of emergency caesarean section, postpartum haemorrhage, pelvic infection, urinary tract infection, wound infection and venous thrombo-embolism in obese gravida as compared to pregnant women with normal BMI.

Over and above the metabolic risks conferred by obesity, it is also an important risk factor for endometrial carcinoma. (59)

Adolescent obesity and polycystic ovary disease (PCOD)

Obesity is a well-known association of adolescent PCOD. A study done in Bulgaria showed that more than 50% of adolescents suffering from PCOD were obese. (60) PCOD is the most
common cause of menstrual irregularity and hirsutism in the adolescent age group. It is characterised by excess secretion of LH and androgens. The exact aetiology of PCOS is unknown, but evidence suggest that there is an abnormal production of ovarian androgens in this disease. Although it manifests much later in the adolescent period this may have its origin during childhood or even during foetal life itself.

During puberty, hyperinsulinaemia and insulin resistance, can be considered as physiological metabolic changes, but in obese children this is exaggerated, and can manifest as PCOS. (61) Hyperinsulinism as seen in central obesity is a result of insulin resistance and it plays an important role in the pathophysiology of PCOS. Hyperinsulinism increases pituitary LH secretion, which in turn alters the LH/FSH ratio, resulting in anovulation. Insulin along with LH synergistically stimulates theca cells to produce androgens. (62) Hyperinsulinism lowers SHBG level and thus increases free testosterone which contribute to hirsutism, acne and alopecia as seen in PCOS. (63) Women suffering from PCOS show a phenomenon called 'insulin paradox' wherein insulin resistance is seen at muscular, adipose tissue and hepatic level, while normal sensitivity to insulin is seen at the ovarian level. (62)

Diagnosis of PCOS

PCOS in adults (69)

A diagnosis of PCOS is considered when a patient presents with:

1. Hyperandrogenism (clinical hyperandogenism - Ferriman-Gallwey Score ≥ 8 or biochemical hyperandrogenism - elevated total/ free testosterone)
2. Oligomenorrhea or amenorrhea (less than 6-9 menses per year) or oligo-ovulation
3. Polycystic ovarian morphology (PCOM) (≥ 12 antral follicles in one ovary or ovarian volume $\left.\geq 10 \mathrm{~cm}^{3}\right)$.

Previously the Rotterdam criteria was used to diagnose PCOS, in which 2 out of the three above mentioned criteria had to be met to make a diagnosis of PCOS. More recently the androgen excess and polycystic ovarian syndrome (AE-PCOS) Society criteria has been proposed for diagnosing PCOS where, along with hyperandrogenism one of the other 2 criteria should be present to diagnose PCOS.

PCOS in adolescents (64)

The criteria used for diagnosing PCOS in adults cannot be applied to diagnose PCOS in adolescent girls. Sultan and Paris recommend that four out of five of the following criteria be met in order to diagnose adolescent PCOS:

1. Oligomenorrhea or amenorrhea >2 years after menarche
2. Clinical hyperandrogenism
3. Biochemical hyperandrogenism
4. Insulin resistance or hyperinsulinemia
5. Polycystic ovaries on ultrasound (PCOM)

Carmina and colleagues recommend applying the Rotterdam criteria, but all three criteria has to be met for a diagnosis of PCOS. They also recommend that those who meet 2 of the 3 criteria should be followed up and re-evaluated as adults.(65)

These recommendations are not as yet endorsed by any of the expert panels or societies in the field of PCOS.

Ultrasonographic criteria for polycystic ovary morphology

The criteria used to confirm diagnosis of PCOM in adults cannot be used in adolescents. The adolescent ovarian size is more than that of the adult ovary. (66) Consequently, one-third to one-half of normal adolescent girls meet adult criteria for diagnosis of PCOM. (67) The higher resolution transvaginal ultrasound picks up more follicles compared to an abdominal ultrasound and it has been found that smaller antral follicles up to 24 , are normal in adolescents. (68) It is difficult to diagnose PCOM just based on abdominal ultrasonography and transvaginal scan is not an option in adolescent girls who are not sexually active. Therefore proper identification of PCOM is a challenge in this age group. (69) In addition there is another entity called multifollicular ovary seen on ultrasound, which can be mistaken for PCOM. In multifollicular ovary more than or equal to 6 follicles, each measuring 4-10 mm are seen. (65). Multifollicular ovary is a normal variant and unrelated to hyperandrogenism. (65) Till definitive criteria for diagnosis of adolescent PCOM are established, it is suggested that a mean ovarian volume $>12 \mathrm{cc}$ (or single ovarian $>$ volume 15 cc) be considered for diagnosis of PCOM in adolescents. (70) Girls with symptomatic hyperandrogenism and PCOM but who have regular cycles, are at risk of development of PCOD in later life, hence they need close follow up. (70)

In certain situations it may be necessary to perform a diagnostic endocrinological panel of tests to rule out other causes of hyperandrogenism.

A screening panel suggested by the American College of Obstetricians and Gynaecologists
(ACOG), Endocrine Society and adolescent guidelines for the diagnosis of PCOS is given below and it excludes most of the non-PCOS hyperandrogenism causes (71)

Evaluation for polycystic ovary syndrome (72)

Evaluation for polycystic ovary syndrome (PCOS) should be done for adolescent girls with one or more of the following features:

- An abnormal level of hirsutism or having hirsutism equivalent, like inflammatory acne vulgaris poorly responsive to topical therapies.
- Menstrual abnormality including persistent amenorrhea or oligomenorrhea, or period of amenorrhoea followed by increased bleeding per vaginum.
- Obesity or focal hirsutism along with menstrual abnormality

Treatment of obesity

The short term goals of treatment of obesity are, first to decrease the rate of weight gain, then to maintain weight followed by reduction of weight. The long-term goal is the improvement in quality of life and decrease in morbidity and mortality related to being overweight and obese. (73)

The various strategies employed to achieve these goals are dietary modification, increased physical activity, restriction of sedentary behaviour, pharmacological treatment and surgical treatment.

Dietary strategies

Dietary strategies for treatment of obesity encourage proper calorie intake, with reduction of excess calories without compromising the nutritional requirements. Decreasing the frequency of eating out and consumption of healthy snacks, intake of balanced diet, eating fruits and
vegetables, including fibre rich food and avoidance of calorie dense food are some of the practices that help reduce obesity. Limited use of salt, sugar and trans-fatty acids are strongly related to reduction of morbidities associated with obesity. (74) (75)

Physical activity

Regular physical activity for 60 minutes a day prevents as well as treats obesity in children and decreases the cardiac morbidities related to it. (76) Systematic reviews have shown that exercises like brisk walking reduces body fat. (77) Exercise is also associated with an increase in energy expenditure and significant reduction in the morbidity and mortality associated with obesity.(78)

Restriction of sedentary behaviour

Increased television watching is responsible for increased adiposity and higher BMI. Excessive TV watching is also associated with consumption of energy dense food, sweet and salty snacks and high calorie beverages which further predispose to obesity. (79) Television watching hours can predict adult BMI. (80) Studies have shown that limiting screen time to a maximum of 2 hours a day can significantly decrease obesity in children and adolescents.(81) Therefore limiting screen time should be taken seriously by parents and they should be motivated to get this implemented by their wards.

There is not much data regarding drugs for treatment of obesity in children. Some commonly used drugs to treat obesity are sibutramine, orlistat and metformin. Sibutramine which is a serotonin nor- adrenaline reuptake inhibitor increases satiety but has side effects like tachycardia and high blood pressure. Orlistat is a pancreatic lipase inhibitor and acts by increasing faecal fat loss. The side effects of this drug are that it causes flatulence, occasional diarrhoea, gallbladder diseases, steatorrhea and needs fat-soluble vitamin supplementation. This drug is less effective in the setting of a low fat diet like the Indian diet. Metformin is used to counter the insulin resistance causing impaired glucose tolerance and this forms an important part of the drug therapy in patients with polycystic ovarian disease. Pharmacological intervention is a second line treatment when primary intervention of lifestyle modification fails. (82)

Surgical treatment

Surgical intervention is needed for adolescents with a BMI of $>40 \mathrm{~kg} / \mathrm{m}^{2}$ and it is undertaken only in those adolescents who have attained most of their skeletal maturity. This generally includes girls more than 13 years and boys more than 15 years. Surgical intervention is appropriate when these adolescents have comorbidities related to obesity that might be reversed or reduced with weight reduction. (83) In case of BMI more than $50 \mathrm{~kg} / \mathrm{m}^{2}$, even lesser degree of comorbidities warrant surgical intervention. The preferred procedures are Roux-en-Y gastric bypass and adjustable gastric banding. Though these procedures show good results they are associated with complications like small-bowel obstruction, hernia, vitamin and micronutrient deficiencies. In addition these patients generally need life-long follow up. Bariatric surgery in adolescent period is generally more effective for childhood
onset obesity as compared to obesity in adulthood. These procedures give a satisfactory result for both weight reduction and decrease in obesity related comorbidities-(84)

Future directions

Childhood and adolescent obesity is a major health issue throughout the world. Though there is a growing interest in this field, high quality data regarding various factors contributing to childhood obesity, is lacking in India. Determinants of childhood obesity should be addressed at the population level and more research should be directed to assess the appropriateness of public health policies to bring down the prevalence of childhood and adolescent obesity.

Prevention

Schools, child care facilities and health care centres at community level can be used for implementation of programmes related to prevention of childhood obesity. Different strategies like serving healthy food in school settings or community related outlets, giving more time and options for physical activities to students and providing financial as well as technical support to the policies related to obesity control, will help prevent obesity in the long run. Other strategies like providing physical education at school level and having teachers with formal training in physical education will help achieve the objective of decreasing childhood obesity. The advantage of this kind of strategies based in school setting is that it works among a 'captive audience'. It is easier to influence the mind set of children and adolescents in this setting and this in turn may have a positive influence outside the school setting. (85) Multicomponent based programs addressing both nutrition and physical activity are found to have a holistic effect on control of obesity. (86)

The best way to prevent obesity is to prevent children having normal BMI from becoming overweight and this should start in the new born period itself. Promoting breastfeeding, having a balanced diet including fruits and vegetables, taking in more of fibre rich food and
restricting consumption of energy dense diet, are all shown to have a preventive effect on obesity. (87) Various strategies like restriction of sugar intake, watching television for not more than 2 hours a day and not having television or video games in sleeping areas are also helpful in this regard. In addition, having regular breakfast, limiting fast food intake, avoiding large portion sizes and having family meals instead of eating out, are found to be beneficial in preventing obesity. (88) One hour of physical activity per day, also goes a long way in preventing obesity in childhood.

At community level having parks, walking paths, bicycle pathways and community education to promote physical activity are measures that can be taken to prevent obesity. At health care level, obese parents must be counselled about their children being at risk for developing obesity in the future. (89) Physicians should also encourage parents to become role models for their children in regard to proper diet, physical activity on a daily basis and screen time at home. Positive influence can be made and awareness increased in obese parents if frequent enquiry is made about their lifestyle at their physician visits. (90)

Conclusion

Obesity is reaching epidemic proportions both internationally and nationally. India is a rapidly growing economy, but it has to deal with obesity, which is becoming a major public health issue. Childhood and adolescent obesity is multifactorial and may result from certain behavioural, genetic and environmental factors. Different comorbidities are associated with obesity and some of these may persist throughout life. Measures need to be taken at various levels to stop the progression of this 'epidemic'. As the dictum goes 'prevention is better than cure'.

MATERIALS AND METHODS

Study Design

Cross sectional study: To investigate the prevalence of obesity in adolescent girls. The other objectives of the study were, to assess the menstrual pattern in obese adolescent girls and to determine the proportion of obese girls with irregular cycles who had PCOM and to determine the associated risk factors for obesity. Data was collected prospectively.

Location

Gynaecology out-patient department (OPD) of Christian Medical College (CMC), Vellore

Recruitment

All adolescent girls (aged 12-19 years) attending the Gynaecology OPD from January 5, 2017 to June 7, 2017 were considered eligible to be recruited for the study. Adolescent girls seen earlier and coming for follow up after the start of the study were also recruited for the study. The non-recruiting days were April 1, 4, 8, 18, 25, 28, 29 and May 13, 20, 2017.

Sample size

Historical data collection was done for a period of 45 days in the gynaecology OPD in CMC, Vellore and the prevalence of obesity among adolescent girls was found to be 12%. With a precision of 5% and a desired confidence interval at 95%, the minimum sample size was calculated to be 162 .

Inclusion criteria

Adolescent girls (aged 12-19 years) attending the Gynaecology out-patient clinic and consenting to be a part of the study.

Exclusion criteria

1. Adolescent girls who were medical, nursing or allied health students of CMC.
2. Girls/parents/guardians not consenting for the study.

Methodology

Adolescents girls (12-19 years) coming to the gynaecology out-patient clinic were identified and the nature of the study was explained to them. Informed consent was then taken from the girls and one of the parent or guardian accompanying the patient. A questionnaire was filled based on one on one interview. This questionnaire required information regarding risk factors for obesity and details regarding diet and physical activity. Detailed information about the menstrual cycles was also collected, along with information pertaining to clinical evidence of hyperandrogenism (acne and epilation for hirsutism). Information regarding the presence of common comorbidities associated with obesity, was also gathered. Following this a physical examination was carried out. This was done with special reference to anthropometric measurements and included the height, weight, waist circumference and hip circumference of the subjects. Pulse and blood pressure readings were also recorded. Hirsutism if present, was
graded using the Ferriman-Gallwey score. Information regarding the presence or absence of acanthosis nigricans was also documented.

All obese adolescents with history of menstrual irregularities suggestive of oligo-ovulation/ anovulation were advised to undergo ultrasonography to evaluate for the presence of polycystic ovaries.

Data analysis was done using SPSS 16.0. Mean and standard deviation was used to describe continuous variables, while frequency and percentages were obtained for categorical data. The chi square test and the student t test was employed to study the statistical significance of categorical and continuous variables respectively.

ANALYSIS AND RESULTS

585 adolescent girls attended the gynaecology out-patient clinic from January 5, 2017 to June 7, 2017. Of these 501 girls were recruited for the study. 84 girls were not recruited as they were either CMC medical/ nursing students or had not consented to be a part of the study.

Figure 1: Patient recruitment

Table 1: BMI of patients not recruited

BMI	No.	$\%$
Under weight	6	10.5
Normal	35	61.4
Overweight	8	14
Obese	7	12.3
Missing	1	1.8
Total	57	100

The percentage of girls with obesity who were not recruited for the study was 12.3%.

Patients who attended gynaecology out-patient clinic for the first time had their height, weight, blood pressure and pulse rate measured as part of routine evaluation. Therefore the above data was available for analysis.

Table 2: Descriptive Statistics

	Mean +/- SD
Age (years)	$16.12+/-1.887$
Weight at birth (kg)	$2.756+/-0.5133$
Age of onset of obesity (years)	$10.19+/-4.770$
Fathers BMI (kg/m ${ }^{2}$)	$25.3434+/-3.87079$
Mothers BMI (kg/m²)	$25.9353+/-4.35542$
Age at menarche (years)	$12.47+/-1.343$
Number of years since menarche (years)	$2.09+/-0.399$
Height (cm)	155.70 +/- 6.445
Weight (kg)	54.83 +/- 14.437
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	$22.5229+/-5.41642$
Waist circumference (cm)	73.53 +/- 12.278
Hip circumference (cm)	$89.55+/-12.106$
Waist hip ratio	. $8173+/-0.05202$
Systolic blood pressure (mmHg)	106.43 +/- 12.996
Diastolic blood pressure (mmHg)	$68.10+/-9.028$
Pulse rate (/min)	94.28 +/- 15.308

501 girls were recruited for the study. The average age of the study population was 16.12 years.

Weight at birth was known for 480 girls, with the lowest birth weight being 1000 grams and the highest 4500 grams. The average weight at birth was 2756 grams. In 21 girls the birth weight was not known because they were born at home and therefore the weight was not measured or because the parent could not recollect the weight of the infant at birth.

Of the 501 girls, 90 were found to be overweight and 70 were obese, but the average BMI of the patients was $22.5 \mathrm{~kg} / \mathrm{m}^{2}$.

The age of onset of obesity ranged from birth to 18 years, with the mean age being 10.19 years.

At the time of recruitment into the study 467 girls had attained menarche while 34 girls presented with primary amenorrhoea. The average age of menarche was 12.47 years and the average number of years since menarche was 2.07 years.

Figure 2: Distribution of girls according to age

275 (54.8\%) of girls were in the age group of 16-18 years.

Figure 3: Age wise distribution - normal BMI and obese

Analysis of the study population with reference to aims and objectives.

A. BMI

The BMI of the girls were checked and plotted on the CDC growth chart and accordingly grouped into different categories. The percentage of girls in each of the groups were as shown in table 3.

Table 3: BMI of study population

BMI	No.	$\%$
Under weight	49	9.8
Normal	292	58.2
Overweight	90	18
Obese	70	14
Total	501	100

58.2% of the girls had normal BMI, 18% were overweight and 14% were obese.

Figure 4: Percentage distribution according to BMI

Majority (58.2\%) of the girls had normal BMI.

B. Menstrual pattern in study population

Details regarding menstrual cycle such as age at menarche, regularity of cycle, duration, frequency, number of pads changed per day and the passage of clots, were collected.

Figure 5: Age at menarche

32% of the girls attained menarche at 12 years of age and 2% attained menarche only by 16 years of age. 7% of the girls had primary amenorrhea.

Table 4: Age at menarche- normal BMI and obese

Age at menarche	Number	Mean $+/-$ SD	P value
Normal BMI	274	$12.62+/-1.299$	0.002
Obese	68	$12.07+/-1.331$	

Obese girls attained menarche earlier than girls with normal BMI and this finding was found to be statistically significant.

Figure 6: Menstrual pattern according to BMI

49 girls were underweight- of these 33 had regular cycles, 7 had irregular cycles and 9 had primary amenorrhoea.

Out of the 292 girls who had normal BMI, 150 had regular cycles, 123 had irregular cycles and 19 had primary amenorrhoea.

90 girls were overweight- of these 29 had regular cycles, 57 had irregular cycles and 4 had primary amenorrhoea.

Out of the 70 girls who were obese, 19 had regular cycles, 49 had irregular cycles and 2 had primary amenorrhoea.

Figure 7: BMI and menstrual pattern

Among the girls who were underweight 67.3% had regular cycles, 14.3% had irregular cycles and 18.4% had primary amenorrhoea.

In girls who had normal BMI 51.4\% had regular cycles, 42.1% had irregular cycles and 6.5% had primary amenorrhoea.

Among the girls who were overweight 32.3% had regular cycles, 63.3% had irregular cycles and 4.4% had primary amenorrhoea.

In girls who were obese 27.1% had regular cycles, 70% had irregular cycles and 2.9% had primary amenorrhoea.

Figure 8: Menstrual Pattern- frequency

Of the $467(93.2 \%)$ girls who had attained menarche, $231(46.1 \%)$ girls had cycles every 22-35 days. $45(9 \%)$ girls had cycles once in 2-3 months and $70(14 \%)$ girls had cycles once in more than 3 months.

Figure 9: Pads changed per day

280 (60\%) girls changed less than 3 pads per day.

Figure 10: Passage of clots

Only 2% of the patients had history of passage of large clots.
C. Associated comorbidities

Information was gathered regarding the various comorbidities associated with obesity.

Table 5: Comorbidities

Comorbidities	Normal BMI	Obese
Hypertension	1	1
Diabetes Mellitus	1	1
Gallstones	1	0
Non Alcoholic fatty liver	2	0
Hypothyroid	12	7

Of the 501 girls, two had hypertension, 1 each in the obese and normal BMI category.

Two girls had diabetes mellitus, out of which 1 girl was obese and 1 girl had normal BMI.

Interestingly it was seen that gallstones and non alcoholic fatty liver disease commonly associated with obesity, was seen in girls with normal BMI and not in the obese population.

Incidence of hypothyroidism was 4.1% in patients with normal BMI and 10% in obese patients. None of the patients had a history of slipped capital femoral epiphysis.

Table 6: Hypothyroidism - normal BMI and obese

Hypothyroidism	Normal BMI	Obese	P value
$\%$	12	7	
	4.1%	10%	0.068
No			
$\%$	280	63	
	95.9%	90%	

Statistical significance in the incidence of hypothyroidism is not seen between the two groups.
D. Menstrual pattern in obese adolescents

Majority of the obese adolescent girls were found to have irregular cycles.

Figure 11: Menstrual pattern in obese girls

> Obese

- Regular cycles - Irregular cycles © Amenorrhoes

Seventy girls were obese, out of these 49 (70\%) had irregular cycles, 19 (27\%) had regular cycles, and 2 (3\%) had primary amenorrhoea.

Figure 12: USG findings in obese girls

Obese

Of the 70 obese girls, 29 (41.4\%) had no PCOM on scan, 27 (38.6\%) had PCOM and scan was not done for 14 (20\%) girls.

Figure 13: PCOM in obese girls with irregular cycle

Scan was done for 40 (82\%) obese girls with irregular cycles. Twenty two (45\%) of the girls had PCOM and 18 (37\%) had no PCOM.

Figure 14: Obese girls with regular cycles

Obese with regular cycles

Scan was done for $14(74 \%)$ of the obese girls with regular cycles. Out of this, $5(26 \%)$ girls had PCOM and 9 (48\%) girls had no PCOM.

E. Risk factors for obesity

Information was collected regarding various factors involved in the etio-pathogenesis of obesity.

Table 7: Weight at birth- normal BMI and obese

Weight at birth	Number	Mean $+/-$ SD	P value
Normal BMI	280	$2.725+/-0.5013$	0.05
Obese	67	$2.864+/-0.5956$	

Obese adolescents were found to have a higher birth weight than those with a normal BMI and the difference was found to be significant.

Figure 15: Breast Feeding

Of the 501 girls, 94% were breast fed.

Table 8: Breast feeding- normal BMI and obese

Breast feeding	Normal BMI	Obese	P value
$\%$	271	65	
	92.8%	92.9%	0.989
No $\%$	21	5	
$\%$	7.2%	7.1%	

About 7\% of girls with normal BMI and in the obese category were not breast fed. Absence of breast feeding was not found to be a significant risk factor for obesity in adolescents.

Figure 16: Current educational status

7% of the girls had dropped out of school.

Figure 17: Grade at school/college

Majority 298 (59.5%) of the students were in the $10^{\text {th }}-12^{\text {th }}$ grade, 94 (18.8%) were college students.

Table 9: Parents BMI

		Father	$\%$	Mother	$\%$
BMI	Underweight	2	0.4	6	1.2
	Normal	269	53.7	247	49.3
	Overweight	111	22.1	145	28.9
	Obese	59	11.8	64	12.8
	Total	441	88.0	462	92.2
Missing	System	60	12	39	7.8
Total		501	100	501	100

11.8% of the fathers and 12.8% of the mothers were obese.

Figure 18: Parents BMI

53.7% fathers and 49.3% mothers had normal BMI.

Table 10: Fathers BMI- normal BMI and obese

	Number	Mean $+/-$ SD	P value
Normal	144	$24.7408+/-3.65209$	<0.01
Obese	37	$27.6230+/-4.31914$	

Table 11: Mothers BMI - normal BMI and obese

	Number	Mean $+/-$ SD	P value
Normal	155	$25.0476+/-3.82128$	<0.01
Obese	37	$28.0103+/-5.28000$	

Parental obesity was associated with adolescent obesity in the children and this was found to be statistically significant.

Figure 19: SES

Majority (37\%) of the patients belonged to SES class 2 and 30% belonged to SES class 3 .

Table 12: SES - normal BMI and obese

SES	Normal BMI	Obese	P value
1	33	12	
$\%$	11.3%	17.1%	0.413
2	107	24	
$\%$	36.6%	34.3%	34
$3-5$	152	52.1%	48.6%
$\%$			

There was no statistically significant difference in the SES between obese patients and those with normal BMI.

Figure 20: Obesity in siblings

12% of the girls had siblings who were obese and 14% had no siblings.

Table 13: Obesity in siblings - normal BMI and obese

Obesity in siblings	Normal BMI	Obese	P value
$\%$	23	18	
	7.9%	25.7%	
No	230	40	
	78.8%	57.1%	
No sibling	39	12	
	13.4%	17.1%	

Adolescents who were obese had siblings who were obese too and this finding was statistically significant.

Figure 21: History of acne and treatment

$122(24.4 \%)$ girls had acne of which only $27(22.1 \%)$ required topical treatment.

Table 14: Acne and PCOM

Acne	PCOM
Yes	47
No	116

47 (38.5\%) girls with acne had PCOM.

35 (7\%) of the total girls had irregular cycles, acne and PCOM.

Figure 22: Hirsutism- Ferriman Gallwey score

According to the score <8 is normal, $8-15$ is mild hirsutism and >15 is moderate to severe hirsutism. 3 girls had mild hirsutism and 1 girl had severe hirsutism.

Figure 23: Breakfast habit

Skipped breakfast

$$
■ \text { Yes } ■ \text { No }
$$

27% of the girls skipped breakfast.

Table 15: Breakfast habit - normal BMI and obese

Breakfast	Normal	Obese	P value
Yes	76	19	
	26%	27.1%	
No	216	51	0.849
	74%	72.9%	

There was no statistical difference between the two groups in breakfast habits.

Figure 24: Diet

Majority (89\%) were non vegetarians.

Table 16: Diet - normal BMI and obese

Diet	Normal	Obese	P value
Vegetarian	29	5	
	9.9%	7.1%	
	263	65	
	90.1%	92.9%	

There was no statistical difference between the two groups with reference to the type of diet.

Figure 25: "Eating out"

60% of the girls were not in the habit of eating in hotels, restaurants or fast food joints.

Table 17: Eating out - normal BMI and obese

Eating out	Normal	Obese	P value
Yes	114	34	
	39%	48.6%	
No	178	36	0.145
	61%	51.4%	

There was no statistical difference between the two groups with reference to eating out.

Figure 26: Intake of soft drinks / fried food items

286 (57\%) girls denied consumption of soft drinks. 192 (38.3\%) girls consumed fried food at least once a week.

Table 18: Intake of soft drinks - normal BMI and obese

Intake of soft drinks	Normal	Obese	P value
Never	175	40	
	59.9%	57.1%	
Once a week	40	14	
	13.7%	20%	
Twice a week	24	6	
	8.2%	8.6%	
Once a month	28	5	
	9.6%	7.1%	
Twice a month	25	5.1%	
	8.6%	5	

There was no statistically significant difference between the two groups in respect to intake of calorie rich diet.

Figure 27: Intake of fruits and vegetables daily

70% of the girls consumed fruits and vegetables daily.

Table 19: Intake of fruits and vegetables daily - normal BMI and obese

Intake of fruits and Veg	Normal	Obese	P value
Yes	205	49	
	70.2%	70%	973
No	87	21	
	29.8%	30%	

There was no statistically significant difference between the two groups in the daily intake of fruits and vegetables.

Figure 28: Physical activity (exercise at least 30 min involving profuse sweating)

87.2% of girls had no regular physical activity. 7% of girls were engaged in some physical activity 5-7 days a week.

Table 20: Physical activity - normal BMI and obese

	Normal	Obese	P value
$5-7$ days	15	10	
	5.1%	14.3%	
$3-4$ days	3	2	
	1%	2.9%	0.019
$1-2$ days	12	4	
	4.1%	5.7%	
Never	262	77.1%	
	89.7%	54	

There was statistically significant difference between the two groups in terms of time spent in physical activity.

Figure 29: Regular exercise / yoga

10% of the girls engaged in regular exercise or yoga.

Table 21: Regular exercise/yoga - normal BMI and obese

Regular exercise/Yoga	Normal BMI	Obese	P value
Yes $\%$	26	12	
$\%$	8.9%	17.1%	0.043
No $\%$	266	58	
$\%$	91.1%	82.9%	

There was statistically significant difference between the groups in terms of time spent in light exercise/yoga.

Figure 30: Screen time

Majority of the girls (35.7\%) spent 1 hour in front of the screen daily.

Table 22: Screen time - normal BMI and obese

No. of hours	Normal BMI	Obese	P value
$\%$	49	15	
	16.8%	21.4%	
<3 hours	231	50	
\% hours $\%$	79.1%	71.4%	
	12	5	
	4.1%	7.1%	

There was no statistically significant difference in the screen time between the two groups.

Figure 31: Hours spent on computer/talking on phone/doing homework

31.1% spent about 2 hours a day in desk bound activities.

Table 23: Hours spent on computer/talking on phone/doing homework -normal BMI and obese

No. of hours	Normal BMI	Obese	P value
$\%$	21	7	
	7.2%	10%	0.678
$\%$	196	44	
	67.1%	62.9%	
>3 hours	75	19	
$\%$	25.7%	27.1%	

There was no statistically significant difference between the two groups in terms of sedentary lifestyle.

Figure 32: Medication

$95(19 \%)$ girls were on medications, out of these 51% were on OCP either for irregular cycles or abnormal uterine bleeding.

Figure 33: Medication - obese girls

22 of the 70 obese girls were on medications. 7 each on OCP, OHA and thyroxine.

Figure 34: Waist hip ratio

42% of the girls had a low risk of developing metabolic syndrome and 58% had a moderate to very high risk of developing metabolic syndrome.

Table 24: Waist hip ratio- normal BMI and obese

Waist-hip ratio	Normal	Obese	P value
<0.8	135	18	
	46.2%	25.7%	
$0.81-0.85$	96	24	0.001
	32.9%	34.3%	
>0.85	61	28	
	20.9%	40%	

There was statistically significant difference between the two groups in respect to waist hip ratio.

Figure 35: Acanthosis nigricans

88% of the study subjects had no acanthosis nigricans

Table 25: Acanthosis nigricans -normal BMI and obese

Acanthosis Nigricans	Normal BMI	Obese	P value
Yes	10	30	
	3.4%	42.9%	
No	282	40	<0.01
	96.6%	57.1%	

There was statistically significant difference in the occurrence of acanthosis nigricans in obese adolescents and adolescents with normal BMI.

DISCUSSION

Obese and overweight adolescents form a major part of the malnutrition spectrum in society today. The effects of adolescent obesity are far reaching and may not be evident immediately but may present in adulthood as co-morbidities associated with obesity. These co-morbidities are forerunners for increased morbidity and mortality in these patients. Therefore this problem of obese and overweight adolescents needs to be tackled at the earliest.

Epidemiological studies show an increasing trend in the prevalence of obesity in the adolescent age group. In this study the prevalence of obesity was found to be 14%. This is similar to the findings of Alok et al who reported the prevalence of obesity to be 14.1%. (6) Chhatwal et al reported a prevalence of obesity of 9.9% in 2004, and Saraswathi et al reported a prevalence of 10.4% in 2011 , compared to the 14% prevalence in our study. This clearly demonstrates the increasing trend in the prevalence of this 'disease'.

It has consistently been shown that the prevalence of overweight adolescents is more than that of obese adolescents. Data from Indian studies showed a prevalence of overweight adolescents to be 12.9% (Chhatwal et al 2004) and 13.1% (Sood et al 2007). In our study the prevalence of overweight adolescents was found to be 18% and this is similar to the prevalence of 19.7% as reported by Jain et al (2010). (6) Therefore though obesity is a problem, being overweight seems to be a greater problem than obesity, in adolescent girls. This only highlights the importance of dealing with this inappropriate weight for height at an earlier stage, so that the burden of the disease can be reduced.

An encouraging finding in this study was that even though 32% of the girls were either overweight or obese, the average BMI of the 501 girls recruited was $22.5 \mathrm{~kg} / \mathrm{m}^{2}$.

Abnormal uterine bleeding is common in the adolescent period and this can be aggravated in obese adolescents. We collected detailed information regarding menstrual cycles from all the
study subjects. Thirty two percent of the girls attained menarche by the age of 12 years. Analysis showed that the age of menarche was earlier in obese girls (cases) as compared to girls with normal BMI (controls) and this finding was statistically significant. This is in keeping with studies done by Bralic I et al (91) and Adair LS (21)

Seventy percent of the obese girls had irregular cycles, as compared to 42.1% of the girls with normal BMI who had irregular cycles. This is in agreement with the study done in 2015 by Mustaqeem et al who reported that a higher percentage of obese girls have irregular cycles as compared to girls with normal BMI. (92)

Of the 70 obese girls, 41.4% had no PCOM on scan and 38.6% had PCOM on scan.Though we had planned to perform trans-abdominal ultrasonography for all obese girls with irregular cycles, ultrasonography was done only for $40(82 \%)$ of obese girls with irregular cycles. Thirty seven percent of the obese girls with irregular cycles had no PCOM while forty five percent had PCOM on ultrasonography. This is similar to the findings of a study done in Bulgaria which showed that more than 50% of adolescents suffering from PCOD were obese.
(60) On the other hand 5 obese girls with regular cycles also had PCOM, in our study. This could possibly represent a 'multifollicular' ovary rather than a polycystic ovary. As ultrasonography could not be done for all the obese girls with irregular cycles, the analysed result is probably not a reflection of the true incidence of PCOM in these girls.

Various risk factors have been suggested in the aetiopathogenesis of obesity. The risk factors we assessed were weight at birth, parental BMI (father and mother separately) obesity in siblings, physical activities and dietary habits. Other factors like SES, breast feeding practices and screen time duration were also looked into.

In our study, high birth weight (> 4 kg) was associated with adolescent obesity and this association was statistically significant. In addition this study also found that obese
adolescents had parents with high BMI as compared with adolescents with normal BMI and this finding too attained statistical significance. Similar findings have been reported in a cohort study done by Reilly JJ et al in 2005 where high birth weight and high BMI in parents (either one or both) were found to be risk factors for obesity in children and adolescents. (12) Obesity in siblings was also found to be a statistically significant risk factor for obesity in adolescents, in our study. These findings strengthen the concept of genetic factors in the aetiopathogenesis of obesity.

Our study found that physical activity and regular exercise had an inverse co-relation with obesity in adolescence and this finding was statistically significant. This is in keeping with the findings reported in a systematic review of studies conducted in the Indian subcontinent.

This study did not find intake of fast-food, high calorie foods and beverages to be a significant risk factor for obesity. This is in contrast to studies which show a strong association between the above mentioned factors. (15) (16) (17) Other risk factors like television watching and sedentary lifestyle including increased screen time were also not found to be statistically significant risk factors for obesity in adolescents. This is different from the findings reported in a study by Steven L Gortmaker et al (18) where the above mentioned variables were found to be important contributory factors to obesity in childhood and adolescence. Other factors looked into and which did not attain statistical significance were breakfast skipping habit, type of diet (vegetarian/ non-vegetarian) and daily intake of fruit and vegetables. The difference in findings could probably be attributed to the small sample size or information bias.

Different studies have shown that breastfeeding has a protective influence on childhood obesity. (20) (93) A systematic review in 2004 concluded that breast feeding has a protective
effect on obesity (94), but our study did not find any statistically significant difference between the two groups (obese Vs normal BMI) in the protection afforded by breast feeding. Our study did not find SES to be a signifcant risk factor for obesity. This is in contrast to a study done by Marwaha RK et al in 2006 (3) where a significant association was found between SES and obesity. The difference in the findings is being attributed to the small sample size.

The incidence of diabetes and hypertension in obese adolescents in our study was 1.4% each. This is in contrast to studies conducted in USA which showed that 4% of adolescents had asymptomatic T2DM (29) and 13.6\% had hypertension.(30). There could have been a higher number of asymptomatic T2DM in our study, which would have been picked up if screening for DM had been done. Biochemical testing was not part of our study; therefore it is likely that probable asymptomatic T2DM patients were missed out. Diabetes and hypertension was seen equally in both groups (normal BMI and obese).

Interestingly it was seen that gallstones and non alcoholic fatty liver disease commonly associated with obesity, was seen in girls with normal BMI and not in the obese population. This is in contrast to studies which showed a higher prevalence of NAFLD and cholelithiasis in obese children as compared to children with normal BMI. (44) (45)

Comorbidities like diabetes mellitus, hypertension, gallstones and NAFLD are commonly associated with obesity. These comorbidities were not seen in our study; the probable reason being the small sample size or the controlled patient selection, as only those girls attending the gynaecology out- patient clinic were included in the study.

Acanthosis nigricans is a frequent accompaniment of obesity and serves as a surrogate marker for insulin resistance, which is commonly seen in obesity.(95) We found that there
was a statistically significant difference in the occurrence of acanthosis nigricans in obese adolescents and adolescents with normal BMI.

Measuring waist hip ratio is becoming an important part of clinical examination, as it predicts the development of metabolic syndrome in the future. A ratio <0.8 denotes a low risk of developing metabolic syndrome. A ratio of 0.81 to 0.85 points to a higher chance of developing the syndrome. Waist hip ratio of >0.85 is indicative of high risk of developing metabolic syndrome later on in life. In our study, 42% of the girls had a low risk of developing metabolic syndrome and 58% had a moderate to very high risk of developing metabolic syndrome. This was in the background of the average BMI of the study population being $22.5 \mathrm{~kg} / \mathrm{m} 2$. Therefore it needs to be highlighted that even patients with a normal BMI can have an abnormal waist hip ratio which would be a surrogate marker for an unhealthy metabolic milieu in the future.

CONCLUSION

1. The prevalence of obesity in the adolescent age group was 14% and the prevalence of overweight was 18%.
2. 70% of the obese girls had irregular cycles.
3. 45% of the obese girls with irregular cycles had PCOM.
4. Risk factors which were significantly associated with adolescent obesity were - birth weight, fathers BMI, mothers BMI and obesity in sibling.
5. Physical activity and regular exercise were significantly associated with less obesity in the adolescent period.
6. Risk factors which were not associated with adolescent obesity were- breast feeding practices, SES, skipping of breakfast, eating out, intake of soft drinks, daily intake of fruits and vegetables, screen time and time spent in desk bound activities.
7. Acanthosis nigricans was seen significantly more in obese adolescents than in adolescents with normal BMI.
8. Adolescents with normal BMI can have a waist hip ratio more than 0.8

LIMITATIONS OF STUDY

- As this was not a community based study, the results obtained may not be representative of the actual burden of the disease in the community.
- Information regarding variables like birth weight, fathers BMI and mothers BMI were not available for all patients; this would have affected the analysis and interpretation of data.
- Ultrasonography could not be done for all the obese girls with irregular cycles, therefore the analysis may not be a true reflection of PCOM in these girls.

BIBLIOGRAPHY

1. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988-1994 Through 2013-2014. JAMA. 2016 Jun 7;315(21):2292-9.
2. Karnik S, Kanekar A. Childhood obesity: a global public health crisis. Int J Prev Med. 2012 Jan;3(1):1-7.
3. Marwaha RK, Tandon N, Singh Y, Aggarwal R, Grewal K, Mani K. A study of growth parameters and prevalence of overweight and obesity in school children from delhi. Indian Pediatr. 2006 Nov;43(11):943-52.
4. Eggers S, Kirchengast S. The polycystic ovary syndrome--a medical condition but also an important psychosocial problem. Coll Antropol. 2001 Dec;25(2):673-85.
5. Definition; epidemiology; and etiology of obesity in children and adolescents - UpToDate [Internet]. [cited 2017 Sep 7]. Available from: https://www.uptodate.com/contents/definition-epidemiology-and-etiology-of-obesity-in-children-andadolescents?source=search_result\&search=obesity\ in\ adolescent\ girls\&selectedTitle=1~150
6. Ranjani H, Mehreen TS, Pradeepa R, Anjana RM, Garg R, Anand K, et al. Epidemiology of childhood overweight \& obesity in India: A systematic review. Indian J Med Res. 2016 Feb;143(2):160-74.
7. The Global Challenge of Obesity and the International Obesity Task Force • International Union of Nutritional Sciences [Internet]. [cited 2017 Sep 19]. Available from: http://www.iuns.org/resources/the-global-challenge-of-obesity-and-the-international-obesity-task-force/
8. WHO | Obesity and overweight [Internet]. WHO. [cited 2017 Oct 1]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
9. Defining Adult Overweight and Obesity | Overweight \& Obesity | CDC [Internet]. [cited 2017 Oct 1]. Available from: https://www.cdc.gov/obesity/adult/defining.html
10. Flegal KM, Wei R, Ogden CL, Freedman DS, Johnson CL, Curtin LR. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am J Clin Nutr. 2009 Nov;90(5):1314-20.
11. Raj M, Kumar RK. Obesity in children \& adolescents. Indian J Med Res. 2010 Nov;132(5):598-607.
12. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005 Jun 11;330(7504):1357.
13. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997 Sep 25;337(13):869-73.
14. Nelson textbook of pediatrics. - NLM Catalog - NCBI [Internet]. [cited 2017 Sep 25]. Available from: https://www.ncbi.nlm.nih.gov/nlmcatalog/101555489
15. Ray JW, Klesges RC. Influences on the eating behavior of children. Ann N Y Acad Sci. 1993 Oct 29;699:5769.
16. Pereira MA, Kartashov AI, Ebbeling CB, Van Horn L, Slattery ML, Jacobs DR, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet Lond Engl. 2005 Jan 1;365(9453):36-42.
17. Poppitt SD, Prentice AM. Energy density and its role in the control of food intake: evidence from metabolic and community studies. Appetite. 1996 Apr;26(2):153-74.
18. Television viewing as a cause of increasing obesity among children in the United States, 1986-1990 (PDF Download Available) [Internet]. [cited 2017 Sep 25]. Available from:
https://www.researchgate.net/publication/14565290_Television_viewing_as_a_cause_of_increasing_o besity_among_children_in_the_United_States_1986-1990
19. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES) [Internet]. [cited 2017 Sep 25]. Available from: http://ajcn.nutrition.org/content/83/2/324.short
20. Arenz S, Rückerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity--a systematic review. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004 Oct;28(10):1247-56.
21. Adair LS, Gordon-Larsen P. Maturational timing and overweight prevalence in US adolescent girls. Am J Public Health. 2001 Apr;91(4):642-4.
22. Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005 Apr 19;111(15):1999-2012.
23. Mistry SK, Puthussery S. Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: a systematic review of the evidence. Public Health. 2015 Mar;129(3):200-9.
24. Khan LK, Sobush K, Keener D, Goodman K, Lowry A, Kakietek J, et al. Recommended community strategies and measurements to prevent obesity in the United States. MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2009 Jul 24;58(RR-7):1-26.
25. CDC. Causes and Consequences of Childhood Obesity [Internet]. Centers for Disease Control and Prevention. 2016 [cited 2017 Sep 21]. Available from:
https://www.cdc.gov/obesity/childhood/causes.html
26. Rosiek A, Frąckowiak Maciejewska N, Leksowski K, Rosiek-Kryszewska A, Leksowski Ł. Effect of Television on Obesity and Excess of Weight and Consequences of Health. Int J Environ Res Public Health. 2015 Aug;12(8):9408-26.
27. Comorbidities and complications of obesity in children and adolescents - UpToDate [Internet]. [cited 2017 Sep 11]. Available from: https://www.uptodate.com/contents/comorbidities-and-complications-of-obesity-in-children-and-
adolescents?source=search_result\&search=obesity\%20in\%20children\%20and\%20adolescent\&selectedTi tle $=3 \sim 150$
28. Williams DE, Cadwell BL, Cheng YJ, Cowie CC, Gregg EW, Geiss LS, et al. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999-2000. Pediatrics. 2005 Nov;116(5):1122-6.
29. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002 Mar 14;346(11):802-10.
30. Copeland KC, Zeitler P, Geffner M, Guandalini C, Higgins J, Hirst K, et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab. 2011 Jan;96(1):159-67.
31. Li S, Chen W, Srinivasan SR, Xu J, Berenson GS. Relation of childhood obesity/cardiometabolic phenotypes to adult cardiometabolic profile: the Bogalusa Heart Study. Am J Epidemiol. 2012 Oct 1;176 Suppl 7:S142-149.
32. Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertens Dallas Tex 1979. 2002 Oct;40(4):441-7.
33. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011 Nov 17;365(20):1876-85.
34. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N Engl J Med. 2015 Oct;373(14):1307-17.
35. Sanchez AA, Levy PT, Sekarski TJ, Arbelaez AM, Hildebolt CF, Holland MR, et al. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J Pediatr. 2015 Mar;166(3):660-5.
36. Cote AT, Harris KC, Panagiotopoulos C, Sandor GGS, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013 Oct 8;62(15):1309-19.
37. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A, Zakopoulos N. Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal-medial thickness. J Pediatr. 2005 Nov;147(5):651-6.
38. Atabek ME, Pirgon O, Kivrak AS. Evidence for association between insulin resistance and premature carotid atherosclerosis in childhood obesity. Pediatr Res. 2007 Mar;61(3):345-9.
39. Zhu H, Yan W, Ge D, Treiber FA, Harshfield GA, Kapuku G, et al. Relationships of cardiovascular phenotypes with healthy weight, at risk of overweight, and overweight in US youths. Pediatrics. 2008 Jan;121(1):115-22.
40. Baker JL, Olsen LW, Sørensen TIA. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007 Dec 6;357(23):2329-37.
41. Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L. Adolescent overweight and future adult coronary heart disease. N Engl J Med. 2007 Dec 6;357(23):2371-9.
42. Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut. 2009 Nov;58(11):1538-44.
43. Schwimmer JB, Deutsch R, Rauch JB, Behling C, Newbury R, Lavine JE. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J Pediatr. 2003 Oct;143(4):500-5.
44. Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006 Oct;118(4):1388-93.
45. Pediatric obesity and gallstone disease. - PubMed - NCBI [Internet]. [cited 2017 Sep 20]. Available from: https://www.ncbi.nlm.nih.gov/pubmed?term=22314396
46. Verhulst SL, Schrauwen N, Haentjens D, Suys B, Rooman RP, Van Gaal L, et al. Sleep-disordered breathing in overweight and obese children and adolescents: prevalence, characteristics and the role of fat distribution. Arch Dis Child. 2007 Mar;92(3):205-8.
47. Krebs NF, Himes JH, Jacobson D, Nicklas TA, Guilday P, Styne D. Assessment of child and adolescent overweight and obesity. Pediatrics. 2007 Dec;120 Suppl 4:S193-228.
48. Taylor ED, Theim KR, Mirch MC, Ghorbani S, Tanofsky-Kraff M, Adler-Wailes DC, et al. Orthopedic complications of overweight in children and adolescents. Pediatrics. 2006 Jun;117(6):2167-74.
49. Chan G, Chen CT. Musculoskeletal effects of obesity. Curr Opin Pediatr. 2009 Feb;21(1):65-70.
50. Brara SM, Koebnick C, Porter AH, Langer-Gould A. Pediatric idiopathic intracranial hypertension and extreme childhood obesity. J Pediatr. 2012 Oct;161(4):602-7.
51. Simkin B, Arce R. Steroid excretion in obese patients with colored abdominal striae. N Engl J Med. 1962 May 17;266:1031-5.
52. Strauss RS, Pollack HA. Social marginalization of overweight children. Arch Pediatr Adolesc Med. 2003 Aug;157(8):746-52.
53. Goodman E, Whitaker RC. A prospective study of the role of depression in the development and persistence of adolescent obesity. Pediatrics. 2002 Sep;110(3):497-504.
54. Erickson SJ, Robinson TN, Haydel KF, Killen JD. Are overweight children unhappy?: Body mass index, depressive symptoms, and overweight concerns in elementary school children. Arch Pediatr Adolesc Med. 2000 Sep;154(9):931-5.
55. Schwimmer JB, Burwinkle TM, Varni JW. Health-related quality of life of severely obese children and adolescents. JAMA. 2003 Apr 9;289(14):1813-9.
56. Stunkard A, Burt V. Obesity and the body image. II. Age at onset of disturbances in the body image. Am J Psychiatry. 1967 May;123(11):1443-7.
57. Gortmaker SL, Must A, Perrin JM, Sobol AM, Dietz WH. Social and economic consequences of overweight in adolescence and young adulthood. N Engl J Med. 1993 Sep 30;329(14):1008-12.
58. Practice Bulletin No 156: Obesity in Pregnancy. Obstet Gynecol. 2015 Dec;126(6):e112-26.
59. Parazzini F, La Vecchia C, Bocciolone L, Franceschi S. The epidemiology of endometrial cancer. Gynecol Oncol. 1991 Apr 1;41(1):1-16.
60. Kedikova S, Sirakov M. [Adolescent PCOS]. Akush Ginekol (Sofiia). 2010;49(6):48-55.
61. Franks S. Adult polycystic ovary syndrome begins in childhood. Best Pract Res Clin Endocrinol Metab. 2002 Jun 1;16(2):263-72.
62. Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am. 1999 Jun;28(2):361-78.
63. Loukovaara M, Carson M, Adlercreutz H. Regulation of production and secretion of sex hormone-binding globulin in HepG2 cell cultures by hormones and growth factors. J Clin Endocrinol Metab. 1995 Jan;80(1):160-4.
64. Definition, clinical features and differential diagnosis of polycystic ovary syndrome in adolescents UpToDate [Internet]. [cited 2017 Sep 25]. Available from:
https://www.uptodate.com/contents/definition-clinical-features-and-differential-diagnosis-of-polycystic-ovary-syndrome-in-adolescents
65. Carmina E, Oberfield SE, Lobo RA. The diagnosis of polycystic ovary syndrome in adolescents. Am J Obstet Gynecol. 2010 Sep 1;203(3):201.e1-201.e5
66. Bentzen JG, Forman JL, Johannsen TH, Pinborg A, Larsen EC, Andersen AN. Ovarian antral follicle subclasses and anti-mullerian hormone during normal reproductive aging. J Clin Endocrinol Metab. 2013 Apr;98(4):1602-11.
67. Villarroel C, Merino PM, López P, Eyzaguirre FC, Van Velzen A, Iñiguez G, et al. Polycystic ovarian morphology in adolescents with regular menstrual cycles is associated with elevated anti-Mullerian hormone. Hum Reprod Oxf Engl. 2011 Oct;26(10):2861-8.
68. Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014 Jun;20(3):334-52.
69. Kenigsberg LE, Agarwal C, Sin S, Shifteh K, Isasi CR, Crespi R, et al. Clinical utility of magnetic resonance imaging and ultrasonography for diagnosis of polycystic ovary syndrome in adolescent girls. Fertil Steril. 2015 Nov;104(5):1302-1309.e1-4.
70. Rosenfield RL. The Polycystic Ovary Morphology-Polycystic Ovary Syndrome Spectrum. J Pediatr Adolesc Gynecol. 2015 Dec;28(6):412-9.
71. ACOG Committee on Practice Bulletins--Gynecology. ACOG Practice Bulletin No. 108: Polycystic ovary syndrome. Obstet Gynecol. 2009 Oct;114(4):936-49.
72. Diagnostic evaluation of polycystic ovary syndrome in adolescents - UpToDate [Internet]. [cited 2017 Sep 25]. Available from: https://www.uptodate.com/contents/diagnostic-evaluation-of-polycystic-ovary-syndrome-in-adolescents
73. Raj M, Kumar RK. Obesity in children \& adolescents. Indian J Med Res. 2010 Nov;132(5):598-607.
74. Intake of sugar-sweetened beverages and weight gain: a systematic review [Internet]. [cited 2017 Sep 25]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210834/
75. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertens Dallas Tex 1979. 2006 Nov;48(5):861-9.
76. Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005 Jun;146(6):732-7.
77. Poirier P, Després J-P. EXERCISE IN WEIGHT MANAGEMENT OF OBESITY. Cardiol Clin. 2001 Aug 1;19(3):459-70.
78. Watts K, Jones TW, Davis EA, Green D. Exercise training in obese children and adolescents: current concepts. Sports Med Auckl NZ. 2005;35(5):375-92.
79. Coon KA, Tucker KL. Television and children's consumption patterns. A review of the literature. Minerva Pediatr. 2002 Oct;54(5):423-36.
80. Viner RM, Cole TJ. Television viewing in early childhood predicts adult body mass index. J Pediatr. 2005 Oct;147(4):429-35.
81. Mendoza JA, Zimmerman FJ, Christakis DA. Television viewing, computer use, obesity, and adiposity in US preschool children. Int J Behav Nutr Phys Act. 2007 Sep 25;4:44.
82. Greydanus DE, Bricker LA, Feucht C. Pharmacotherapy for Obese Adolescents. Pediatr Clin. 2011 Feb 1;58(1):139-53.
83. Inge TH, Krebs NF, Garcia VF, Skelton JA, Guice KS, Strauss RS, et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics. 2004 Jul;114(1):217-23.
84. Inge TH, Xanthakos SA, Zeller MH. Bariatric surgery for pediatric extreme obesity: now or later? Int J Obes 2005. 2007 Jan;31(1):1-14.
85. Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP, et al. Population-based prevention of obesity: the need for comprehensive promotion of healthful eating, physical activity, and energy balance: a scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (formerly the expert panel on population and prevention science). Circulation. 2008 Jul 22;118(4):428-64.
86. Katz DL, O'Connell M, Yeh M-C, Nawaz H, Njike V, Anderson LM, et al. Public health strategies for preventing and controlling overweight and obesity in school and worksite settings: a report on recommendations of the Task Force on Community Preventive Services. MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2005 Oct 7;54(RR-10):1-12.
87. Spear BA, Barlow SE, Ervin C, Ludwig DS, Saelens BE, Schetzina KE, et al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics. 2007 Dec;120 Suppl 4:S254-288.
88. Davis MM, Gance-Cleveland B, Hassink S, Johnson R, Paradis G, Resnicow K. Recommendations for prevention of childhood obesity. Pediatrics. 2007 Dec;120 Suppl 4:S229-253.
89. Huus K, Ludvigsson JF, Enskär K, Ludvigsson J. Exclusive breastfeeding of Swedish children and its possible influence on the development of obesity: a prospective cohort study. BMC Pediatr. 2008 Oct 9;8:42.
90. Davis MM, Gance-Cleveland B, Hassink S, Johnson R, Paradis G, Resnicow K. Recommendations for prevention of childhood obesity. Pediatrics. 2007 Dec;120 Suppl 4:S229-253.
91. Bralić I, Tahirović H, Matanić D, Vrdoljak O, Stojanović-Spehar S, Kovacić V, et al. Association of early menarche age and overweight/obesity. J Pediatr Endocrinol Metab JPEM. 2012;25(1-2):57-62.
92. Mustaqeem M, Sadullah S, Waqar W, Farooq MZ, Khan A, Fraz TR. Obesity with irregular menstrual cycle in young girls. Mymensingh Med J MMJ. 2015 Jan;24(1):161-7.
93. Hediger ML, Overpeck MD, Kuczmarski RJ, Ruan WJ. Association Between Infant Breastfeeding and Overweight in Young Children. JAMA. 2001 May 16;285(19):2453-60.
94. Arenz S, Rückerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity--a systematic review. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004 Oct;28(10):1247-56.
95. Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: Skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007 Jun;56(6):901-16.

ANNEXURE

Questionnaire1. Name2. Age
3. DOB
4. Weight at birth
5. Breast fed -yes/no
6. Age of onset of obesity
7. Grade at school/college
8. Phone number
9. Fathers BMI
10. Mothers BMI
11. SES
12. Obesity in sibling- yes/no
13. History of acne yes/no
Treated yes/no
14. History of epilation- yes /no
15. Eating habits

1) Veg/nonveg
2) Do you eat out- yes /no

If yes a) once a week
b) 2-3 times/ week
3) Intake of soft drinks/flavoured milk/sweetened
a) once a day
b) twice a day
c) thrice a day
4) Fried foods
a) once a week
b) twice a week
c) ≥ 3 times a week
5) What do you eat for snacks
6) Do you eat fruits and veg daily yes/no
7) Do you skip breakfast yes/no
16. a) Physical activity (exercise at least 30 min involving profuse sweating)-

1) 5-7 days / week
2) 3-4 days / week
3) 1-2 days/week
b) Hours spent watching TV/ /movies / playing video games
c) Hours spent on computer/talking on phone/doing homework
17. Co-morbidities - were you diagnosed to have any of the following problems

Co-morbidities	Yes	no
Hypertension		
Diabetes mellitus		
Non alcoholic fatty liver disease		
Gallstones		
Slipped femoral epiphysis		

18. History of any medication

- antidepressants
- OHA
- OCP
- antiepileptic

19. Regular exercise/yoga
20. Age at menarche
21. Menstrual cycle- duration
1) ≤ 2 days
2) 2-8 days
3) >8 days

- Frequency

1) < 21 days
2) 22-35 days
3) > 35 days

- Pads changed per day

1) <3
2) ≥ 3

- Passage of clots

1) No
2) Small coin sized clot
3) Large clots

Profoma (Examination)

1. Height
2. Weight
3. BMI

Body mass index-for-age percentiles, girls, 2 to 20 years, CDC growth charts:

United States

4. Waist circumference
5. Hip circumference
6. Waist hip ratio
7. BP
8. PR
9. Hirsutism- yes/no

10. Acne
-Topical therapy used- Yes/no
11. Acanthosis nigrans
12. Ultrasound findings :

Patient information sheet

Obesity (excess weight) is becoming a big problem in our societies. The number of teenage girls who are obese is much more now than before. There are various reasons why obesity occurs. Irregular periods are common in teenage girls. Irregular periods can also occur if the child is obese. There is a condition called Polycystic Ovarian Disease (PCOD) which can also present with irregular periods, in teenage girls. In this condition there are many small cysts in the ovary and this can be diagnosed with an ultrasound scan. Patients with PCOD are mostly obese but there is a group of patients with PCOD who are not obese.

This study is being done to find out the extent of the problem of obesity in adolescent girls and to assess the risk factors for obesity in them. It is also being done to assess the menstrual pattern in obese teenage girls and to find out how many of the obese teenage girls have PCOD.

For this study you will be required to answer questions regarding details of the child's menstrual cycles, lifestyle and other details which may point to the cause of obesity. The child will be examined by the doctor and if necessary the doctor will order for ultrasound scan.

Informed consent

Study Title: Obesity in adolescent girls

Study Number: \qquad

Subject's Name: \qquad

Subjects Hospital Number:

\qquad

Date of Birth / Age:

\qquad
(i) I confirm that I have read and understood the information sheet dated \qquad for the above study and have had the opportunity to ask questions. []
(ii) I understand that my participation in the study is voluntary and that I am free to withdraw at any time, without giving any reason, without my medical care or legal rights being affected. []
(iii) I understand that the Ethics Committee and the regulatory authorities will not need my permission to look at my health records both in respect of the current study and any further research that may be conducted in relation to it, even if I withdraw from the trial. I agree to this access. However, I understand that my identity will not be revealed in any information released to third parties or published. []
(iv) I agree not to restrict the use of any data or results that arise from this study provided such a use is only for scientific purpose(s). []
(v) I agree to take part in the above study. []

Signature (or Thumb impression) of the Subject/Legally Acceptable

Date: \qquad 1_1 \qquad

Signatory's Name: \qquad

Signature: \qquad

Signature of the Investigator: \qquad

Date: \qquad 1 \qquad

Study Investigator's Name: \qquad

Signature or thumb impression of the Witness: \qquad

Date: \qquad /_ 1 \qquad

INFORMED ASSENT FORM

This informed assent form is for girls between the ages of 12-17 years who attend the gynaecology OPD and we are inviting to participate in study of prevalence of obesity in adolescent girls and associated risk factors for the same.

Name of principal investigator: Dr Evangeline

Name of Organisation: Christian Medical College and Hospital (CMCH)

Name of project: Study of obesity in adolescent girls

INFORMATION SHEET

My name is Dr Evangeline Reeni, I am a post graduate student in the department of gynaecology and obstetrics. I am doing a study on 'obesity in adolescent girls' attending the gynaecology OPD in CMCH- to find out the prevalence of obesity and the associated risk factors for it. You will be required to answer a few questions (given in the form) and after that I will be examining you. If your menstrual cycles are irregular an ultrasound scan will be done and you will be required to pay for the same. I am giving you this information about the study and I invite you to be part of it. You can choose to participate or not do so. I have discussed this study with your parents/guardian and they know that we are also asking you for your agreement. If you are going to participate in the study, your parents/guardian also have to agree. But if you do not wish to take part in the study you do not have to, even if your parents have agreed. You can decide whether to participate or not after you have talked it over with your parents or friends or anyone else you feel comfortable talking to. You do not have to decide immediately.

There may be some words you don't understand or things that you want me to explain more about because you are interested or concerned. Please ask me to stop at any time and I will take time to explain.

Purpose: Why are you doing this research?

I am doing this study to find out the prevalence of obesity and its associated risk factors. I am also trying to find out the number of obese adolescent girls with polycystic ovarian disease.

Choice of participants: Why are you asking me?

My study involves adolescent girls.

Participation is voluntary: Do I have to do this?

You do not have to be in this study if you do not want to be. It is up to you. If you decide not to be in the research it is okay and nothing changes. This is still your clinic, everything stays the same as before. Even if you say "yes" now, and later change your mind it is still okay.

I have checked with the child and they understand that participation is voluntary _ (initial)

Procedures: What is going to happen to me?

You will be asked a few questions and then a physical examination will be done. If you have menstrual irregularity an ultrasound scan will be done. You do not have to come back to the hospital for the sake of the study, but if you have any medical problems you can follow up in CMCH at any time.

I have checked with the child and they understand the procedures \qquad (initial))

You will get to know your BMI and the associated risk factors that you have. You will be advised accordingly to change your lifestyle.

I have checked with the child and they understand the benefits \qquad (initial)

Reimbursements: Do I get anything for being in the research?

No

Confidentiality: Is everybody going to know about this?

We will not tell other people that you are in this study and we will not share information about you to anyone who is not part of this study.

Information that will be collected from the research will be put away and no-one but the researchers will be able to see it. Any information about you will have a number on it instead of your name.

Right to Refuse or Withdraw: Can I choose not to be in the research? Can I change my mind?

You do not have to be in this study, if you choose not to. No one will be angry or disappointed with you if you say no. It is your choice. You can think about it and tell us later if you want. You can say "yes" now and change your mind later and it will still be okay.

Who to Contact: Who can I talk to or ask questions to?

For any information you can contact on this number and I will get back to you.

Phone number: 9788595589

If you choose to be part of this research I will also give you a copy of this paper to keep for yourself.

You can ask me any more questions about any part of the research study, if you wish to. Do you have any questions?

Certificate of Assent

I understand the study is about 'obesity in adolescent girls' attending the gynaecology OPD in CMCH.

I will be asked questions and a physical examination will be done. If menstrual irregularities are present an ultrasound scan will be done.

I have read this information (or had the information read to me) I have had my questions answered and know that I can ask questions later if I have them.

I agree to take part in the study. OR

I do not wish to take part in the study and I have not signed the assent below. \qquad (initialled by child/minor)

Only if child assents:

Print name of child \qquad

Signature of child: \qquad

Date: \qquad day/month/year

If illiterate:

A literate witness must sign (if possible, this person should be selected by the participant, not be a parent, and should have no connection to the research team). Participants who are illiterate should include their thumb print as well.

I have witnessed the accurate reading of the assent form to the child, and the individual has had the opportunity to ask questions. I confirm that the individual has given consent freely.

Print name of witness (not a parent) \qquad AND Thumb print of participant

Signature of witness \qquad
Date \qquad

Day/month/year

I have accurately read or witnessed the accurate reading of the assent form to the potential participant, and the individual has had the opportunity to ask questions. I confirm that the individual has given assent freely.

Print name of researcher \qquad

Signature of researcher \qquad

Date \qquad Day/month/year

Statement by the researcher/person taking consent

I have accurately read out the information sheet to the potential participant, and to the best of my ability made sure that the childunderstands that the following will be done:

1. Filling up of questionnaire
2. Physical Examination

3. Ultrasound scan in case of menstrual irregularities

I confirm that the child was given an opportunity to ask questions about the study, and all the questions asked by her have been answered correctly and to the best of my ability.

I confirm that the individual has not been coerced into giving consent, and the consent has been given freely and voluntarily.

A copy of this assent form has been provided to the participant.

Print Name of Researcher/person taking the assent \qquad

Signature of Researcher /person taking the assent \qquad

Date \qquad Day/month/year

Copy provided to the participant \qquad (initialed by researcher/assistant)

Parent/Guardian has signed an informed consent \qquad Yes \qquad No \qquad (initialed by researcher/assistant)

sno	hospital	name	age	unit	wt	bf	onsetage	studying	grade	fbmi	fbmirange	mbmi	mbmirange	ses	obeinsib	acne	trt	epi	often	vn	eatout	frequent	intake	friedfd	snacks
1	437500g	Gurusha Kumari	13	1	2.7	1		1	8	35	4	28	3	2	2	2	2	2		2	1	3	2	0	biscuit,mixture
2	410758g	Suravi B	17	1	2.6	1		1	11	19.9	2	20.34	2	2	2	2	2	2		2	1	4	0	1	biscuit, mixture
3	119365g	Shreya	19	1	1.5	1		1	13	31.25	4	25.23	3	2	2	2	2	2		2	1	1	4	1	fryums,samosa
4	764345g	Usha	18	1	3	1	3	2	9	25.47	3	26.67	3	3	1	2	2	2		1	2		0	0	biscuit,mixture
5	746337g	Thenmozhi	12	1	2.5	1	10	1	7	18.5	2	24.77	2	4	2	2	2	2		2	2		0	1	mixture
6	756150 g	Deborah	17	1	3	1	6	1	12	25.4	3	28.13	3	3	2	2	2	2		2	2		1	0	biscuit,mixture
7	771725 g	Sneha	13	2	4	1		1	7	22.58	2	25.39	3	3	2	2	2	2		1	2		0	0	biscuit,chocolate
8	299634g	Baisakhi	16	2	3	1		1	10	21.26	2	19.53	2	2	2	2	2	2		2	1	1	0	2	chocolate,noodles, past
9	238593d	Ambalika	15	2	2.5	1	13	1	10	22.49	2	25.39	3	2	2	2	2	2		2	2		0		chips,samosa
10	736507g	Swagata	16	2	2.4	1		1	11	20.31	2	23.78	2	2	2	2	2	2		2	2		0	2	bhajji, chips
11	532793g	Snega	13	2	3.5	1		1	9	27.34	3	22.04	2	4	2	2	2	2		2	2		0	0	
12	539461g	Revathy	18	2	3	1		1	13	20.24	2	22.66	2	3	2	2	2	2		2	2		0		mixture
13	121918c	Kaviya	14	1	2.5	1	12	1	9					2	2	2	2	2		2	1	1	1		biscuit,chips
14	749887g	Riya	16	1	2.8	1		1	11	24.65	2	31	3	3	2	2	2	2		2	1	3	3	2	biscuit,noodles
15	857229b	Cathryn	16	1	2	2	14	1	11				4	2	1	2	2	2		2	1	1	4	1	biscuit
16	773388 g	Megha	16	1	2.2	1	12	1	11	26.35	3	24.56	2	1	3	1	2	2		2	2		4		2 biscuit,cake
17	765476 g	Vanisree	14	1	2.5	1		1	9		2			4	2	2	2	2		2	1	4	3	0	
18	327328g	Induja	18	1	2.7	1	16	1	13		2		3	1	2	1	2	2		2	2		4		biscuit
19	539530 g	Saisupraja	16	1	3	1		1	11	21.8	2	35.5	5	2	2	2	2	2		2	1	4	0		biscuit
20	724823 g	Thanuja	18	2	3.5	1		1	12	27.43	3	23.33	2	2	2	2	2	1	1	2	1	1	4	3	
21	765713 f	Keerthana	17	2	2.7	1	15	1	12	31.14	4	27.4	3	2	1	2	2	2		2	2		0		bread
22	770229 g	Mahila	14	2	2.5	1		1	10	23.15	2	26.37	3	1	2	2	2	2		2	2		4		biscuit
23	643817g	Iktesam K	18	2	2.5	1		1	12	22.04	2	29.33	3	2	2	2	2	2		2	2	4	4		biscuit,puffed rice
24	804248d	Tamana	16	2	2.5	1		1	12	31.2	3	23.8	2	4	2	2	2	2		2	2		0		biscuit,rusk
25	724735 g	Shilpa	18	1	2.6	1		2	10	23.9	2	24.4	2	3	2	2	2	2		2	2		0	0	
26	746793 g	Shilpa	18	1	2.8	1		1	14	24.7	2	23.2	2	3	2	2	2	2		2	1	2	0		biscuit,cake
27	626374 g	Aishwarya	15	1	3	1		1	11	19	2	19.5	2	3	2	2	2	2		2	2		0	0	
28	720437f	Darshini	14	1	3.4	1		1	9	25.35	3	19.53	2	1	2	2	2	2		2	1	4	0	0	biscuit,nuts
29	557582d	Divya	15	1	3	1	2	1	11	25.77	3	27.55	3	1	2	2	2	2		1	2		0		biscuit,chocolate
30	774935g	Asmitha	15	1	3	1	12	1	11	20.96	2	19.78	2	2	2	2	2	2		1	1	3	0		mixture
31	762401 g	Divya	18	1	3	1		1	12	25.39	3	26.04	3	2	2	2	2	2		2	2		0		biscuit,chips
32	773043g	Chandrika	18	1	2.8	1		1	14	22.99	2	34.67	4	2	2	2	2	2		2	2		1	4	
33	362821c	Hemapriya	13	1	2.5	1		1	8	22.1	2	22.6	2	4	2	2	2	2		2	2		0	0	chips
34	050560c	Bhavya	15	2	2.2	1		1	11	28.73	3	27.34	3	2	1	2	2	2		2	2		0		cake,chips,chocolate
35	713478 g	Mou Saha	16	2	2.6	1	14	1	11	23.15	2	26.04	3	2	2	2	2	2		2	1	4	4		biscuit
36	773806 g	Most Tasnim	16	2	3.5	2	4	1	10	24.3	2	37.7	5	2	2	2	2	2		2	1	2	1		biscuit
37	070612g	Divya	16	2	2.4	1		1	11	24.69	2	24.09	2	4	2	2	2	2		2	2		0	0	biscuit
38	$504616 f$	Poojitha	15	2	2.5	1	5	1	10	21.5	2	23.2	2	3	2	2	2	2		2	1	1	1		biscuit
39	276364d	Swasthika	17	2	2.5	1		1	11	18.6	2	29.1	3	2	1	2	2	2		2	1	2	2		2 burger,pizza
40	105710 g	Simran	18	2	3.5	1	1	1	14	19.9	2	18.7	2	4	2	2	2	2		2	2		0		biscuit
41	776889g	Karma Sonam	19	2	3	1	15	1	12	28.34	3	25.63	3	3	2	2	2	2		2	1	1	1		biscuit,bread
42	765990 g	Purnima	18	2	4.5	1	0	1	12	35.69	5	22.77	2	2	2	1	2	2		2	1	1	0		biscuit
43	771898 g	Sharmila	13	1	3	1	10	1	9	25.71	3	26.16	3	3	2	2	2	2		2	1	3	1		biscuit
44	744425 g	Priyanka	13	1	2.4	1	10	1	8	28.6	3	26.84	3	2	3	2	2	2		2	1	1	0		bonda,chips
45	750479g	Tanushree	17	1	2.6	1		1	12	21.64	2	18.67	2	2	2	2	2	2		2	2		0	0	
46	541183g	Prasannakumari	17	1	3	1		1	13	22.86	2	20.81	2	4	2	1	2	2		2	2		0		biscuit
47	887498 f	Nandhini	19	1	2.7	1	18	1	13	22.89	2	26.67	3	4	2	2	2	2		2	2		0	1	
48	494129f	Prema	18	1	2.7	1		1	13	23.43	2	31.21	4	4	2	1	2	2		2	2		0	4	
49	893591d	Asmita	16	2	3	1		1	11	22.22	2	23.59	2	2	2	2	2	2		2	2		4	1	biscuit,chips,noodles
50	682383c	Vinothini	17	2	2.9	1		1	13	27.68	3	24.03	2	2	2	2	2	2		2	2		0	0	biscuit
51	601997d	Priti Sarkar	12	2	3	1	8	1	7	24.84	2	24.97	2	2	2	2	2	2		2	1	3	1		biscuit,pakoda
52	473129g	Hemalatha	15	2	2.5	1		1	10	24.39	2	28	3	3	2	2	2	2		2	2		0	0	
53	745277g	Monidipa	19	1	2.5	1		1	14	23.88	2	23.11	2	1	3	2	2	2		2	2		0		biscuit
54	766325 g	Dikshana	13	1	2.5	1		1	6		2		2	2	2	2	2	2		2	2		1	2	2 biscuit,mixture
55	541597g	Kavitha	15	1		1	12	1	10					3	1	2	2	2		2	1	1	1		chips, puff
56	629144g	Kavitha	18	1	2.7	1	2	1	13	25.91	3	21.64	2	4	2	2	2	2		2	2		0		bhajji, bonda
57	780971 g	Jaspreet	15	1	4	2		1	10		3			1	2	2	2	2		1	1	1	1		biscuit,cake,chips
58	$526266 f$	Renu	13	1	3.5	1		1	8		3		4	2	2	2	2	2		2	2		0		bonda,chips,nuts
59	776043g	Fatema	19	1	2.5	1	3	1	13	26.12	3	29.3	3	2	1	2	2	2		2	2		0		biscuit

fruits	skipbf	phyact	hrsspent	comp	hypten	diab	liverdis	gall fe	fem th	thyroid m	med di	drug ex	exer ag	agemen	menarche	dur fre	freq pad		Jots ht w	wgt b	bmi	range	waist	hip w	whratio w	waisthip	sysbp	diasbp		hirs h	hirsyes	acne1	topical	acan	ultrasd
1	2	3	32	2		22		2	2	2	1	3	2	12	1	2	2	1	1150	43	19.11	2	61	81	0.75	1	82	56	94	2		2	2		2 ovarian cyst
1	1	4	2	4		2	2	2	2	2	2		2	13	4	2	2	1	1147	40	18.51	2	67	80	0.84	2	100	60	90	2		2	2		2 normal
1	2	4	4	5	2	22	2	22	2	2	1	3	2	13	6	2	2	2	1162	45	17.15	1	65	85	0.76	1	90	60	74	2		2	2		2 ovarian cyst
1	2	4	40	0	2	22	2	22	2	2	2		2	15	3	2	2	1	1166	82	29.76	3	95	115	0.82	2	100	60	80	2		2	2	2	
2	1	3	2	2	2	22	2	22	2	2	2		2	11	1	3	2	2	2149	56	25.22	3	76	93	0.82	2	116	68	104	2		2	2	2	
2	2	4	0	3	2	22	2	2	2	2	2		2	12	5	2	4	2	1164	75	27.89	3	102	114	0.89	3	110	70	130	2		2	2		2 normal
1	2	4	4	2	2	22	2	22	2	2	2		2						151	39	17.1	2	61	81	0.75	1	84	54	92	2		2	2	2	
2	2	1	2	2	2	22	2	22	2	2	2		1	10	6	2	2	2	1169	54	18.91	2	65	84	0.77	1	97	63	80	2		2	2	2	
2	2	4	4	3	2	22	2	22	2	2	2		2	10	5	2	3	1	1150	57	25.33	3	88	101	0.87	3	106	68	92	2		2	2		2 normal
1	2	4	42	3	2	22	2	22	2	2	2		2	10	${ }^{6}$	2	2	1	1148	42	19.17	2	70	85	0.82	1	100	70	90	2		2	2		2 normal
2	2	4	3	3	2	22	2	22	2	2	2		2	13	0	2	2	1	1162	50	19.05	2	65	86	0.76	1	94	45	100	2		2	2		2 normal
2	2	4	43	3	2	22	2	22	2	2	2		2	12	- 6	2	2	2	1152	48	20.78	2	69	88	0.78	1	102	68	74	2		2	2	2	
1	2	4	1	2	2	22	2	22	2	2	2		2	12	2	2	5	1	1157	61	24.75	3	77	97	0.79	1	112	67	110	2		2	2		2 ovarian cyst
1	2	4	1	2	2	22	2	22	2	2	2		2	13	3	2	2	1	1143	38	18.58	2	65	78	0.83	2	100	68	98	2		2	2		2 normal
1	1	4	1	1	2	22	2	22	2	2	2		2	13	3^{3}	2	4	1	1151	66	28.95	3	86	103	0.83	2	115	69	93	2		2	2	2	
1	2	4	4	3	2	22	2	22	2	2	2		2	13	3	3	3	2	3149	63	28.38	3	89	102	0.87	3	105	75	104	2		2	2	1	
1	2	4	1	2	2	22	2	22	2	2	2		2	13	1	2	2	2	2148	35	15.98	2	57	73	0.78	1	108	65	110	2		2	2	2	
1	2	3	30	5	2	22	2	22	2	2	2		2	13	5	3	3	2	3167	78	27.97	3	97	110	0.88	3	143	82	90	2		2	2		2 ovariancyst
1	1	1	0	- 4	2	22	2	22	2	2	2		1	12	- 4	2	2	1	1159	39	15.43	1	57	81	0.7	1	87	40	83	2		2	2	2	
1	2	4	0	- 4	2	22	2	22	2	2	1	3	2	13	5	3	2	2	1163	60	22.58	2	77	94	0.82	2	100	60	84	1	3	2	2	2	
1	2	4	40	2	2	22	2	22	2	2	2		2	13	4	2	2	1	1156	63	25.89	3	81	96	0.84	2	112	72	102	2		2	2		2 normal
1	2	1	1	14	2	22	2	22	2	2	2		1	12	2	3	2	2	1162	47	17.91	2	63	87	0.72	1	101	65	106	2		2	2	2	
1	2	4	4	2	2	22	2	22	2	2	1	3	2	12	${ }^{6}$	3	2	2	2150	52	23.11	2	70	88	0.79	1	100	60	82	2		2	2	2	
1	2	4	4	1	2	22	2	22	2	2	2		2	13	3	2	4	2	2147	48	22.21	2	73	89	0.82	2	96	69	80	2		2	2	2	
1	2	4	4	1	2	22	2	22	2	2	2		2	10	- 8	2	2	2	1152	53	22.94	2	79	94	0.84	2	97	62	83	2		2	2	2	
1	2	4	2	4	2	22	2	22	2	2	2		2	15	3	2	4	1	1155	49	20.4	2	70	87	0.8	1	123	81	75	2		2	2	2	
1	2	4	4	2	2	22	2	22	2	2	1	2	2	15	0	2	2	1	1146	35	16.42	2	64	78	0.82	2	94	55	77	2		2	2		2 normal
1	2	4	4	2	2	22	2	22	2	2	2		2	11	3	2	2	1	1160	54	21.09	2	74	87	0.85	2	117	89	64	2		2	2	2	
2	2	4	1	4	2	22	2	22	2	2	2		2	12	3	3	5	1	1155	73	30.39	5	87	99	0.88	3	124	85	120	2		2	2	2	
1	2	3	0	- 4	2	22	2	22	2	2	2		2	13	2	2	4	1	1156	62	25.48	3	82	98	0.84	2	98	59	82	2		2	2	2	
1	2	4	0	${ }^{6}$	2	2	2	22	2	2	2		2	14	4^{4}	2	4	1	1157	60	24.34	2	73	94	0.77	1	107	84	73	2		2	2	2	
1	2	4	3	3	2	2	2	2	2	2	2		2	13	5	2	5	2	1156	52	21.37	2	74	91	0.81	2	110	59	88	2		2	2	2	
1	2	4	43	3	2	22	2	22	2	2	2		2	13	0	3	2	2	2157	47	19.07	2	73	85	0.86	3	103	50	70	2		2	2		2 normal
1	2	4	40	7	2	22	2	22	2	2	1	2	2	12	- 3	2	2	1	1168	66	23.38	2	77	95	0.81	2	99	67	85	2		2	2		
1	1	4	2	24	2	2	2	2	2	2	2		2	11	5	2	5	1	2159	65	25.71	3	79	95	0.83	2	146	93	98	2		2	2		2 normal
1	1	4	42	4	2	22	1	12	2	2	1	3	2	13	3	2	3	1	1164	77	28.63	3	93	105	0.89	3	120	70	82	1	11	2	2	1	
1	2	4	2	1	2	2	2	22	2	2	2		2						153	50	21.36	2	77	86	0.89	3	120	80	80	2		2	2		2 small uterus, no ovary
1	1	4	4	4	2	2	2	22	2	2	2		2						163	65	24.46	3	79	93	0.85	2	100	67	85	2		2	2		1 no uterus, no ovary
2	2	4	4	3	2	22	2	22	2	,	2		2	15	2	2	5	2	1153	51	21.79	2	67	86	0.78	1	90	63	85	2		2	2	2	
1	1	4	2	6	2	2	2	2	2	2	2		2	13	5	2	4	1	2152	64	27.7	3	89	96	0.93	3	100	70	70	2		2	2		1 normal
1	2	1	3	5	2	2	2	22	2	2	2		1	13	6	2	4	2	2157	67	27.18	3	80	102	0.78	1	105	71	88	2		2	2		2 normal
1	2	4	4	1	2	22	2	22	2	2	2		2	13	5	2	2	1	1158	76	30.44	4	90	112	0.8	1	121	74	97	2		2	2		2 normal
,	2	4	42	1	2	2	2	2	2	1	2		2						160	69	26.95	4	92	96	0.95	3	120	74	102	2		2	2		1 normal
1	2	3	1	4	2	2	2	2	2	2	2		1	12	1	2	1	2	1145	50	23.78	3	79	86	0.91	3	108	68	100	2		2	2	1	
1	2	4	4	3	2	22	2	2	2	-	2		2	14	3	2	5	2	2149	41	18.47	2	65	75	0.87	3	95	58	75	2		2	2		2 normal
1	2	3	3	3	2	22	2	22	2	2	2		2	15	2	2	2	2	1157	54	21.91	2	78	90	0.87	3	90	70	82	2		2	2	2	
1	1	1	0	2	2	2	2	2	2	2	2		1	14	5	2	2	2	1153	62	26.49	3	83	103	0.8	1	120	80	92	2		2	2		2 normal
1	1	4	3	3	2	22	2	2	2	2	2		2	13	5	2	2	2	2155	47	19.56	2	76	86	0.88	3	110	80	88	2		2	2		
1	2	4	2	2	2	2	2	2	2	2	2		2	12	4	2	3	1	1167	58	20.8	2	80	92	0.87	3	96	72	91	2		,	2		2 normal
1	2	4	0	4	2	22	2	2	2	2	2		2	13	4	2	3	2	2166	63	22.86	2	74	96	0.77	1	106	73	112	2		2	2	2	
2	2	4	42	2	2	22	2	2	2	2	2		2	10	2	2	2	2	1151	56	24.56	3	76	92	0.83	2	98	67	89	2		.	2		2 normal
1	2	4	4	2	2	22	2	22	2	2	2		2						153	33	12.82	1	56	65	0.86	3	97	64	100	2		2	2		2 testis in inguinal region
1	2	4	2	4	2	22	2	2	2	2	2		2	10	9	2	2	1	1144	52	25.08	2	73	89	0.82	2	124	80	120	2		2	2	2	
1	2	4	4	4	2	2	2	22	2	,	2		2	12	1	2	3	2	1131	35	20.4	2	56	65	0.86	3	98	58	90	2		2	2	2	2 bicornuate uterus
2	1	1	10	2	2	22	2	22	2	2	2		2	12	3	2	2	2	1153	372	30.76	5	89	108	0.82	2	111	80	85	2		2	2		1 ovariancyst
1	2	4	1	14	2	22	2	22	2	2	2		2	13	5	2	2	2	1157	72	29.2	3		102	0.85	2	84	63	93	2		2	2	2	
1	2	4	1	2	2	2	2	2	2	2	2		2	12	- 3	2	,	2	1156	46	18.9	2	66	86	0.77	1	134	95	76	2		2	2		2 normal
2		4	4	1		2		2	2	2	2		2	11		2	3	2	2162	12.49	18.67	2	76	92	0.83	2	95	69	120	2		2	2		2 normal
1	2	4	3	1	2	2	2	2	2	2	2		1	14	5	1	5	1	1161	88	33.95	4	100	122	0.82	2	98	69	85	2		2	2	2	

2	2	2	1	3	2	2	2	2	2	2	2		2	12	2	2	3	2	1	146	38	17.83	2	61	82	0.74	1	97	63	90	2		2	2	2		1
2	2	4	1	2	2	2	2	2	2	2	1	3	2	14	3	2	2	2	1	161	64	24.69	2	88	101	0.87	3	113	72	76	2		2	2	2		1
1	1	4	1	3	2	2	2	2	2	2	2		2	12	6	2	2	1	1	160	45	17.58	2	63	80	0.79	1	87	67	116	2		2	2		normal	
2	1	1	2	3	2	2	2	2	2	2	2		2	12	7	2	2	1	1	156	80	32.87	4	110	121	0.91	3	104	69	68	1	4	2	2	2		1
1	2	4	2	3	2	2	2	2	2	2	2		2	12	4	2	2	2	2	161	38	14.66	1	58	73	0.79	1	96	71	108	2		2	2		normal	
1	2	4	1	5	2	2	2	2	2	2	2		2	13	4	2	2	1	1	145	39	18.55	2	69	86	0.8	1	101	71	98	2		2	2		normal	
1	2	4	1	2	2	2	2	2	2	2	2		2	13	5	2	2	1	1	165	72	26.45	3	86	104	0.83	2	106	68	110	1	19	2	2		normal	
2	1	4	3	3	2	2	2	2	2	2	2		2	10	4	2	2	2	3	148	58	26.48	3	88	99	0.89	3	112	64	106	2		2	2		normal	
2	2	4	0	2	2	2	2	2	2	2	2		2	16	3	2	2	2	3	161	48	18.52	2	67	82	0.82	2	95	66	97	2		2	2		ovarian cyst	
2	2	4	1	2	2	2	2	2	2	2	2		2	11	1	2	2	2	2	147	35	16.2	2	63	79	0.8	1	81	56	107	2		2	2	2		
2	2	4	2	4	2	2	2	2	2	2	2		2	13	5	2	3	1	1	160	63	24.61	2	89	102	0.87	3	119	73	89	2		2	2		normal	
2	2	4	1	2	2	2	2	2	2	2	2		2	13	6	3	5	1	1	152	58	25.1	2	77	97	0.79	1	101	69	88	2		1	2		normal	
1	2	4	4	0	2	2	2	2	2	2	2		2	15	4	2	2	1	1	149	41	18.47	2	66	82	0.8	1	90	60	80	2		2	2		normal	
2	2	4	2	0	2	2	2	2	2	2	2		2	13	5	2	2	2	1	150	44	19.56	2	63	79	0.8	1	100	60	104	2		2	2		normal	
1	1	3	1	2	2	2	2	2	2	2	2		2	10	3	2	3	1	1	148	90	41.09	5	100	117	0.85	2	103	60	114	2		2	2	1		1
2	2	4	2	2	2	2	2	2	2	2	2		2	11	3	3	1	2	3	151	50	21.93	2	63	77	0.82	2	108	76	88	2		2	2		normal	
2	1	4	2	1	2	2	2	2	2	1	2		2	14	4	2	1	2	2	157	58	23.53	2	76	91	0.84	2	135	90	86	2		2	2	2		1
2	2	1	2	3	2	2	2	2	2	2	2		1	13	3	2	2	1	2	159	55	21.76	2	75	97	0.77	1	89	57	90	2		1	1		arcuate uterus	
2	2	4	4	1	2	2	2	2	2	2	2		2	12	6	2	2	1	2	154	35	14.76	1	64	75	0.85	2	118	58	72	2		2	2	2		
1	2	4	2	2	2	2	2	2	2	2	2		2							145	45	21.4	2	67	86	0.78	1	102	63	101	2		2	2		bicornuate uterus	
2	2	4	0	10	2	2	2	2	2	2	1	2	2	12	6	3	4	2	2	158	81	32.45	4	102	108	0.94	3	106	73	102	2		2	2	2		1
1	2	4	2	8	2	2	2	2	2	2	2		2	13	1	2	3	1	1	158	42	16.82	2	69	80	0.86	3	69	80	76	2		2	2		normal	
2	1	4	1	3	2	2	2	2	2	2	2		2	12	4	2	3	1	2	158	57	22.83	2	78	87	0.89	3	113	84	87	2		1	1		normal	
2	2	4	2	1	2	2	2	2	2	2	2		2	12	6	2	2	1	1	153	55	23.5	2	76	92	0.83	2	118	80	88	2		2	2		normal	
1	2	4	2	2	2	2	2	2	2	2	2		2	12	7	2	2	2	1	149	55	24.77	2	83	94	0.88	3	110	80	102	2		2	2		normal	
1	1	4	0	0	2	2	2	2	2	2	2		2	12	7	2	4	1	2	160	58	22.66	2	86	100	0.86	3	103	67	106	2		2	2		normal	
1	2	4	2	2	2	2	2	2	2	2	2		2	13	3	2	5	1	1	160	59	23.05	2	76	89	0.85	2	108	75	75	2		2	2		normal	
1	2	4	2	0	2	2	2	2	2	2	2		2	13	4	3	4	1	1	155	72	29.97	4	80	100	0.8	2	133	72	122	2		1	2		normal	
1	2	4	3	2	2	2	2	2	2	2	2		2	12	6	3	3	1	2	156	41	16.85	1	73	88	0.83	2	100	60	80	2		1	2	2		1
1	2	4	2	3	2	2	2	2	2	2	2		2	12	2	2	1	2	2	147	44	20.36	2	62	74	0.83	2	80	58	84	2		2	2	2		
1	1	1	4	4	2	2	2	2	2	1	2		1	11	6	2	2	2	2	154	86	36.26	5	101	123	0.82	1	128	74	90	2		2	2	1		1
1	1	4	0	2	2	2	2	2	2	2	2		2	13	5	1	4	1	1	153	41	17.51	2	68	84	0.81	2	98	59	102	2		2	2	2		1
2	2	4	4	4	2	2	2	2	2	2	2		2	14	4	2	2	1	1	158	50	20.03	2	69	85	0.81	2	90	51	90	2		1	2	2		
1	2	4	1	2	2	2	2	2	2	2	2		2							162	47	17.91	2	66	81	0.81	2	106	56	100	2		2	2		rudimentary horn	
1	2	4	3	1	2	2	2	2	2	2	2		2	12	6	2	5	2	1	163	69	25.97	3	79	96	0.82	2	118	89	103	2		2	2		normal	
2	2	4	1	2	2	2	2	2	2	2	2		2							162	47	17.91	2	70	83	0.84	2	94	65	90	2		2	2	2		1
2	2	4	0	1	2	2	2	2	2	2	2		2	14	1	2	5	1	1	161	51	19.68	2	79	90	0.87	3	93	63	67	2		2	2	2		1
1	1	3	2	2	2	2	2	2	2	2	2		2	11	1	3	3	2	1	159	39	15.43	2	68	82	0.83	2	105	60	104	2		2	2		ovarian cyst	
2	2	4	1	1	2	2	2	2	2	1	2		2	12	4	2	2	1	1	150	37	16.44	2	60	76	0.79	1	106	66	97	2		2	2	2		
2	1	4	1	2	2	2	2	2	2	2	2		2	12	3	2	2	2	2	149	49	22.07	2	70	88	0.79	1	92	58	81	2		1	2		ovarian cyst	
2	2	4	0	3	2	2	2	2	2	2	1	3	2	13	5	2	2	1	1	146	41	19.23	2	62	78	0.79	1	112	67	106	2		2	2	2		
1	2	3	1	2	2	2	2	2	2	2	2		2	9	3	2	3	2	1	149	57	25.67	4	86	103	0.83	2	98	64	88	2		2	2	2		1
2	2	4	1	2	2	2	2	2	2	2	2		2	10	4	3	2	2	1	158	54	21.63	2	71	88	0.8	1	102	68	86	2		2	2		soLendometrial cavity	
1	2	4	2	2	2	2	2	2	2	2	2		2							150	34	15.11	2	52	66	0.79	1	94	61	83	2		2	2		normal	
1	2	4	1	1	2	2	2	2	2	2	2		2	12	6	2	2	1	1	152	41	17.75	2	64	79	0.81	2	102	62	83	2		2	2	2		
1	1	2	2	2	2	2	2	2	2	2	2		2	11	1	3	2	2		147	32	14.81	2	38	58	0.66	1	88	70	109	1	7	2	2		2 normal	
1	2	4	2	3	2	2	2	2	2	2	2		2	10	3	2	3	1	1	147	42	19.44	2	60	76	0.79	1	92	62	106	2		2	2	2		
1	2	1	1	2	2	2	2	2	2	2	2		1	11	1	3	2	2		150	35	15.56	2	56	71	0.79	1	102	66	94	2		2	2	2	2	
1	1	4	2	5	2	2	2	2	2	2	1	3	2	12	3	2	2	2	2	149	50	22.52	2	72	81	0.89	3	96	56	90	2		2	2	2	2	
1	2	4	0	5	2	2	2	2	2	2	2		2	14	3	2	2	1		161	55	21.22	2	70	88	0.78	1	94	52	72	2		2	2	2	2	
1	2	4	0	1	2	2	2	2	2	2	2		2	15	2	2	2	1	1	165	47	17.26	2	57	73	0.78	1	100	55	66	2		2	2		2 normal	
1	2	4	1	0	2	2	2	2	2	2	2		2	13	6	2	2	2	1	158	78	31.24	4	90	107	0.84	2	126	76	102	2		2	2	2	2	
1	1	4	4	4	2	2	2	2	2	2	2		2							153	50	21.36	2	74	91	0.81	2	92	60	100	2		1	2		2 cervix, vagina not seen,N ovary	
1	2	4	1	2	1	2	2	2	2	2	2		2	12	5	1	3	1	1	148	84	38.35	5	94	117	0.8	1	113	88	69	2		2	2	2	2	
1	2	4	1	4	2	2	2	2	2	2	2		2	12	2	2	2	1	2	155	49	20.4	2	69	86	0.8	1	100	52	119	2		2	2	2	2	
2	1	3	2	2	2	2	2	2	2	2	2		2	11	7	3	3	1	1	157	68	27.59	3	95	100	0.95	3	133	82	132	2		2	2	1	1	1
1	1	4	0	6	2	2	2	2	2	2	2		2	10	6	2	3	1	1	159	51	20.17	2	71	92	0.77	1	97	68	79	2		2	2	1	1	1
1	2	1	0	2	2	2	2	2	2	1	1	2	1	14	0	1	3	1		162	87	33.15	5	97	105	0.84	2	134	84	100	1	11	2	2		1 normal	
1	2	4	0	4	2	2	2	2	2	2	2		2	13	3	2	3	1		161	49	18.9	2	78	87	0.89	3	92	62	84	2		1	2	2	2	1
1	2	3	0	1	2	2	2	2	2	2	1	3	2	12	6	3	3	2	1	150	69	30.67	4	95	105	0.9	3	110	88	124	2		2	2		1 normal	

1	2	4	1	5	2	2	2	2	2	2	2		2	12	2	2	4	2	1	147	31	14.35	1	54	69	0.78	1	78	61	98	2		2	2	2			
2	2	4	1	2	2	2	2	2	2	2	2		2	13	1	2	3	1	1	162	93	35.44	5	101	116	0.95	3	137	91	104	1	4	2	2		ovarian cyst		
1	2	4	1	1	2	2	2	2	2	2	2		2	12	1	2	5	1	1	150	41	18.22	2	71	80	0.88	3	102	64	103	2		2	2	2			
2	2	4	1	3	2	2	2	2	2	2	2		2	12	3	2	2	1	1	150	42	18.67	2	63	81	0.78	1	97	63	94	2		2	2	2			
1	2	4	1	3	2	2	2	2	2	2	2		2	13	3	2	5	1	1	157	47	19.07	2	63	83	0.75	1	88	59	61	2		2	2	2		1	
2	2	4	0	4	2	2	2	2	2	2	2		2	14	5	2	5	2	1	159	39	15.43	1	56	81	0.69	1	70	51	84	2		2	2	2		1	
1	2	4	1	5	2	2	2	2	2	2	2		1	12	6	2	2	2	1	158	62	24.84	2	72	101	0.79	1	111	68	86	2		2	2	2			
2	2	4	3	2	2	2	2	2	2	2	2		2	13	5	2	2	1	1	155	46	19.15	2	72	83	0.86	3	120	75	106	2		2	2		bicornuate uterus		
1	2	4	1	6	2	2	2	2	2	2	2		2	11	5	2	2	1	1	152	65	28.13	3	75	91	0.82	2	117	75	90	1	3	2	2	2		1	
2	2	4	2	3	2	2	2	2	2	2	2		2	11	5	2	2	2	2	157	53	21.5	2	73	88	0.83	2	110	68	87	2		2	2		normal		
2	2	3	2	3	2	2	2	2	2	2	2		1	11	7	2	3	2	1	157	47	19.07	2	67	81	0.88	3	110	69	86	2		2	2	2		1	
1	2	4	1	2	2	2	2	2	2	2	2		2	12	5	2	3	1	1	155	70	29.14	3	86	100	0.86	3	130	83	93	2		2	2	2		1	
2	2	4	2	0	2	2	2	2	2	2	2		2	12	6	2	2	1	1	158	46	18.43	2	73	86	0.85	2	126	98	97	2		2	2		ovarian cyst		
1	2	4	2	3	2	2	2	2	2	2	2		2	12	2	2	2	1	1	153	39	16.66	2	61	76	0.8	1	96	63	115	2		2	2	2			
1	2	4	2	3	2	2	2	2	2	1	2		2	12	4	2	3	1	1	158	60	24.03	2	77	91	0.85	2	116	76	96	2		2	2	2		1	
1	2	4	1	5	2	2	2	2	2	2	2		2	12	6	2	2	1	2	156	35	14.38	1	53	75	0.71	1	132	79	87	2		2	2	2			
1	2	4	1	1	2	2	2	2	2	2	2		2	12	5	2	2	1	1	157	50	20.28	2	75	86	0.87	3	110	80	88	2		1	2		normal		
1	1	1	2	3	2	2	2	2	2	2	1	3	1	15	3	2	5	1	1	162	62	23.62	2	82	91	0.9	3	115	72	99	2		2	2	2			
1	2	4	1	3	2	2	2	2	2	2	2		2	11	2	2	5	2	1	165	65	23.88	3	77	95	0.81	2	125	87	90	1	3	1	2	2			
1	2	4	1	4	2	2	2	2	2	2	2		2	12	2	2	5	1	1	165	57	20.94	2	68	84	0.8	1	130	79	141	2		2	2		normal		
2	2	4	1	3	2	2	2	2	2	2	2		2	12	3	2	5	1	1	155	31	12.9	1	56	74	0.76	1	76	50	101	2		2	2		normal		
1	1	4	2	1	2	2	2	2	2	2	2		2	12	5	2	4	1		146	55	25.8	3	72	87	0.83	1	115	76	100	2		2	2	2		1	
2	2	4	0	2	2	2	2	2	2	2	2		2	15	3	2	2	1		162	41	15.62	1	59	77	0.76	1	97	63	77	2		2	2		normal		
1	2	4	2	0	2	2	2	2	2	2	2		2	14	5	2	2	1	1	160	44	17.19	1	58	80	0.73	1	101	65	101	2		2	2		ovarian cyst		
1	2	1	1	1	2	2	2	2	2	2	2		2	12	4	2	2	2		158	40	16.02	1	61	79	0.77	1	111	74	119	2		2	2		ovarian cyst		
1	2	1	1	2	2	2	2	2	2	2	2		2	13	5	2	2	1	1	159	59	23.34	2	86	100	0.86	3	95	57	86	2		1	2		normal		
1	2	1	1	2	2	2	2	2	2	2	2		2	13	5	3	2	2	2	164	69	25.65	3	90	105	0.86	3	117	66	88	2		2	2		normal		
1	2	1	1	2	2	2	2	2	2	2	2		2	13	1	3	3	2	2	171	49	16.76	2	67	87	0.77	1	114	71	119	2		2	2	2			
2	2	4	1	5	2	2	2	2	2	2	1	3	2	11	7	2	5	1	1	157	78	31.64	4	92	108	0.85	2	98	64	112	2		2	2	1		1	
2	2	4	0	7	2	2	2	2	2	2	1	3	2	13	2	3	3	1	1	164	69	25.65	3	86	104	0.83	2	95	61	119	2		2	2	1		1	
1	2	4	4	2	2	2	2	2	2	1	1	3	2	12	7	2	2	1	1	162	59	22.48	2	75	93	0.8	1	125	71	140	2		2	2		dermoid		
2	2	4	0	3	2	2	2	2	2	2	2		2	11	2	2	2	1	1	158	61	24.44	3	84	99	0.85	2	102	69	97	2		2	2	2			
1	1	4	1	6	2	2	2	2	2	2	2		2	12	4	2	5	2	1	163	58	21.83	2	79	88	0.9	3	113	79	80	2		2	2		normal		
2	2	4	2	2	2	2	2	2	2	2	1	3	2	13	3	2	2	2		162	51	19.43	2	70	85	0.82	2	96	65	108	2		2	2		normal		
1	1	4	2	10	2	2	2	2	2	2	1	1	2	14	5	2	4	2	1	159	66	26.11	3	87	98	0.89	3	119	69	103	2		2	2		normal		
1	2	4	2	4	2	2	2	2	2	2	2		2							145	30	14.27	1	51	68	0.75	1	86	59	136	2		2	2		small uterus		
1	2	2	1	8	2	2	2	2	2	2	2		1	12	3	2	4	2	1	165	76	27.92	3	83	107	0.81	2	135	77	125	2		2	2	2		1	
2	2	4	1	1	2	2	2	2	2	2	2		2	12	5	2	2	1		146	42	19.7	2	65	78	0.83	2	121	79	90	2		2	2	2			
2	2	4	0	3	2	2	2	2	2	1	2		2	13	6	2	2	1	1	163	85	31.99	4	95	106	0.9	3	101	65	75	2		2	2		ovarian cyst		
2	2	4	0	6	2	2	2	2	2	1	2		2	13	3	2	3	2	2	158	77	30.84	4	90	107	0.84	2	112	72	91	2		2	2	2		1	
1	2	4	2	0	2	2	2	2	2	2	1	3	2							162	72	27.43	3	90	102	0.88	3	110	77	91	2		2	2		unicornuate uterus		
2	1	4	2	1	2	2	2	2	2	2	2		2	12	1	2	3	1	1	157	40	16.23	2	57	76	0.75	1	89	51	96	2		2	2	2		1	
1	2	4	2	3	2	2	2	2	2	2	2		2	11	4	2	3	2	1	165	93	34.16	5	93	117	0.79	1	121	76	110	2		2	2	1			
1	1	4	2	4	2	2	2	2	2	2	2		2	12	3	2	4	2	1	156	51	20.96	2	65	87	0.74	1	89	52	71	2		2	2	2		1	
1	2	4	1	4	2	2	2	2	2	2	2		2							147	30	13.88	1	55	67	0.82	2	106	70	88	2		2	2		normal		
1	2	4	1	2	2	2	2	2	2	2	2		2	12	2	2	2	1		159	57	22.55	2	73	89	0.82	2	138	88	135	2		2	2	2		1	
1	2	4	1	4	2	2	2	2	2	2	1	4	2	15	4	3	3	2		162	66	25.15	2	80	94	0.85	2	103	63	100	2		2	2	2			
1	1	4	2	2	2	2	2	2	2	2	2		2	12	4	2	2	2	1	166	50	18.14	2	73	88	0.83	2	95	60	90	2		2	2	2		1	
1	1	4	1	2	2	2	2	2	2	2	2		2	11	8	2	2	2		155	75	31.22	4	90	112	0.8	1	122	81	89	2		2	2		normal		
1	1	4	1	2	2	2	2	2	2	2	2		2	14	3	2	2	1	1	164	52	19.33	2	79	89	0.89	3	114	71	61	2		2	2		normal		
2	2	4	0	0	2	2	2	2	2	2	2		2	13	6	2	2	1	2	157	76	30.83	4	89	116	0.77	1	110	70	120	2		2	2	1			
2	2	4	1	3	2	2	2	2	2	2	2		2							158	44	17.63	2	74	84	0.88	3	104	61	100	2		2	2		normal		
2	1	4	1	4	2	2	2	,	2	2	1	1	1	13	4	2	2	1		152	56	24.24	2	75	93	0.8	1	92	68	102	2		1	2	2			
2	2	4	1	2	2	2	2	2	2	2	2		2	10	2	2	2	1	1	160	65	25.39	4	74	90	0.82	2	103	69	90	2		2	2		normal		
2	2	4	2	5	2	2	2	,	2	2	2		2	12	4	2	2	2	1	155	59	24.56	2	82	89	0.92	3	128	77	85	2		2	2		ovarian cyst		
1	2	4	2	4	2	2	2	2	2	2	2		2							158	52	20.83	2	67	87	0.77	1	96	66	87	2		2	2		absent uterus, normal ovary		
1	2	4	2	3	2	2	2	2	2	2	2		2	14	4	2	2	1		150	54	24	2	75	92	0.81	2	103	65	89	2		2	2		normal		
2	2	4	0	1	2	2	2	2	2	2	1	3	2	15	3	2	2	2		147	42	19.44	2	62	77	0.8	1	101	64	107	2		2	2	2		1	
2	2	4	1	2	2	2	2	2	2	2	2		2	16	1	3	5	2		137	42	22.38	2	74	83	0.89	3	104	66	108	2		2	2		arcuate uterus		
1	2	4	2	2	2	2	2	2	2	2	2		2							128	22	13.43	1	53	60	0.88	3	90	60	78	2		2	2		absent uterus absent ovary		

1	2	4	0	2	2	2	2	2	2	1	1	3	2	212	12	2	2	1	1	167	61	21.87	2	78	94	0.83	2	112	75	100	2		2	2	2			
1	2	4	0	0	2	2	2	2	2	2	2		2	215	5	2	2	1	1	155	71	29.55	3	88	106	0.83	2	107	73	79	2		2	2	2		1	
1	1	1	1	1	2	2	2	2	2	2	2		2	$2 \quad 12$	2	2	2	1	1	149	85	38.29	5	106	114	0.92	3	109	69	90	2		2	2	1	fibroid		
1	2	4	1	2	2	2	2	2	2	2	1	3	2	213	3	2	1	1	1	155	47	19.56	2	65	82	0.79	1	85	57	80	2		2	2	2		1	
2	1	1	1	3	2	2	2	2	2	2	2		2	212	6	2	3	2	1	157	73	29.62	3	82	111	0.73	1	109	69	96	2		2	2	2		1	
1	2	4	2	1	2	2	2	2	2	2	2		2	213	3	2	3	1	11	165	60	22.04	2	76	93	0.81	2	114	75	96	2		2	2		normal		
1	1	4	1	3	2	2	2	2	2	2	2		2	212	12	2	5	2	1	158	49	19.63	2	73	82	0.89	3	101	61	113	2		2	2	2			
1	2	1	1	3	2	2	2	2	2	2	2		2	$2 \quad 13$	3	2	5	1	1	155	50	20.81	2	70	88	0.79	1	90	58	79	2		2	2		normal		
1	2	4	3	0	2	2	2	2	2	2	2		2	$2 \quad 11$	1	1	4	1	1	149	69	31.08	5	86	99	0.86	3	97	57	80	2		2	2		normal		
1	2	4	2	3	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	5	1	2	151	49	21.49	2	74	84	0.88	3	105	60	101	2		2	2	2			
1	2	4	2	2	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	2	1	1	146	44	20.64	2	72	82	0.87	3	119	74	75	2		2	2		adnexal cyst		
1	2	1	1	2	2	2	2	2	2	2	2		1	$1{ }^{14}$	4	2	5	1	1	153	47	20.08	2	65	82	0.79	1	110	74	90	2		2	2	2			
1	2	3	2	2	2	2	2	2	2	2	2		2	213	3	2	5	2	1	165	56	20.57	2	69	85	0.81	2	97	64	107	2		2	2	2		1	
1	2	4	2	0	2	2	2	2	2	2	2		2	213	3	2	2	1	1	150	45	20	2	67	78	0.85	2	100	53	90	2		2	2		normal		
1	2	4	2	2	2	2	2	2	2	2	2		2	213	3	2	2	1	1	161	36	13.89	1	49	72	0.68	1	113	72	109	2		2	2		uterus diadelphus		
1	2	4	5	2	2	2	2	2	2	2	1	4	1	$1{ }^{13}$	3	2	5	2	2	160	54	21.09	2	77	86	0.89	3	99	54	90	2		2	2	2		1	
2	2	4	0	0	2	2	2	2	2	2	2		2	$2 \quad 14$	4	3	2	2	2	157	49	19.88	2	73	80	0.91	3	104	63	97	2		2	2		normal		
1	2	4	3	2	2	2	2	2	2	2	2		2	212	12	3	3	2	2	158	43	17.22	2	68	82	0.83	2	99	62	151	2		2	2		normal		
1	2	1	0	5	2	2	2	2	2	2	1	3	1	$1{ }^{13}$	3	2	2	1	1	158	74	29.64	5	91	99	0.92	3	137	80	111	2		2	2	2		1	
1	2	4	0	4	2	2	2	2	2	2	1	3	2	$2 \quad 12$	12	2	2	1	1	159	59	23.34	2	64	89	0.72	1	110	83	73	2		2	2	2		1	
1	2	4	2	3	2	2	2	2	2	2	1	3	2	$2 \quad 13$	34	2	2	1	1	148	59	26.94	3	73	92	0.79	1	118	71	111	2	11	2	2	2		1	
2	2	4	2	1	2	2	2	2	2	2	2		2	$2 \quad 12$	2	2	2	1	1	164	46	17.1	1	64	81	0.79	1	109	63	78	2		2	2	,			
1	1	4	0	2	2	2	2	2	2	2	2		2	$2 \quad 13$	35	2	2	2	2	153	36	15.38	1	62	78	0.79	1	114	81	84	2		2	2		normal		
1	2	4	1	2	2	2	2	2	2	1	2		2	$2 \quad 11$	1	2	3	1	1	151	50	21.93	2	69	86	0.8	1	109	70	103	2		2	2	,			
2	2	4	3	4	2	2	2	2	2	2	1	1	2	$2 \quad 13$	3	2	2	2	1	163	56	21.08	2	74	90	0.82	2	125	86	106	2		2	2		paraovarian cyst		
1	2	4	1	5	2	2	2	2	2	2	2		2	$2 \quad 10$	5	2	2	2	1	154	50	21.08	2	70	85	0.82	2	96	71	105	2		2	2		normal		
1	2	4	2	0	2	2	2	2	2	1	2		2	211	118	2	2	2	1	151	59	25.88	3	72	96	0.75	1	132	93	106	2		2	2	2			
1	2	4	2	4	2	2	2	2	2	2	2		2	213	34	2	2	1	1	158	54	21.63	2	64	89	0.72	2	102	61	85	2		2	2		normal		
2	1	4	0	0	2	2	2	2	2	2	2		2	$2 \quad 13$	35	2	2	2	1	156	42	17.26	2	66	80	0.82	2	100	72	96	2		2	2		normal		
1	2	1	2	4	2	2	2	2	2	2	1	2	1	$1{ }^{11}$	11	1	5	1	1	161	99	38.19	5	101	117	0.86	3	95	66	90	2		2	2		normal		
1	2	4	1	4	2	2	2	2	2	2	2		2	$2 \quad 12$	4	2	5	1	1	153	49	20.93	2	73	86	0.85	2	98	51	101	2		2	2	2		1	
1	2	4	2	3	2	2	2	2	2	2	2		2	213	35	2	4	2	1	156	66	27.12	3	93	100	0.93	3	121	86	103	2		2	2	2			
1	2	4	1	1	2	2	2	2	2	2	1	3	2	$2 \quad 12$	0	2	2	2	2	151	44	19.3	2	69	86	0.8	1	93	53	79	2		2	2	2			
1	2	4	1	4	2	2	2	2	2	2	2		2	213	3	2	2	1	1	162	60	22.86	2	70	91	0.77	1	104	76	67	2		2	2	2		1	
1	2	4	1	3	2	2	2	2	2	2	2		1	111	1	2	5	2	1	160	65	25.39	4	84	91	0.92	3	104	61	70	2		2	2	2			
1	2	1	2	2	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	2	1	1	153	53	22.64	2	73	84	0.87	3	101	69	100	2		2	2	2			
2	2	4	2	6	2	2	2	2	2	2	2		2	211	1	2	3	1	1	156	75	30.82	5	92	106	0.86	3	111	63	95	2		2	2	1		1	
2	2	4	3	3	2	2	2	2	2	2	2		2	213	3	2	1	2	1	157	40	16.23	2	60	75	0.8	1	111	68	120	2		2	2	2			
1	1	4	2	1	2	2	2	2	2	2	2		2	216	6	2	4	2	1	149	40	18.02	2	56	73	0.76	1	91	63	76	2		2	2	2		1	
2	1	4	1	0	2	2	2	2	2	1	2		2	216	6	2	5	1	1	150	51	22.67	2	70	83	0.84	2	96	68	84	2		2	2	2		1	
1	2	4	0	2	2	1	2	2	2	2	1	2	1	111	113	2	3	2	2	161	83	32.02	5	90	106	0.85	2	111	62	107	2		2	2	1		1	
1	2	4	2	4	2	2	2	2	2	2	2		2	$2 \quad 14$	4	2	2	1	1	154	40	16.87	2	57	75	0.76	1	91	65	122	2		2	2	2			
1	2	4	1	4	2	2	2	2	2	2	2		2	212	12	2	2	1	1	167	52	18.65	2	69	82	0.84	2	113	69	107	2	7	2	2	2		1	
1	2	4	2	4	2	2	2	2	2	2	2		2	$2 \quad 10$	- 8	2	5	1	1	158	80	32.05	4	94	106	0.88	3	120	78	96	2		2	2	2		1	
2	1	4	0	6	2	2	2	2	,	2	2		2	210	0	2	5	2	1	155	74	30.8	4	89	110	0.81	2	103	76	96	2		2	2	2			
2	2	4	2	4	2	2	2	2	2	2	2		2	$2 \quad 14$	$4{ }^{4}$	2	2	2	2	158	44	17.63	2	63	80	0.79	1	90	60	92	2		2	2	2		1	
1	2	4	2	3	2	2	2	2	2	2	2		2	213	3	2	2	2	1	159	46	18.2	2	64	84	0.76	1	121	70	98	2		2	2		normal		
1	1	4	2	2	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	3	2	2	163	55	20.7	2	72	82	0.87	3	84	48	69	2		2	2		normal		
2	2	4	3	5	2	2	2	2	2	2	2		1	$1{ }^{12}$	12	3	2	2	2	156	54	22.19	2	77	88	0.87	3	104	60	85	2		2	2	2			
1	2	4	0	3	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	4	2	1	151	45	19.74	2	60	71	0.84	2	95	49	90	2		2	2		normal		
1	2	4	1	2	2	2	2	2	2	2	2		2	213	3	2	2	1	1	143	45	22.01	2	64	81	0.79	1	102	68	81	2		2	2		fibroid		
1	1	4	3	1	2	2	2	2	2	2	2		2	$2 \quad 13$	35	2	2	2	1	152	46	19.91	2	77	89	0.86	3	110	70	94	2		2	2		normal		
1	2	4	1	2	2	2	2	2	2	2	2		2	$2 \quad 12$	12	2	2	1	1	156	71	29.17	4	89	100	0.89	3	128	72	112	2		2	2	.			1
1	2	4	0	3	2	2	2	2	2	2	2		1	$1{ }^{13}$	34	2	2	2	1	162	55	20.96	2	66	88	0.75	1	84	54	94	2		2	2		normal		
1	2	4	2	0	2	2	2	2	2	2	2		2	$2 \quad 15$	5	2	5	1	1	160	43	16.8	1	61	80	0.76	1	92	65	103	2		2	2		normal		
1	2	4	3	5	2	2	2	2	2	2	1	3	2	$2 \quad 13$	3	2	3	1	1	158	78	31.24	4	94	105	0.89	3	137	80	97	2		2	2	2			
1	2	4	0	3	2	2	2	2	2	2	2		2	$2 \quad 10$	4	3	3	2	2	152	49	21.21	2	69	81	0.85	2	122	77	110	2		2	2	2		1	
1	2	4	2	2	2	2	2	2	2	2	2		2	$2 \quad 11$	113	2	4	1		152	75	32.46	5	87	102	0.85	2	117	73	74	2		2	2	2		1	
1	2	4	1	4	2	2	2	2	2	2	1	3	2	$2 \quad 11$	1	2	4	2		165	82	30.12	4	102	114	0.89	3	144	88	126	2		2	2		adnexal cyst		
1	2	4	2	2	2	2	2	2	2	2	2		1	$1{ }^{13}$	3	2	2	1	1	145	51	24.26	2	63	81	0.77	1	108	74	106	2		2	2	2			1

1	1	4	0	4	2	2	2	2	2	2	2		2	11	7	3	2	2	2	158	37	14.82	1
1	2	4	1	6	2	2	2	2	2	2	2		2	12	6	2	5	2	1	164	57	21.19	2
1	2	4	1	2	2	2	2	2	2	2	2		2	13	4	3	2	2	2	148	54	24.65	2
1	2	4	1	3	2	2	2	2	2	2	2		2	12	5	2	2	2	1	143	40	19.56	2
1	2	4	1	2	2	2	2	2	2	2	2		2	11	6	2	3	1	1	154	52	21.93	2
1	2	4	1	2	2	2	2	2	2	2	2		2							143	41	20.05	2
2	1	4	0	3	2	2	2	2	2	2	2		2	11	5	3	4	1	1	157	69	27.99	3
1	2	4	2	2	2	2	2	2	2	2	2		2	12	4	2	2	1	1	148	41	18.72	2
1	1	4	0	3	2	2	2	2	2	2	2		1	15	2	2	2	1	1	154	45	18.97	2
1	2	4	2	1	2	2	2	2	2	2	2		2	15	2	2	2	1	1	166	45	16.33	1
1	2	4	0	1	2	2	2	2	2	2	2		2	12	6	2	4	1	1	145	46	21.88	2
1	2	1	0	1	2	2	2	2	2	1	1	4	1	11	7	2	3	2	1	150	60	26.67	3
1	2	4	1	1	2	2	2	2	2	2	1	3	2	11	2	2	2	1	1	156	58	23.83	3
1	1	4	1	5	2	2	2	2	2	2	1	3	2	14	2	3	3	2	1	163	66	24.84	2
1	2	2	1	0	2	2	2	2	2	2	2		2	12	3	2	4	2	1	160	53	20.7	2
1	2	4	1	0	2	2	2	2	2	1	2		2	14	3	2	2	1	1	160	56	21.88	2
1	2	4	1	1	2	2	2	2	2	2	2		2	14	4	2	2	1	1	148	44	20.09	2
2	1	4	2	4	2	2	2	2	2	2	2		1	12	4	2	2	2	1	163	57	21.45	2
1	2	4	3	0	2	2	2	2	2	2	2		2	11	7	2	3	1	1	161	73	28.16	3
1	2	3	3	2	2	2	2	2	2	2	2		2	12	1	3	2	2	2	154	37	15.6	2
2	2	4	2	4	2	2	2	2	2	2	2		2	13	3	2	2	2	1	157	45	18.26	2
2	2	4	1	3	2	2	2	2	2	2	2		2	15	2	2	2	1	1	150	35	15.56	1
2	2	4	2	1	2	2	2	2	2	2	2		2	12	1	3	4	2	2	157	62	25.15	3
1	2	4	0	3	2	2	2	2	2	2	2		2	12	2	2	2	1		165	70	25.71	3
1	1	4	0	8	2	2	2	2	2	2	2		2	12	4	3	2	1	1	153	48	20.5	2
1	2	4	0	5	2	2	2	2	2	2	2		2	15	3	2	2	1	2	161	63	24.3	3
2	1	4	5	3	2	2	2	2	2	2	1	3	2	12	6	2	2	2	1	157	41	16.63	1
2	2	4	1	5	2	1	2	2	2	2	1	2	1	14	4	2	4	1	1	164	63	23.42	2
1	2	4	1	2	2	2	2	2	2	2	2		2	12	2	2	1	1	1	154	48	20.24	2
1	2	4	1	2	2	2	2	2	2	2	2		2	13	4	3	3	1	1	154	56	23.61	2
2	1	4	1	2	2	2	2	2	2	2	2		2	11	4	2	2	1	1	162	39	14.86	1
1	1	4	2	1	2	2	2	2	2	2	2		2	12	4	3	3	2	3	155	52	21.64	2
1	2	4	2	4	2	2	2	2	2	2	1	3	2	13	6	2	2	1	1	150	52	23.11	2
1	2	4	2	4	2	2	2	2	2	2	1	3	2	10	6	2	2	1	1	153	51	21.79	2
1	2	4	.	4	2	2	2	2	2	2	2		2	12	3	3	3	1	1	156	67	27.53	3
1	1	4	0	1	2	2	2	2	2	2	2		2	13	5	2	5	2	2	158	80	32.05	4
1	1	4	1	8	2	2	2	2	2	2	2		2	10	6	2	5	2		158	80	32.05	5
2	1	4	2	2	2	2	2	2	2	2	2		2	13	1	2	2	1	1	154	34	14	1
1	2	4	4	2	2	2	2	2	2	2	2		2	14	3	2	3	2	1	149	57	25.67	3
1	2	4	1	2	2	2	2	2	2	2	2		2	12	5	2	2	1	1	158	45	18.03	2
1	1	4	4	4	2	2	2	2	2	2	2		1	12	6	2	2	2	1	151	38	16.67	1
1	2	4	0	4	2	2	2	2	2	2	2		2	12	2	2	2	2	1	157	67	27.18	3
1	2	3	1	1	2	2	2	2	2	2	2		2	13	2	1	1	1	1	158	47	18.83	2
1	2	4	1	4	2	2	2	2	2	2	2		2	11	5	1	2	1	1	152	52	22.51	2
1	2	4	3	4	2	2	2	2	2	2	2		2	15	2	2	2	1	1	154	43	18.13	2
2	1	4	3	3	2	2	2	2	2	2	2		2	16	3	2	2	2	1	153	41	17.51	2
1	2	4	1	2	2	2	2	2	2	2	2		2	13	1	2	5	2		156	43	17.67	2
1	2	4	2	2	2	2	2	2	2	2	2		2	11	4	3	5	1	1	162	41	15.62	1
2	1	4	2	1	2	2	2	2	2	2	2		2	14	2	3	5	1	1	148	42	19.17	2
1	2	4	3	1	2	2	2	2	2	2	2		2	15	3	2	2	1	1	157	42	17.04	1
1	2	4	4	3	2	2	2	2	2	2	2		1	11	3	2	3	1	1	148	38	17.35	2
1	2	4	1	1	2	2	2	2	2	2	2		2	14	0	2	2	1		156	40	16.44	2
1	2	4	1	2	2	2	2	2	2	2	2		2	14	2	2	4	1	1	145	35	16.65	2
1	2	4	0	2	2	2	2	2	2	2	2		2	12	6	2	2	1	1	166	47	17.06	1
1	2	4	2	0	2	2	2	2	2	2	2		2	13	4	2	2	1		152	54	23.37	2
1	1	4	1	4	2	2	2	2	2	2	2		2	9	3	2	3	2	1	152	53	22.94	3
2	2	4	1	1	2	2	2	2	2	2	2		2	12	3	2	3	1	2	160	61	23.83	2
1	1	4	2	2	2	2	2	2	2	1	2		2	12	3	2	2	1	1	144	51	24.59	3
1	2	4	0	5	2	2	2	2	2	2	2		1	14	1	2	5	2	2	161	65	25.08	3
1	2	4	2	1	2	2	2	2	2	2	2		2	12	5	2	3	1	1	157	68	27.59	3

0.81	2
0.8	1
0.83	2
0.85	2
0.86	3
0.8	1
0.82	2
0.81	2
0.79	1
0.75	1
0.8	1
0.88	3
0.82	2
0.81	2
0.84	3
0.78	1
0.9	3
0.82	2
0.88	3
0.81	2
0.77	1
0.76	1
0.86	3
0.85	2
0.69	1
0.84	2
0.76	1
0.85	2
0.82	2
0.77	1
0.8	1
0.78	1
0.85	2
0.88	3
0.82	2
0.76	1
0.87	3
0.75	1
0.83	2
0.83	2
0.74	1
0.85	2
0.83	2
0.79	1
0.75	1
0.74	1
0.71	1
0.77	1
0.81	2
0.8	1
0.81	2
0.78	1
0.76	1
0.74	1
0.81	2
0.87	3
0.82	2
0.83	2
0.8	1
0.86	3

61	120
84	81
60	85
67	121
70	96
68	96
56	98
69	95
69	75
60	80
76	115
73	91
80	90
83	86
62	97
64	92
71	88
69	89
60	89
66	128
74	123
68	104
73	102
61	88
63	98
58	78
72	88
74	97
66	80
69	88
68	86
58	107
74	131
42	86
86	122
69	98
79	104
77	81
56	90
70	102
58	83
57	69
70	78
70	81
67	120
63	125
75	118
56	82
65	101
56	73
68	76
57	77
80	113
74	97
60	110
63	81
78	124
65	89
81	73
74	120

2		2	2	2 normal
2	2	2	2	
2		2	2	2 normal
2		2	2	
2		2	2	2
2		2	2	2 small uterus no ovary
2	2	2	2	
2		2	2	2 normal
2	2	2	2	1
2	2	2	2	
2	2	2	2	
2		2	2	2
2		2	2	2

360	854604g	Aparna	18	1	2.3	1		2	10		2		2	4	2	2	2	2		2	2		0	1	mixture, puffed rice
361	782234d	Suchita	18	1	2.8	1		1	13	26.04	3	26.84	3	1	2	1	2	2		2	2		0	0	biscuit
362	797702g	Neha	16	2	2.7	2		1	12		2		3	2	2	2	2	2		2	1	1	2	1	chocolate
363	844774g	Ekta	15	2	2.3	1		1	10		2		2	2	3	2	2	2		2	2		0	1	bread
364	859717g	Vijayalakshmi	17	2	3.2	1		1	12		3		4	3	2	1	2	2		2	2		0	2	chips,samosa
365	926682f	Jena	18	2	2.3	2		1	14		2		3	3	2	1	2	2		2	2		0	1	chips,vada
366	414946f	Faria	14	1	3	1	12	\| 1	9		3	26.7	3	2	2	2	2	2		2	2		4	2	biscuit,chips
367	824853g	Nabanita	16	1	3	1	14	- 1	10		4		2	2	3	1	2	2		2	1	2	3	2	biscuit,chips
368	853654g	Nandhini	16	1	2.3	1		1	12		4		2	4	2	2	2	2		2	2		0	0	
369	837491g	Monika	18	1	2.7	1		2	10		2		2	4	2	2	2	2		2	2		0	1	
370	461509g	Ummu	18	1	1	1	15	5	12		4		4	2	1	2	2	2		2	1	3	3	1	biscuit, chocolate
371	060711c	Mythili	15	1	3	1		1	12					2	1	1	2	2		2	1	2	1	2	chicken 65
372	813656b	Deepas baby	17	1	3	1	15	- 1	12					2	1	1	2	2		2	1	2	1	2	chicken 65
373	821403g	Subhagi	17	2	2.5	1		1	12		3		2	2	3	1	2	2		2	1	4	0	2	biscuit,chocolate, noodles,roll
374	496102g	Devika	18	2	2.8	1	16	\| 1	13	27.2	3	36.2	5	2	1	2	2	2		2	2		3	1	biscuit,mixture
375	857095g	Rakhi	13	2	2.5	1	8	8 1 1	9		4		2	3	1	2	2	2		2	2		0	1	puffed rice
376	289854c	Ramiya	17	2	3	1	12	- 1	12		2		2	4	2	2	2	2		2	2		0	1	
377	275563g	Yamuna	16	1	2.5	1		1	12		2		2	4	2	2	2	2		2	2		0	0	
378	819350f	Nisha	17	1	2.7	1		1	12		2		4	4	2	2	2	2		2	2		3	3	chips
379	447497d	Moumita	15	1	2.5	1	- 12	21	9		2		2	2	2	2	2	2		2	2		3	1	biscuit
380	452809g	Manisha	17	1	2.2	1		1	12		2		2	1	2	2	2	2		2	1	2	4	2	biscuit,mixture
381	831443g	Kakali	18	1	2.5	1		1	12		2		2	2	2	1	2	2		2	2		0	1	biscuit, puffed rice
382	834159g	Sridipta	17	1	3.7	1		1	12		2		2	2	3	2	2	2		2	2		0	2	noodles, pasta
383	362580c	Jaswina	13	1	2.5	1	10	- 1	8		4		2	3	2	2	2	2		2	2		0	1	chips, kurkure
384	853981g	Chandrima	17	1	3	1		1	11		3	25.6	3	2	3	2	2	2		2	1	3	0	2	biscuit,chocolate, noodles
385	824531g	Ditsa	18	2	3.5	1		1	12	23.7	2	28.4	3	2	3	1	1	2		2	2		0	0	mixture,puffed rice
386	852016 g	Marilyn	16	2	2.7	1		1	11		2		2	3	3	2	2	2		2	2		1	1	biscuit,chips
387	853099g	Arbina	16	2		1		1	10	29.4	3	27.1	3	3	2	2	2	2		1	2		0	1	biscuit, chips
388	868134g	Brunda	14	2	2.7	1	.	1	9		2		3	3	3	2	2	2		2	1	1	0	1	biscuit, chocolate
389	822206g	Sudipta	17	1	2.8	1	- 12	2.1	12		2		4	3	3	1	2	2		2	1	4	3	3	noodles, puffed rice
390	186837d	Saranya	12	1	3	1		1	7		2		2	2	2	2	2	2		2	2		0	0	biscuit
391	558655g	Archana	13	1	2	1	-	1	7		2		3	4	3	2	2	2		2	2		0	1	biscuit
392	181248c	Shalini	15	1	2.5	1	- 12	- 1	11					4	2	2	2	2		2	2		1	1	biscuit, chocolate
393	024459c	Monisha	16	1	2.4	1		1	12				2	4	2	2	2	2		2	2		0	0	biscuit
394	860766 g	Sadhana	17	1	2.3	1		1	10		2		2	4	2	2	2	2		2	2		0	1	puffed rice
395	825638g	Riya	15	1	2.7	1	12	21	10					2	2	2	2	2		2	2		1	2	biscuit
396	443525f	Suzanne	16	2	2.7	1		1	10	19.5	2	31.2	4	2	3	2	2	2		2	1	4	0	0	
397	323773 c	Rashmita	15	2	3	1		1	9		2		2	1	3	2	2	2		2	1	4	4	2	biscuit
398	153729c	Jayashree	15	2	2.7	1		1	10		2		2	2	2	2	2	2		2	2		0	4	mixture, murukku
399	243821d	Harita	17	2	3.3	1		1	12		3		3	2	2	2	2	2		2	1	4	0	1	biscuit
400	829531g	Subarna	17	2	3.5	1		1	12		2		2	1	2	2	2	2		2	1	2	2	2	icecream,noodles
401	182690f	Babita	15	2	4	1	$1{ }^{1}$	$1{ }^{1}$	10		4		4	3	1	2	2	2		2	2		0	1	biscuit
402	752018g	Divya	19	1	3.2	1	17	7 2	12	34.3	4		4	3	2	2	2	2		2	1	3	0	1	rusk
403	876800g	Mona	16	1	2.5	1		1	12		2		3	3	2	2	2	2		2	1	2	0	2	biscuit,chips
404	836719g	Tanushree	17	1	3.5	1	15	- 1	12		2		3	3	1	2	2	2		2	1	2	3	1	noodles, pasta
405	800289b	Monisha	17	1	2.7	1		1	13		4		4	2	2	2	2	2		2	1	2	0	2	chips, puff
406	869606g	Dhanushree	17	1	3.5	1	15	- 1	12	27	3	26.1	3	3	3	2	2	2		2	2		0	1	
407	878856 g	Elemi	18	1	1.5	1		1	12		2		4	2	2	2	2	2		2	2		0	1	biscuit
408	834028 g	Payel	15	1	2.3	1		1	10		2		3	2	3	2	2	2		2	2		0	1	biscuit
409	870740g	Salma	18	1	2.8	1		1	12		2		2	3	2	2	2	2		2	1	3	1	1	chocolate
410	709939g	Fouzia	18	1	2.9	1		1	13		2		2	2	2	2	2	2		2	2		3	2	noodles, roll
411	867793g	Sneha	16	1	2.7	1		1	12		2		2	3	3	2	2	2		1	2		0	2	biscuit
412	688339 c	Aishi	18	1	2.2	1	12	21	12	22.8	2	19.9	2	3	2	1	2	2		2	2		3	2	
413	881201g	Adriana	13	1	3	1	10	\| 1	7	29.4	3	27	3	1	2	1	1	1	1	2	2		2	1	pizza
414	395947c	Swetha	13	2	3.1	1	10	- 1	9	24.6	2	28.8	3	1	2	2	2	2		2	1	3	0	3	biscuit, cake
415	879017g	Lavanya	14	1	3.2	1		1	9		4		2	1	2	2	2	2		1	1	3	0	2	biscuit,chocolate, noodles
416	831846g	Maneeshareddy	16	1	2.5	1		1	12		3		3	1	2	2	2	2		2	1	3	0	1	biscuit, chocolate
417	377050d	Sreejita	16	1	2.7	1		1	11		2		2	1	2	2	2	2		2	2		0	3	biscuit,puffed rice
418	492707g	Siri	17	1	2.4	1		1	12		2		3	1	2	2	2	2		1	2		3	0	chips, chocolate,icecream
419	345169c	Bhavani	13	1	3.6	1	,	1	8		2		3	4	2	2	2	2		2	2		0		chocolate, panipuri

64	78		
76	91		
70	88		
64	79		
74	88		
63	79		
80	96		
80	90		
72	85		
74	86		
87	109		
75	99		
89	104		
75	92		
77	104		
88	97		
75	89		
63	75		
73	95		
77	96		
63	78		
62	81		
78	97		
75	89		
66	90		
72	97		
63	77		
61	80		
63	82		
98	115		
57	70		
55	72		
86	103		
73	87		
55	67		
91	103		
74	90		
70	90		
67	85		
70	84		
57	80		
89	106		
100	121		
66	86		
87	99		
66	82		
88	115		
67	82		
71	98		
57	75		
65	83		
75	96		
99	104		
74	93		
73	87		
50	76		
63	80		
63	89		
66	88		
58	72		
:---:			
0.82			
0.83			
0.79			
0.81			
0.84			
0.79			
0.83			
0.89			
0.85			
0.86			
0.8			
0.76			
0.85			
0.81			
0.74			
0.9			
0.84			
0.84			
0.77			
0.8			
0.8			
0.76			
0.8			
0.84			
0.73			
0.74			
0.82			
0.76			
0.77			
0.85			
0.81			
0.76			
0.83			
0.84			
0.82			
0.88			
0.82			
0.77			
0.79			
0.83			
0.71			
0.84			
0.82			
0.76			
0.88			
0.8			
0.76			
0.82			
0.72			
0.76			
0.78			
0.78			
0.87			
0.79		2	99
---:	---:	---:	---:
2	109	71	90
1	91	50	85
2	111	71	71
2	95	69	113
1	100	69	83
2	130	82	66
3	118	70	106
2	110	80	80
3	106	72	56
1	102	68	84
1	93	59	82
2	113	69	96
2	112	80	111
1	103	68	101
3	115	58	100
2	114	85	98
2	95	60	92
1	106	58	76
1	104	64	98
1	104	69	111
1	106	66	96
1	116	66	99
2	116	64	80
1	103	63	87
1	99	64	92
2	120	70	66
1	90	63	107
1	89	61	84
2	109	59	91
2	98	68	79
1	105	65	99
2	120	76	116
2	109	66	89
2	112	85	70
	111	61	97
2	100	65	119
1	108	75	106
1	108	63	84
2	106	65	111
1	106	64	82
2	116	74	101
2	101	61	85
1	100	60	88
3	126	85	79
1	110	70	84
1	125	72	108
2	113	70	107
1	95	56	73
1	113	85	104
1	104	66	90
1	91	64	110
3	108	70	88
1	94	63	81
2	124	68	118
1	94	56	109
1	88	58	83
1	105	70	85
1	115	73	107
1	98	64	112

2		2	2	2 normal
2		2	2	2
2		2	2	2
2		2	2	2 normal
2		2	2	2
2		2	2	2 normal
2		2	2	2 normal
2		2	2	2
2		2	2	2
2		2	2	2
1	3	2	2	2 normal
2		2	2	1
2		2	2	1
2		2	2	2
2		2	2	2
2		2	2	1 normal
2		2	2	2
2		2	2	2 normal
2		2	2	2
		2	2	2
2		2	2	2 dermoid
		2	2	2
2		2	2	2 normal
2		2	2	2
2		2	2	2
2		2	2	2
,		2	2	2 normal
2		2	2	2 normal
,		2	2	2 normal
2		2	2	1
2		2	2	2
2		2	2	2
2		2	2	1
2		2	2	2 normal
2		2	2	2 small uterus
2		2	2	2 normal
2		2	2	2 uterus post op
2		2	2	2
2		2	2	2
2		2	2	2 small uterus small ovary
2		2	2	2 normal
2		2	2	2 adnexal cyst
2		2	2	1 small uterus
2		2	2	2 normal
2		2	2	2
2		2	2	2
2		2	2	1
,		2	2	2
2		2	2	2 normal
2		2	2	2
2		2	2	2
2		2	2	2 normal
2		2	2	1 ovarian cyst
2		2	1	2 normal
2		2	2	1
2		2	2	2
2		2	2	2 normal
2		2	2	2
2		2	2	2
				2

480	847426 g	Sneha	13	1	3	1	10	- 1	9		2		2	3	3	2	2	2	2	2		0	1 b	biscuit
481	885754g	Pinki	14	1	2.6	1	12	21	9		2		2	4	2	2	2	2	2	2		0	1	chocolate, mixture
482	896670g	Sindhu	15	1	2.7	1		1	10				2	4	2	2	2	2	1	2		0	1	chips
483	425019c	Santhiya	16	1	2.6	1	1	$1{ }^{1}$	11		2		3	3	2	2	2	2	2	2		4	3 b	biscuit, chocolate
484	558554 g	Shalini	18	1	2.6	1	15	5	13		3		2	3	2	2	2	2	2	1	3	1	0 b	biscuit
485	154512g	Supriya	18	1	2	1		1	10		2		2	3	2	2	2	2	1	2		4	2 b	biscuit, mixture
486	887255g	Kavya	17	2	3.7	1	12	21	12		3		2	2	2	1	2	2	2	1	2	1	1	chat,pizza
487	112254d	sadika	15	2	3.5	1		1	10		2		3	2	2	2	2	2	2	1	3	2	2	cake,french fries, pizza
488	413942f	Glory	16	2	3	1		1	12		2		2	3	1	2	2	2	2	2		0	1 p	panipuri
489	846323g	Priyanka	19	2	2.7	1		2	11		2		2	3	2	2	2	2	2	2		0	1	cake,puffed rice
490	896607g	Munazza	14	2	2.5	1		1	9		2		3	2	2	2	2	2	1	2		0	2 b	biscuit,pakoda
491	682345f	Durgadevi	19	2	2.5	1	15	51	14		2		2	4	2	2	2	2	2	2		0	1	mixture
492	873163g	Pavithra	18	2	2.4	1	15	51	14		2		2	4	1	2	2	2	2	2		0	1 b	biscuit
493	882177g	Kavita	14	2	3	1		1	10				2	3	2	2	2	2	2	2		0	1 b	biscuit, chocolate
494	967736b	Pooja	17	2	2.5	1	16	6 1	12		4		2	3	1	2	2	2	2	2		4	3 b	biscuit
495	840537g	Jayasmitha	17	1	2.8	1	13	31	12		2		2	1	3	1	1	2	2	2		0	1 b	biscuit
496	885541 g	Banashree	18	1	2.7	2		1	12		2		2	3	3	1	2	2	2	1	2	0	2 b	biscuit, chips, kurkure
497	861750 g	Sangeeta	13	1	2.7	1	11	11	8		2		3	3	2	2	2	2	1	1	1	0	1	chips, biscuit
498	877370 g	Ahona	16	1	2.2	1		1	11		2		2	2	3	2	2	2	2	1	3	1	2 b	burger,noodles, panipuri,pizza
499	892491g	Apurba	17	1	2.8	2		1	10		2		2	3	2	2	2	2	1	2		0	1 b	biscuit, chocolate
500	894598g	Deepika	18	1	2.5	1		1	13		2		2	1	2	1	2	2	2	1	2	0	2	chocolate,puff
501	$316149 f$	Preethi	18	1	3	1		1	12		2		2	1	2	1	2	2	2	1	1	3	2	biscuit,chips

CERTIFICATE

This is to certify that the dissertation titled "A CROSS-SECTIONAL STUDY TO INVESTIGATE THE PREVALENCE OF OBESITY IN ADOLESCENT GIRLS ATTENDING GYNAECOLOGY OUT PATIENT CLINIC IN A TERTIARY LEVEL HOSPITAL" by the candidate Dr Evangeline Reeni Christian with registration number 22161401 towards partial fulfilment of the requirements of the Tamil Nadu Dr M.G.R Medical University for the award of the Degree of MS OBSTETRICS AND GYNAECOLOGY (BRANCH II) examination to be held in May 2018, I personally verified the urkund.com website for the purpose of plagiarism check. I found that the uploaded thesis file contains from title to conclusion pages and the result shows ZERO percentage plagiarism in the dissertation.

Dr Elsy Thomas

Guide

Professor and Head of Unit 1

Department of Obstetrics and Gynaecology

Christian Medical College,

Vellore 632004, India

[^0]: Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632002 Tel: 0416 - 2284294. 2284202

[^1]: Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632002 Tel: 0416-2284294. 2284202 Fax: 0416 -2262788, 2284481

[^2]: Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632002 Tel: 0416 - 2284294. 2284202

