A COMPARATIVE STUDY ON THREE DOSES OF ESMOLOL TO ATTENUATE THE HEMO DYNAMIC STRESS RESPONSE DURING LARYNGOSCOPY AND ENDO TRACHEAL INTUBATION

Dissertation Submitted in partial fulfillment of

M.D. DEGREE EXAMINATION

M.D. ANAESTHESIOLOGY—BRANCH X CHENGALPATTU MEDICAL COLLEGE, CHENGALPATTU.

THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY

CHENNAI, TAMILNADU

MARCH 2010

CERTIFICATE

This is to certify that this dissertation titled "A COMPARATIVE STUDY ON THREE DOSES OF ESMOLOL TO ATTENUATE THE HEMO DYNAMIC STRESS RESPONSE DURING LARYNGOSCOPY AND ENDO TRACHEAL INTUBATION" has been prepared by Dr.M.Mahendran under my supervision in the Department of Anaesthesiology, Chengalpattu Medical College and Hospital, Chengalpattu during the academic period 2007-2010 and is being submitted to the Tamil Nadu DR.M.G.R. Medical University, Chennai in partial fulfillment of the University regulation for the award of the Degree of Doctor of Medicine (Branch-X MD Anaesthesiology) and his dissertation is a bonafide work.

Prof.Dr. P. PARASAKTHI, MD., DEAN IN CHARGE Chengalpattu Medical College & Hospital Chengalpattu.

Prof.Dr.R.S.VIJAYALAKSHMI M.D.D.A., Professor & HOD, Department of Anaesthesiology, Chengalpattu Medical College, Chengalpattu.

DECLARATION

I, Dr. M.Mahendran, solemnly declare that the dissertation "A COMPARATIVE STUDY ON THREE DOSES OF ESMOLOL TO ATTENUATE THE HEMO DYNAMIC STRESS RESPONSE DURING LARYNGOSCOPY AND ENDO TRACHEAL INTUBATION" is a bonafide work done by me in the Department of Anaesthesiology, Chengalpattu Medical College and Hospital, Chengalpattu, after getting approval from the Ethical Committee, under the able guidance of Prof.Dr.R.S.VIJAYALAKSHMI, MD., DA., Professor and HOD, Department of Anaesthesiology, Chengalpattu Medical College, Chengalpattu.

Place: Chengalpattu.

Date:

(Dr .M.Mahendran)

ACKNOWLEDGEMENT

I wish to express my sincere thanks to **Dr. P.Parasakthi, M.D.,** Dean Incharge, Chengalpattu Medical College, Chengalpattu and **Dr. R. Jagannathan, M.D., D.C.H.,** Dean Incharge, Chengalpattu Medical College Hospital, for having kindly permitted me to utilize the hospital facilities.

I wish to express my grateful thanks to:

Prof.Dr.R.S.Vijayalakshmi, M.D.D.A., Professor & Head of the Department of Anaesthesiology, Chengalpattu Medical College, Chengalpattu for her immense help, encouragement and constant supervision.

Prof.N.Krishnan, M.D.D.A., Additional Professor of Anaesthesiology for his valuable guidance, supervision and immense help during every phase of this study.

Prof.U.G.Thirumaaran, M.D., Associate Professor of Anaesthesiology for his valuable suggestions, guidance, great care and attention he had so willingly extended to prepare this dissertation. **Prof.Kumudha Lingaraj**, M.D.D.A., Associate Professor of Anaesthesiology for her sagacious advice and constant help throughout my period of study.

I thank **Dr. A.Prakash**, M.D., Asst.Professor of Anaesthesiology who has been pillar of strength, support and inspiration to me and for having inculcated a sense of confidence within me.

I owe great debt of gratitude to all the Assistant Professors and Tutors for their able help and support. They have been a source of great encouragement throughout my Postgraduate course.

I thank the Ethical Committee for the approval of my study.

And I can never forget theatre personnel for their willing cooperation and assistance.

I thank all the patients who took part in my study and their relatives.

S.No.	Topics	Page No.
1.	INTRODUCTION	1
2.	AIM	3
3.	PATHOPHYSIOLOGY	4
4.	NERVE SUPPLY OF LARYNX	10
5.	PHARMACOLOGY	11
6.	REVIEW OF LITERATURE	26
7.	MATERIALS AND METHODS	33
8.	OBSERVATION AND RESULTS	40
9.	DISCUSSION	55
10.	CONCLUSION	60
11.	BIBLIOGRAPHY	61
12.	APPENDIX	
	PROFORMA	
	MASTER CHART	

CONTENTS

INTRODUCTION

In 1940, Reid and Brace first described hemodynamic response to laryngoscopy and intubation.

Laryngoscopy and endotracheal intubation are mandatory for most patients undergoing general anaesthesia, which is invariably associated with certain cardiovascular changes such as tachycardia or bradycardia, rise in blood pressure and a wide variety of cardiac arrhythmias. These effects are deleterious in susceptible individuals culminating in ischemia. failure perioperative myocardial acute heart and cerebrovascular accidents. The hemodynamic response to laryngoscopy and endo tracheal intubation has been recognized since 1951. The induction of anaesthesia, laryngoscopy and intubation and surgical stimulation often evoke cardiovascular response characterized by alterations in systemic arterial pressure, pulse rate and cardiac rhythm. The response following laryngoscopy and intubation peaks at 1.2 minute and returns to normal within 5 - 10 minutes.

Though these sympathoadrenal response are probably of little consequence in healthy individuals, it is hazardous to those patients with hypertension, coronary heart disease, intra cranial pathology and hyper reactive airways. In such cases, reflex circulatory response such as increase in heart rate, systemic arterial blood pressure and disturbances in cardiac rhythm needs to be suppressed. Prof. King et al (1951) documented myocardial ischemic changes due to reflex sympthoadrenal response immediately following laryngoscopy and intubation with a mean rise in systemic pressure of 40 mm Hg even in normotensive individuals.

Various systemic as well as topical agents were used to reduce these untoward hemodynamic responses due to laryngoscopy and intubation. Those technique which require prior laryngoscopy to the local anaesthetic solution are likely to be of limited value. The common strategies adopted are narcotics, vasodilators, beta blockers, calcium channel blockers, lidocaine other sympatholytics.

IV Esmolol due to its ultra short action seem to be ideal to control intense but brief sympathetic stimulation following endotracheal intubation.

Hence, the above study was done in the Department of Anaesthesiology, Chengalpattu Medical College, Chengalpattu.

AIM

The hemodynamic response during laryngoscopy and intubation should be abolished to balance the myocardial oxygen supply and demand for the safe conduct of anaesthesia. This study was done to compare the varying doses of IV Esmolol in attenuating the hemodynamic stress response to laryngoscopy and endo tracheal intubation.

PATHOPHYSIOLOGY OF HEMODYNAMIC RESPONSES TO LARYNGOSCOPY AND ENDOTRACHEAL INTUBATION

Intubation of trachea alters the respiratory and cardiovascular physiology by both reflex response and by physical presence of endo tracheal tube. Although reflex responses are generally of short duration and of little consequence in majority of patients, they may produce profound disturbance in patients with underlying abnormalities such as hypertension, coronary heart disease, reactive airways, intra cranial pathology.

CARDIOVASCULAR RESPONSES:

The cardiovascular responses to laryngoscopy and intubation are bradycardia, tachycardia, hypertension, and they are mediated by both the sympathetic and parasympathetic nervous system. Bradycardia is often seen in infants and small children during laryngoscopy and intubation. Although only rarely seen in adults this reflex is mediated by increase in vagal tone at sinoatrial node and is virtually a monosynaptic response to a noxious stimuli in airway.

The more common response to endotracheal intubation is hypertension and tachycardia mediated by sympathetic efferent via the cardioaccelerator nerves and sympathetic chain ganglia. The polysynaptic nature of pathways from IX and X nerve afferents to sympathetic nervous system.via the brain stem and spinal cord in a diffuse autonomic response which includes widespread release of norepinephrine from adrenal nerve terminals and adrenal medulla.

Some of the hypertensive response to endotracheal intubation also results from activation of renin angiotensin system, with release of renin from the renal juxta glomerular apparatus and end organ innervated by beta adrenergic nerve terminals.

The effects of endotracheal intubation on the pulmonary vasculature are less well understood then the responses elicited in the systemic circulation. They are often coupled with the changes in airway reactivity associated with intubation. They are i) glottis closure reflex (laryngospasm due to brisk motor response), ii) decrease in dead space, iii) increase in airway resistance, iv) bronchospasm (a reflex response to iintubation), v) removal of glottic barrier and may reduce lung volume, vi) cough efficiency is reduced.

METHODS TO ATTENUATE CIRCULATORY RESPONSE DURING LARYNGOSCOPY AND INTUBATION

The balance between myocardial oxygen supply and demand must be preserved to minimize the risk of peri operative ischemia and infarction.

Factors affecting myocardial oxygen demand and supply.

Demand

Basal requirement Heart rate Wall tension – preload, afterload Contractility

Supply

Heart rate – depends on diastolic time, hence decreases in heart rate, more diastolic time, more the oxygen supply to myocardium.

Coronary Perfusion Pressure – depends on Aortic diastolic pressure and ventricular end diastolic pressure and increase with high aortic diastolic pressure and low ventricular end diastolic pressure.

Arterial oxygen content – depends on arterial oxygen partial pressure and haemoglobin concentration.

Coronary vessel diameter.

Numbers of methods were used to attenuate cardiovascular response due to laryngoscopy and intubation.

1. Deepening of General Anaesthesia :

Inhalational agents 'MAC' (i.e.) the dose of volatile agent required to blunt the cardiovascular responses to laryngoscopy and intubation. This deep level is achieved by inhalational agents result in profound cardiovascular depression prior to laryngoscopy and intubation. Various agents used are Halothane, Isoflurane, Sevoflurane.

2. Lidocaine :

- Lidocaine gargle for oropharyngeal anaesthesia.
- Aerosol for intra tracheal anaesthesia
- Topical spray for vocal cords
- Regional nerve blocks Superior Laryngeal nerve,
 Glossopharyngeal nerve
- Intra venous bolus of systemic anaesthesia
- Topical anaesthesia of upper airway has proven to be less effective than systemic administration of lidocaine.

Mechanism of action

By increasing the depth of General Anaesthesia

Potentiation of effects of Nitrous Oxide and reduction of MAC of Halothane by 10-28 %

Direct cardiac depressant

Peripheral vasodilation

Antiarrhythmic properties

Suppression of cough reflex

3. Vasodilators

Hydralazine, Sodium nitro prusside, Nitroglycerine

4. Narcotics

Fentanyl, Alfentanil, Sufentanil, Pethidine, Morphine.

Fentanyl is most common used narcotic agent. It is a potent analgesic, has short duration of action does not increase intra cranial tension, and has minimal circulatory changes.

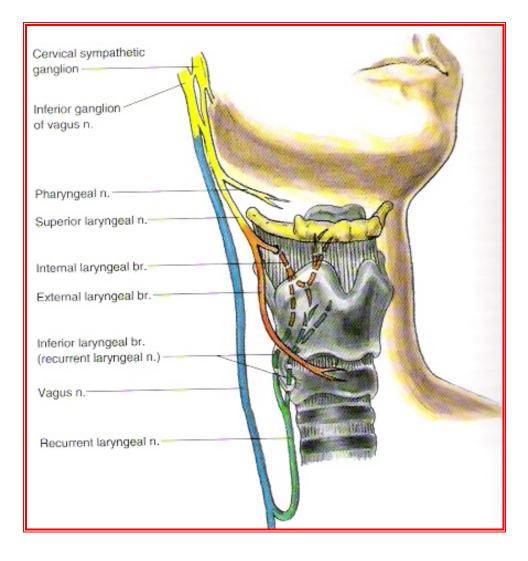
Mechanism of action

Suppression of Nociceptive stimulation caused by Intubation Centrally mediated decrease in sympathetic tone Activation of vagal tone.

5. Adrenergic blockers

Long acting – Metoprolol, Phentolamine, Proponalol, Labetalol

Short acting – Esmolol.


Most commonly used agent because of its ultrashort action. It decreases heart rate, ejection fraction, and cardiac index but maintains coronary perfusion pressure.

6. Calcium Channel Blockers

Nifedipine, Nicardipine,- has got superior action

Verapamil, Diltiazem

- 7. Alpha 2 agonist-Clonidine
- 8. Midazolam Sedative & Anxiolytic
- 9. Magesium Sulphate Sedative & Anxiolytic

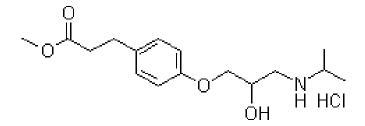
NERVE SUPPLY OF LARYNX

Nerve supply of the larynx is from the Vagus nerve by way of its superior laryngeal nerve and recurrent laryngeal branches. The Superior Laryngeal nerve arises from the inferior ganglion of Vagus and receives branch from the Superior cervical sympathetic ganglion. The external branch provides motor supply to the cricothyroid muscle while the internal branch pierces the thyrohyoid membrane and divides into two main sensory and secretomotor branches. The upper branch supplies the mucous membrane of lower part of pharynx, epiglottis, vallecula and vestibule of larynx. The lower branch supplies the aryepiglottic fold and mucous membrane down to the level of vocal folds.

The internal branch of superior laryngeal nerve supplies the supraglottic area.

The Recurrent laryngeal nerve ascends to the larynx in the groove between the oesophagus and trachea and divides into motor and sensory branches.

The motor branch has fibres derived from the cranial root of the accessory nerve which supplies all the intrinsic muscles of larynx except the cricothyroid.


The sensory branch supplies the laryngeal mucous membrane below the level of vocal folds.

PHARMACOLOGY OF ESMOLOL

Esmolol hydrochloride is a beta1-selective (cardioselective) adrenergic receptor blocking agent with a very short duration of action (elimination half-life is approximately 9 minutes). The chemical name for Esmolol hydrochloride is (\pm) -Methyl p-[2-hydroxy-3-(isopropylamino) propoxy] hydrocinnamate hydrochloride and it has the following structure:

Esmolol hydrochloride has the molecular formula C16H26NO4CI and a molecular weight of 331.8. It has one asymmetric center and exists as an enantiomeric pair.

Esmolol HCl Injection is a clear, colourless to light yellow, sterile, nonpyrogenic solution. 100 mg, 10 mL Single Dose Vial - Each mL contains 10 mg Esmolol Hydrochloride and Water for Injection.

Esmolol - Clinical Pharmacology ^{1,2}

Esmolol hydrochloride is a beta1-selective (cardioselective) adrenergic receptor blocking agent with rapid onset, a very short duration of action, and no significant intrinsic sympathomimetic or membrane stabilizing activity at therapeutic dosages. Its elimination half-life after intravenous infusion is approximately 9 minutes. Esmolol inhibits the beta1 receptors located chiefly in cardiac muscle, but this preferential effect is not absolute and at higher doses it begins to inhibit beta2 receptors located chiefly in the bronchial and vascular musculature.

Pharmacokinetics and Metabolism

Esmolol hydrochloride is rapidly metabolized by hydrolysis of the ester linkage, chiefly by the esterases in the cytosol of red blood cells and not by plasma cholinesterases or red cell membrane acetylcholinesterase. Total body clearance in man was found to be about 20 L/kg/hr, which is greater than cardiac output; thus the metabolism of Esmolol is not limited by the rate of blood flow to metabolizing tissues such as the liver or affected by hepatic or renal blood flow. Esmolol has a rapid distribution half-life of about 2 minutes and an elimination half-life of about 9 minutes.

Because of its short half-life, blood levels of Esmolol can be rapidly altered by increasing or decreasing the infusion rate and rapidly eliminated by discontinuing the infusion. Consistent with the high rate of blood-based metabolism of Esmolol, less than 2% of the drug is excreted unchanged in the urine. Within 24 hours of the end of infusion, approximately 73% to 88% of the dosage has been accounted for in the urine as the acid metabolite of Esmolol.

Metabolism of Esmolol results in the formation of the corresponding free acid and methanol. The acid metabolite has been shown in animals to have about 1/1500th the activity of Esmolol and in normal volunteers its blood levels do not correspond to the level of beta blockade. The acid metabolite has an elimination half-life of about 3.7 hours and is excreted in the urine with a clearance approximately equivalent to the glomerular filtration rate. Excretion of the acid metabolite is significantly decreased in patients with renal disease, with the elimination half-life increased to about ten-fold that of normals, and plasma levels considerably elevated.

Esmolol has been shown to be 55% bound to human plasma protein, while the acid metabolite is only 10% bound.

PHARMACODYNAMICS

Clinical pharmacology studies in normal volunteers have confirmed the beta blocking activity of Esmolol hydrochloride, showing reduction in heart rate at rest and during exercise, and attenuation of Isoproterenol-induced increases in heart rate. Blood levels of Esmolol have been shown to correlate with extent of beta blockade. After termination of infusion, substantial recovery from beta blockade is observed in 10 to 20 minutes.

In human electrophysiology studies, Esmolol produced effects typical of a beta blocker; a decrease in the heart rate, increase in sinus cycle length, prolongation of the sinus node recovery time, prolongation of the AH interval during normal sinus rhythm and during atrial pacing, and an increase in antegrade Wenckebach cycle length.

During exercise, Esmolol produced reductions in heart rate, rate pressure product and cardiac index which were also similar to those produced by Propranolol, but produced a significantly larger fall in systolic blood pressure.

At thirty minutes after the discontinuation of Esmolol infusion, all of the hemodynamic parameters had returned to pre-treatment levels.

Esmolol produced slightly enhanced bronchomotor sensitivity to dry air stimulus. These effects were not clinically significant, and Esmolol was well tolerated by asthmatic patients.

No adverse pulmonary effects were observed in patients with COPD who received therapeutic dosages of Esmolol.

Compatibility with Commonly Used Intravenous Fluids

Esmolol was tested for compatibility with ten commonly used intravenous fluids at a final concentration of 10 mg Esmolol Hydrochloride per ml. Esmolol was found to be compatible with the following solutions and was stable for at least 24 hours at controlled room temperature or under refrigeration:

- 1. Dextrose (5%) Injection,
- 2. Dextrose (5%) in Lactated Ringer's Injection
- 3. Dextrose (5%) in Ringer's Injection
- 4. Dextrose (5%) and Sodium Chloride (0.45%) Injection,
- 5. Dextrose (5%) and Sodium Chloride (0.9%) Injection,
- 6. Lactated Ringer's Injection,
- 7. Potassium Chloride (40 mEq/liter) in Dextrose (5%) Injection,
- 8. Sodium Chloride (0.45%) Injection,
- 9. Sodium Chloride (0.9%) Injection,
- 10.Esmolol is NOT compatible with Sodium Bicarbonate(5%) Injection.

SIDE EFFECTS

Most adverse effects observed in controlled clinical trial settings have been mild and transient. The most important adverse effect has been hypotension.

Cardiovascular

Symptomatic hypotension (diaphoresis, dizziness) occurred in 12% of patients, and therapy was discontinued in about 11%, about half of whom were symptomatic. Asymptomatic hypotension occurred in about 25% of patients. Hypotension resolved during Esmolol infusion in 63% of these patients and within 30 minutes after discontinuation of infusion in 80% of the remaining patients. Diaphoresis accompanied hypotension in 10% of patients. Peripheral ischemia occurred in approximately 1% of patients. Pallor, flushing, bradycardia (heart rate less than 50 beats per minute), chest pain, syncope, pulmonary edema and heart block have each been reported in less than 1% of patients. In two patients without supraventricular tachycardia but with serious coronary artery disease (post inferior myocardial infarction or unstable angina), severe bradycardia/sinus pause/asystole has developed, reversible in both cases with discontinuation of treatment.

Central Nervous System

Dizziness has occurred in 3% of patients; somnolence in 3%; confusion, headache, and agitation in about 2%; and fatigue in about 1% of patients. Paresthesia, asthenia, depression, abnormal thinking, anxiety, anorexia, and lightheadedness were reported in less than 1% of patients. Seizures were also reported in less than 1% of patients, with one death.

Respiratory

Bronchospasm, wheezing, dyspnea, nasal congestion, rhonchi, and rales have each been reported in less than 1% of patients.

Gastrointestinal

Nausea was reported in 7% of patients. Vomiting has occurred in about 1% of patients. Dyspepsia, constipation, dry mouth, and abdominal discomfort have each occurred in less than 1% of patients. Taste perversion has also been reported.

Skin (Infusion Site)

Infusion site reactions including inflammation and induration were reported in about 8% of patients. Edema, erythema, skin discoloration, burning at the infusion site, thrombophlebitis, and local skin necrosis from extravasation have each occurred in less than 1% of patients.

Miscellaneous

Each of the following has been reported in less than 1% of patients: Urinary retention, speech disorder, abnormal vision, midscapular pain, rigors, and fever.

DRUG INTERACTIONS

- 1. Catecholamine-depleting drugs, e.g., Reserpine, may have an additive effect when given with beta blocking agents. Patients treated concurrently with Esmolol and a catecholamine depletor should therefore be closely observed for evidence of hypotension or marked bradycardia, which may result in vertigo, syncope, or postural hypotension.
- 2. A study of interaction between Esmolol and Warfarin showed that concomitant administration of Esmolol and Warfarin does not alter warfarin plasma levels. Esmolol concentrations were equivocally higher when given with Warfarin, but this is not likely to be clinically important.
- 3. When Digoxin and Esmolol were concomitantly administered intravenously to normal volunteers, there was a 10-20% increase in digoxin blood levels at some time points. Digoxin did not affect Esmolol pharmacokinetics.
- 4. When intravenous Morphine and Esmolol were concomitantly administered in normal subjects, no effect on morphine blood levels was seen, but Esmolol steady-state blood levels were increased by

46% in the presence of morphine. No other pharmacokinetic parameters were changed.

- 5. The effect of Esmolol on the duration of succinylcholine-induced neuromuscular blockade was studied in patients undergoing surgery. The onset of neuromuscular blockade by succinylcholine was unaffected by Esmolol, but the duration of neuromuscular blockade was prolonged from 5 minutes to 8 minutes.
- 6. Although the interactions observed in these studies do not appear to be of major clinical importance, Esmolol should be titrated with caution in patients being treated concurrently with digoxin, morphine, succinylcholine or warfarin.
- 7. While taking beta blockers, patients with a history of severe anaphylactic reaction to a variety of allergens may be more reactive to repeated challenge, either accidental, diagnostic, or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat allergic reaction.
- 8. Caution should be exercised when considering the use of Esmolol and Verapamil in patients with depressed myocardial function. Fatal cardiac arrests have occurred in patients receiving both drugs. Additionally, Esmolol should not be used to control supraventricular tachycardia in the presence of agents which are vasoconstrictive and inotropic such as dopamine, epinephrine, and norepinephrine because

of the danger of blocking cardiac contractility when systemic vascular resistance is high.

WARNINGS

Hypotension

In clinical trials 20-50% of patients treated with Esmolol have experienced hypotension, generally defined as systolic pressure less than 90 mmHg and/or diastolic pressure less than 50 mmHg. About 12% of the patients have been symptomatic (mainly diaphoresis or dizziness). Hypotension can occur at any dose but is dose-related so that doses beyond 200 mcg/kg/min (0.2 mg/kg/min) are not recommended. Patients should be closely monitored, especially if pretreatment blood pressure is low. Decrease of dose or termination of infusion reverses hypotension, usually within 30 minutes.

Esmolol should not be used as the treatment for hypertension in patients in whom the increased blood pressure is primarily due to the vasoconstriction associated with hypothermia.

Cardiac Failure

Sympathetic stimulation is necessary in supporting circulatory function in congestive heart failure, and beta blockade carries the potential hazard of further depressing myocardial contractility and precipitating more severe failure. Continued depression of the myocardium with beta blocking agents over a period of time can, in some cases, lead to cardiac failure. At the first sign or symptom of impending cardiac failure, Esmolol should be withdrawn. Although withdrawal may be sufficient because of the short elimination half-life of Esmolol, specific treatment may also be considered. The use of Esmolol for control of ventricular response in patients with supraventricular arrhythmias should be undertaken with caution when the patient is compromised hemodynamically or is taking other drugs that decrease any or all of the peripheral resistance, following: myocardial filling, myocardial contractility or electrical impulse propagation in the myocardium. Despite the rapid onset and offset of the effects of Esmolol, several cases of death have been reported in complex clinical states where Esmolol was presumably being used to control ventricular rate.

Bronchospastic Diseases

Patients with Bronchospastic diseases should, in general, not receive beta blockers. Because of its relative $beta_1$ selectivity and titratability, Esmolol may be used with caution in patients with bronchospastic diseases. However, since beta1 selectivity is not absolute,

Esmolol should be carefully titrated to obtain the lowest possible effective dose. In the event of bronchospasm, the infusion should be terminated immediately; a beta₂ stimulating agent may be administered if conditions warrant but should be used with particular caution as patients already have rapid ventricular rates.

Diabetes Mellitus and Hypoglycemia

Esmolol should be used with caution in diabetic patients requiring a beta blocking agent. Beta blockers may mask tachycardia occurring with hypoglycemia, but other manifestations such as dizziness and sweating may not be significantly affected.

PRECAUTIONS

1. General:

Because the acid metabolite of Esmolol is primarily excreted unchanged by the kidney, Esmolol should be administered with caution to patients with impaired renal function. The elimination half-life of the acid metabolite was prolonged ten-fold and the plasma level was considerably elevated in patients with end-stage renal disease.

2. Carcinogenesis, Mutagenesis, Impairment of Fertility:

Because of its short term usage no carcinogenicity, mutagenicity or reproductive performance studies have been conducted with Esmolol.

3. Pregnancy:

Teratogenicity studies in rats at intravenous dosages of Esmolol up to 3000 mcg/kg/min (3 mg/kg/min) (ten times the maximum human maintenance dosage) for 30 minutes daily produced no evidence of maternal toxicity, embryotoxicity or teratogenicity, while a dosage of 10,000 mcg/kg/min (10 mg/kg/min) produced maternal toxicity and lethality. In rabbits, intravenous dosages up to 1000 mcg/kg/min (1 mg/kg/min) for 30 minutes daily produced no evidence of maternal toxicity, embryotoxicity or teratogenicity, while 2500 mcg/kg/min (2.5 mg/kg/min) produced minimal maternal toxicity and increased fetal resorptions.

Although there are no adequate and well-controlled studies in pregnant women, use of Esmolol in the last trimester of pregnancy or during labor or delivery has been reported to cause fetal bradycardia, which continued after termination of drug infusion. Esmolol should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

4. Nursing Mothers

It is not known whether Esmolol is excreted in human milk; however, caution should be exercised when Esmolol is administered to a nursing woman.

5. Pediatric Use

The safety and effectiveness of Esmolol in pediatric patients have not been established.

OVERDOSE

Acute Toxicity

Overdoses of Esmolol can cause cardiac arrest. In addition, overdoses can produce bradycardia, hypotension, electromechanical dissociation. Cases of massive accidental overdoses of Esmolol have occurred due to dilution errors. Use of Esmolol Premixed Injection and Esmolol Double Strength Premixed Injection may reduce the potential for dilution errors. Some of these overdoses have been fatal while others resulted in permanent disability. Bolus doses in the range of 625 mg to 2.5 g (12.5-50 mg/kg) have been fatal. Patients have recovered completely from overdoses as high as 1.75 g given over one minute or doses of 7.5 g given over one hour for cardiovascular surgery. The patients who survived appear to be those whose circulation could be supported until the effects of Esmolol resolved.

Because of its approximately 9-minute elimination half-life, the first step in the management of toxicity should be to discontinue the Esmolol infusion. Then, based on the observed clinical effects, the following general measures should also be considered.

Bradycardia: Intravenous administration of atropine.

Bronchospasm: Intravenous administration of a beta₂ stimulating agent and/or a theophylline derivative.

Cardiac Failure: Intravenous administration of a diuretic and/or digitalis glycoside. In shock resulting from inadequate cardiac contractility, intravenous administration of dopamine, dobutamine, isoproterenol, or amrinone may be considered.

Symptomatic Hypotension: Intravenous administration of fluids and/or pressor agents.

CONTRAINDICATIONS

Esmolol is contraindicated in patients with sinus bradycardia, heart block greater than first degree, cardiogenic shock or overt heart failure

REVIEW OF LITERATURE

Though laryngoscopy and intubation were done with ease in yester years, the anaesthesiologist had to struggle to combat or subdue the circulatory or cardiovascular effects of the said procedure in patients with compromised circulatory system. Endotracheal intubation cause a reflex mediated increase in sympathetic activity in anesthetized patients. Enhanced sympathetic activity causes an increase in plasma catecholamine concentrations, blood pressure, heart rate, and myocardial oxygen demand.

King et al $(1957)^4$ used deep Ether anaesthetic to abolish the reflex circulatory response to tracheal intubation.

Ebert TJ et al⁵ (1989) studied that circulatory response to laryngoscopy comparing the effects of Esmolol and Fentanyl and they concluded that heart rate response to laryngoscopy was more effectively blocked by Fentanyl while Esmolol better retained coronary perfusion pressure. There were no complications or ischemic ECG changes in any patient. Ebert TJ and Bernstein JS (1990)⁶ studied that hemodynamic response to Rapid sequence induction and intubation in healthy patients with a single bolus dose of Esmolol. They concluded that Esmolol 2 mg/kg bolus effectively attenuated heart rate, systolic blood pressure, diastolic blood pressure, rate pressure product increases produced by laryngoscopy and intubation.

Sheppard et al⁷ (1990) compared different bolus dose of Esmolol and concluded that attenuation of intubation response is adequate following 100 mg of Esmolol.

Helfman SM et al⁹ (1991) compared the efficacy of Lidocaine, Fentanyl, Esmolol to obtund the intubation responses and concluded that only Esmolol provided constant and reliable part against increase in heart rate and systolic blood pressure accompanying laryngoscopy and intubation.

Miller D.R et al (1991)¹⁰ in their Canadian multicentre trial involving 548 patients concluded that 100 mg bolus Esmolol is safe and effective agent. This dose of Esmolol combined with low dose of Fentanyl (2-3mcg/kg) results in effective control of both heart rate and blood pressure while avoiding important side effect.

Vucovic M et al (1992)¹¹ concluded randomized control trial with 500 mcg/kg/min for 2 minutes and maintenance 100 mcg/kg/min till

intubation and showed that heart rate, systolic blood pressure were significantly decreased in Esmolol group.

Ganbatz C.L et al ¹¹ (1991) also had similar results of Miller D.R et al., Parnan S.M et al (1990) also concluded that single bolus dose of Esmolol is effective in obtunding intubation response.

Vucovic M et al¹² (1992) studied about the use of Esmolol for management of cardiovascular responses to laryngoscopy and tracheal intubation and found that pressor response to laryngoscopy was significantly less marked in patients given Esmolol 2 minutes before intubation.

Chung KS et al¹³ (1992) studied or comparison of Fentanyl, Esmolol and their combination for blunting the hyper dynamic responses during Rapid sequence intubation and concluded that a combination of low dose Fentanyl and Esmolol provides on attenuation to a higher dose of Fentanyl for blunting the hyper dynamic response to laryngoscopy and intubation.

Kovac et al (1992)¹⁴ concluded that in an eye patient with coronary artery disease, or in any patient whom increase in heart rate may be detrimental, Esmolol may be a useful adjunct in combination with low dose alfentanil to attenuate the increase in heart rate due to laryngoscopy and intubation.

Yuan L,Chia YY (1994)¹⁵ studied the efficiency of bolus dose Esmolol in blunting the stress response comparing 100 mg Esmolol versus 200 mg Esmolol. They concluded that both bolus dose of Esmolol could effectively attenuate the increase the heart rate, hypertension produced by laryngoscopy and intubation, furthermore, Esmolol 200 mg presented a better hemodynamic stability than100 mg Esmolol.

Sharma S, Ghania A (1995)¹⁶ also concluded adequate hemodynamic control was obtained with the administration of Esmolol bolus 2mg/kg.

Weist. D et al (1995)¹⁷ made a review of therapeutic efficacy and pharmacokinetic characteristics of Esmolol.

Singh H et al (1995)¹⁸ in their study concluded that Lidocaine 1.5 mg/kg IV and Nitroglycerine 2 mcg/kg IV were effective in controlling the acute hemodynamic response following laryngoscopy and intubation. Esmolol 1.4 mg/kg was significantly more effect than either Lidocaine or Nitroglycerine in controlling heart rate or mean arterial pressure increase during intubation.

Sharma et al¹⁹ (1996) compared the ability of different bolus doses of Esmolol to blunt the hemodynamic response to laryngoscopy and intubation in treated hypertensive patients. Concluded that Esmolol 100mg given as bolus is effective as well as safe in blunting the response. Feng C.K et al ²⁰(1996) concluded that Esmolol only could reliably offer protection against increase in both heart rate and systolic blood pressure. Low dose Fentanyl (2 mcg/kg) prevented heart rate but not increase in heart rate and 2 mg/kg lidocaine had no effect.

Kindler, CH, Schumacher PG^{21} (1996) studied the hemodynamic response to intubation with Lidocaine 1.5 mg/kg, Esmolol 1 mg/kg, Esmolol 2 mg/kg ,combination of Lidocaine 1.5 mg/kg and Esmolol 1 mg/kg and concluded that Esmolol 1-2 mg/kg is reliably effective in attenuating the heart rate response to tracheal intubation. Neither of the two doses of Esmolol tested nor that of Lidocaine attenuated the blood pressure response. Only the combination of Lidocaine and Esmolol attenuated the heart rate and blood pressure response to tracheal intubation.

Wang L et al^{22} (1999) concluded that 1.2 mg/kg bolus of Esmolol is effective and safe.

Atlee JL et al²³ (2000) compared the efficacy of Esmolol, Nicardipine, or their combination to blunt the hemodynamic response after intubation and found that the peak increase in blood pressure is blunted by a combination of Esmolol and Nicardipine. No single drug or combination opposed increase in heart rate. Bensky et al (2000)²⁴ in their study concluded that small dose of Esmolol may block the increase in heart rate and blood pressure resulting from laryngoscopy and intubation.

Figueredo, E.Garcia- Fuentes EM (2001)²⁵ compared the results of 38 randomized control trial involving different regimen and doses of Esmolol and found that the most effective regimen was a loading dose of 500 mcg/kg/min over 4 minute, followed by continuous infusion dose of 200-300 mcg/kg/min.

Levitt M.A., Dresden GM (2001)²⁶ studied the efficacy of Esmolol versus Lidocaine to attenuate the hemodynamic response to intubation in isolated head trauma patients and concluded that both have similar effects.

S. Bansal et al (2002)²⁷ studied the effect of IV Esmolol with or without Lidocaine in attenuating hemodynamic response in patients with PIH and concluded that Esmolol 1 mg/kg with Lidocaine 1.5 mg/kg is effective in attenuating adrenergic response to laryngoscopy and intubation.

Tan PH et al (2002)²⁸ made a study on combined use of Esmolol and Nicardipine to blunt the hemodynamic response and found that patients receiving Esmolol 1mg/kg and Nicardipine 30 mcg/kg showed no significant change is systolic blood pressure after tracheal intubation compared with baseline. Fernandez – Gatinski S et al²⁹ (2004) compared the effects of Clonidine, Esmolol, Alfentanil on the level of hypnosis and hemodynamic response to laryngoscopy and intubation and concluded that none of the study drugs blocked the increase in MAP induced by endotracheal intubation but Esmolol provided better overall hemodynamic stability. All groups had an adequate level of hypnosis.

MATERIALS AND METHODS

Sixty ASA I & II patients undergoing elective surgical procedure under general anaesthesia with endotracheal intubation were included in this study.

Patients belonging to age group 20-50 years of both the sexes were included.

It is a prospective double blind randomized controlled study. The study was approved by the Ethical Committee and were randomly grouped into three groups.

Group A (Esmolol 0.5 mg/kg) = Twenty patients were given Esmolol 0.5 mg/kg IV 2 minutes before intubation.

Group B (**Esmolol 1.0 mg/kg**) = Twenty patients were given Esmolol 1 mg/kg IV 2 minutes before intubation.

Group C (**Esmolol 1.5 mg/kg**) = Twenty patients were given Esmolol 1.5 mg/kg IV 2 minutes before intubation.

The surgeon was also duly informed of the study.

The study was done during the period from May 2009 to August 2009 in the Department of Anaesthesiology, Chengalpattu Medical College, Chengalpattu.

Inclusion Criteria :	ASA I & II
	Age 20 – 50 yrs
	All cases requiring GA
Exclusion criteria :	Known and difficult airways
	Esmolol contraindications
	Not meeting inclusion criteria
	Patients on beta blockers
	Patients with full stomach
	Patients posted for Emergency surgery
	Hypertension, Diabetes, Ischemic heart disease

Randomization was done by draw of lots. The follow up of the patient and analysis of data were done by personnel blinded to which group belonged to. Drawing of lots for randomization and preparation of study was prepared by a consultant who took no further part in the study, the rest of the study was conducted by investigator who was blinded to the drug injected.

MATERIALS

- 1. Inj.Thiopentone Sodium 2.5%
- 2. Inj. Succinylcholine Chloride
- 3. Inj. Glycopyrrolate
- 4. Inj. Fentanyl citrate
- 5. Inj. Esmolol HCl 100mg/10 ml
- 6. Disposable 20 ml syringe
- 7. Laryngoscope with blades 3 and 4
- 8. Endotracheal tubes of varying sizes.
- 9. Emergency drugs
- 10. Difficult Intubation strategies

PRE OPERATIVE PREPARATION

All the patients were admitted and they underwent relevant investigations. Preoperatively informed, written consent was obtained from the patient.

Hemogram, Bleeding time, Clotting time

Blood	_	urea
		sugar
Serum	_	creatinine
		electrolytes

X ray Chest

Electrocardiogram

Other relevant investigations were obtained on the basis of the condition of the patient.

ANAESTHESIA PROTOCOL

Pre operative visit was done to allay anxiety and good rapport was established with the patient.

All the patients were given pre operative night sedation with tablet Diazepam 10 mg and antacid prophylaxis with tablet Ranitidine 150 mg orally.

INTERVENTION

Induction of anaesthesia was standardized for all the patients.

PREMEDICATION

All the patients were premedicated with Injection. Glycopyrrolate 4 μ g/kg body weight, intra muscularly, 45 minutes before surgery. Basal pulse rate and blood pressure were recorded.

MONITORING

Non Invasive Automated BP Electrocardiogram Pulseoximetry ETCO2 Patient shifted to operating table after 45 minutes. In the operating room patients were connected to baseline monitors, then intravenous access established with 18 gauge cannula and intravenous fluids started. Pulse rate, Blood pressure, ECG and SpO2 were recorded.

PREOXYGENATION

Preoxygenation was done with 100% oxygen for 3 minutes.

ADMINISTRATION OF STUDY DRUG

Inj. Fentanyl 2µg/kg iv given three minute prior to induction. The study drug was taken in a 20 ml syringe and diluted to 20 ml and given as bolus over 15-20 seconds two minutes before intubation. One minute later anaesthesia was induced with 2.5% Inj. Thiopentone sodium 5mg/kg IV. and Inj. Succinyl choline 1.5mg/kg IV given. After satisfying muscle relaxation, the patient was intubated with appropriate size endotracheal tube after doing a proper laryngoscopy within 10-15 seconds. Conditions were prolongation of laryngoscopy time due to difficult intubation, these patients were excluded from the study. Endotracheal tube was secured after confirming bilateral air entry. Anaesthesia maintained with N2O & O2 (66.7%: 33.3%) and IPPV was done. The ETCO2 was maintained at the of pressure of 30-35 mmHg.

The whole intra operative & post operative period were uneventful.

STATISTICAL ANALYSIS

Heart rate, Systolic blood pressure, Diastolic blood pressure, Mean arterial pressure. All recorded data were entered using MS Excel software and analysed using STATA software for determining the statistical significance. **ANOVA test** was used to determine the significance among three groups. **Student's t test** was used to compare the two groups on mean values of various parameters. **The p-value taken for significance is <0.05**.

LIST OF SURGICAL PROCEDURES

S. No.	Surgery	Group A	Group B	Group C
1.	Herniorraphy	5	5	5
2.	Fibroadenoma excision	4	3	3
3.	Pyelolithotomy	3		1
4.	FESS	3	4	2
5.	Thyroidectomy	2	3	2
6.	Appendicectomy	1		1
7.	Screw fixation& Plating	2	2	1
8.	Gynaecomastia- excision		1	
9.	Hydrocele eversion		1	
10.	Parotidectomy		1	3
11.	Cholecystectomy			2

OBSERVATION AND RESULTS

Sixty patients under this study were categorized into three groups. They comprised of both sexes with age ranging from 20-50 years.

The age, sex and body mass index were equal in all the three groups. P value was not significant in the study done (p>0.05).

DEMOGRPHIC PROFILE

AGE

GROUP	20-30	31-40	41-50	TOTAL
Α	9	3	8	20
В	8	6	6	20
С	9	4	7	20
TOTAL	26	13	21	60

SEX

GROUP	MALE	FEMALE	TOTAL
А	8	12	20
В	10	10	20
С	9	11	20
TOTAL	27	33	60

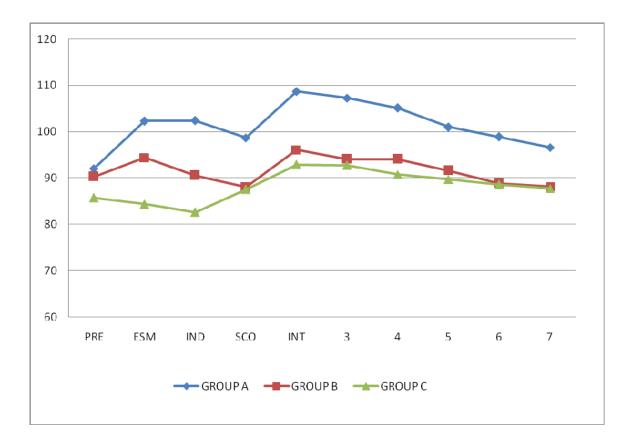
MEAN AGE AND BMI OF PATIENTS BY GROUPS

AGE

GROUP	AGE	BMI
Α	35.9±8.6	21.5±1.4
В	35.1±8.7	21.6±1.4
С	34.9±8.4	22±1.5
P-value	>0.05	>0.05

GROUP	19-24	>24	TOTAL
A	19	1	20
В	19	1	20
С	18	2	20
TOTAL	56	4	60

At intake of study, there is no significance difference on age and BMI of patients among the groups.


The Groups are:

Group A (Esmolol 0.5 mg/kg): Twenty patients were given Esmolol 0.5mg/kg IV 2 minutes before intubation as a bolus.

Group B (**Esmolol 1.0 mg/kg**): Twenty patients were given Esmolol 1mg/kg IV 2 minutes before intubation as a bolus.

Group C (**Esmolol 1.5 mg/kg**): Twenty patients were given Esmolol 1.5mg/kg IV 2 minutes before intubation as a bolus.

Heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure were measured before premedication, after premedication, during administration of the study drug, during induction, during intubation, after intubation and following for about 7 minutes after laryngoscopy and intubation for every minute. Table I, II, III and IV shows the heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure comparisons between the three groups.

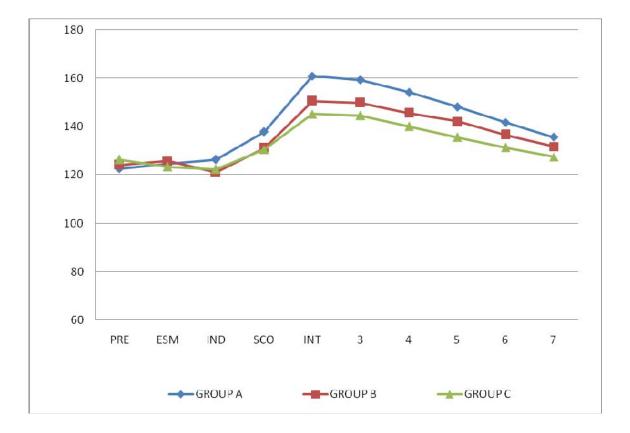

HEART RATE

TABLE-1

DISTRIBUTION OF MEAN ± STANDARD DEVIATION OF

HEART RATE MEAN±SD VALUES				P value
TIME		GROUPS		
	Α	В	С	
PRE MED	92.1 ± 8.1[80-110]	90.3 0± 5.2[83- 102]	90.3±3.4[86-102]	>0.05
ESMOLOL	102.3 ±7.4[92-118]	94.40 ±2.6[91-99]	92.8±3.9[88-101]	< 0.0001
AT INDUCTION	102.4 ±6.6[94-116]	90.55± 3.8[83-97]	89.4±3.9[84-98]	< 0.0001
AFTER SCOLINE	98.7± 6.8[90-115]	88.1 ±3.3[80-93]	87.60 ±6.5[77-103]	<0.0001
AT INTUBATION	108.7± 6.3[100-124]	96.1 ±3.6[92-102]	92.90 ±6.4[83-108]	<0.0001
AT 3 MIN	107.3 ±5.9[100-122]	94.10 ±4.0[85-100]	92.80± 6.4[83-108]	< 0.0001
AT 4 MIN	105.1±6.0[98-120]	94.10 ±4.2[85-100]	90.8± 6.3[81-105]	< 0.0001
AT 5 MIN	101 .0±5.9[95-116]	91.55± 4.3[83-98]	89.7± 6.5[80-105]	< 0.0001
AT 6 MIN	98.9 ±5.9[92-114]	89.85 ±4.3[81-97]	88.6 ± 6.6[78-104]	<0.0001
AT 7 MIN	96.6± 5.9[90-111]	88.15 ±4.4[79-96]	87.75 ±6.3[78-103]	< 0.0001

HEART RATE BY GROUPS

SYSTOLIC BLOOD PRESSURE

TABLE –II

DISTRIBUTION OF MEAN ± STANDARD DEVIATION OF SYSTOLIC BLOOD PRESSURE BY GROUPS

SYSTOLIC BLOOD PRESSURE MEAN ± SD VALUES				P VALUE	
TIME		GROUPS			
	Α	В	С		
PRE MED	122.6 ±6.5[110-132]	124.05± 5.8[110-131]	126.2± 5.7[111-136]	>0.05	
ESMOLOL	124.6± 6.26[111-132]	125.65± 6.3[112-135]	123.4 ±6.0[108-134]	>0.05	
AT INDUCTION	126.4± 6.6[113-138]	120.95± 5.8[108-129]	122.4 ±6.6[106-130]	<0.05	
AFTER SCOLINE	137.8±6.4[125-146]	131.1±5.89[118-140]	130.5 ±6.3[114-138]	<0.05	
AT INTUBATION	160.9±7.7[145-171]	150.5± 5.7[138-161]	145.15± 5.3[131-153]	<0.0001	
AT 3 MIN	159.2±7.6[148-170]	149.8± 5.3[138-160]	144.6 ±4.9[131-153]	<0.0001	
AT 4 MIN	154.1± 6.8[140-166]	145.5± 5.2[135-156]	139.9±4.8[127-148]	<0.0001	
AT 5 MIN	148.1±6.5[135-160]	142.2 ± 5.4[132-154]	135.6 ±4.6[123-144]	<0.0001	
AT 6 MIN	141.7 ± 6.48[130-152]	136.5± 5.4[128-148]	131.3 ±4.6[119-140]	< 0.0001	
AT 7 MIN	135.6±6.3[125-146]	131.7± 5.4[123-143]	127.5 ±4.3[117-135]	=0.0001	

DIASTOLIC BLOOD PRESSURE

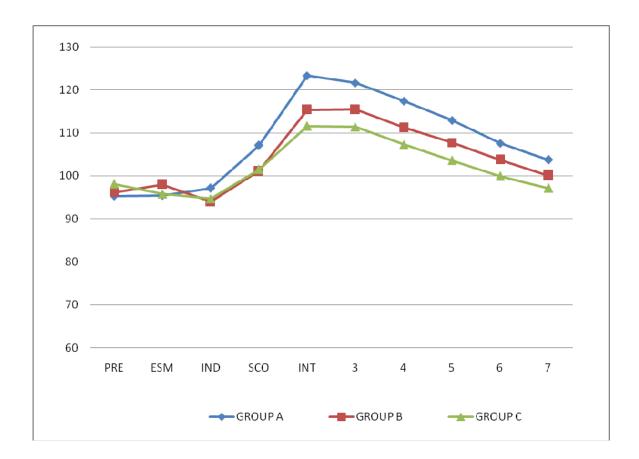


TABLE-III

DISTRIBUTION OF MEAN ± STANDARD DEVIATION OF DIASTOLIC BLOOD PRESSURE BY GROUPS

DIASTOLIC BLOOD PRESSURE MEAN ± SD VALUES				P VALUE
TIME		GROUPS		VALUE
	Α	В	С	
PRE MED	82.3± 5.9[71-90]	82.6 ±5.5[71-90]	84.55 ±6.1[71-92]	>0.05
ESMOLOL	83.7±6.3[72-92]	84 ±5.0[73-92]	82.35 ±5.9[68-90]	>0.05
AT INDUCTION	85.5±6.3[70-96]	80.2± 5.6[68-89]	81.55±5[68-90]	<0.05
AFTER SCOLINE	92.9±5.3[84-101]	86.2 ±4.3[76-96]	87.3±5.1[76-96]	<0.0001
AT INTUBATION	105.1± 5.2[98-116]	98.2 ±4.4[90-106]	95.35±4[88-104]	< 0.0001
AT 3 MIN	103.4±4.98[98-113]	97.2 ±4.13[89-104]	95.1±3.6[88-101]	< 0.0001
AT 4 MIN	99.6±4.0[93-108]	93.95±4.1[86-101]	91.2± 4.1[81-98]	< 0.0001
AT 5 MIN	95.3±4.6[89-104]	90.65± 4.1[82-98]	88.05±3.9[79-95]	<0.0001
AT 6 MIN	91±3.27[86-98]	87.5 ±4.3[80-94]	84.9±3.5[76-90]	< 0.0001
AT 7 MIN	87.8±3.7[81-96]	84.4 ±4.1[76-92]	82±3.5[74-88]	<0.0001

MEAN ARTERIAL PRESSURE

TABLE-IV

DISTRIBUTION OF MEAN ± STANDARD DEVIATION OF

MEAN ARTERIAL PRESSURE BY	<u>GROUPS</u>	

MEAN ARTER	IAL PRESSURE	MEA	AN±SD VALUES	P VALUE
TIME		GROUPS		VALUE
	Α	В	С	
PRE MED	95.3±6.0[84-103]	96.1±5.1[84-103]	98.1±5.3[85-106]	>0.05
ESMOLOL	95.4±6.2[84-102]	98±4.9[86-106]	95.7±5.7[81-103]	>0.05
AT INDUCTION	97.1±6.7[84-110]	94±5.5[84-102]	94.7±5.6[80-103]	>0.05
AFTER SCOLINE	107.1±5.8[96-115]	101.1±4.9[90-110]	101.5±5.0[91-110]	< 0.05
AT INTUBATION	123.3±5.8[113-134]	115.4±4.8[106-126]	111.6±4.3[102-120]	< 0.0001
AT 3 MIN	121.6± 5.6[115-132]	115.4±4.6[106-125]	111.4±4.4[102-120]	< 0.0001
AT 4 MIN	117.4±4.3[110-125]	111.15±4.4[102-119]	107.3±4.7[96-118]	< 0.0001
AT 5 MIN	112.8±4.9[106-121]	107.6±4.60[99-118]	103.5±4.0[93-110]	< 0.0001
AT 6 MIN	107.5±3.6[101-114]	103.6±4.6[96-112]	99.9±3.7[90-106]	<0.0001
AT 7 MIN	103.6± 4.1[96-112]	100.1±3.7[94-107]	97.1±3.6[88-104]	<0.0001

GROUP A: (Esmolol 0.5mg/kg)

Heart Rate:

The increase in heart rate following laryngoscopy and intubation was up to 18%. The rise in heart rate was highest during intubation and following intubation and it was high till the sixth minute after intubation. It started declining only at the seventh minute.

No rhythm disturbances were observed.

Systolic Blood Pressure:

There was up to 31% increase in systolic blood pressure during the study period. Highest value attained during intubation and following intubation. It started declining only after the study period.

Diastolic Blood Pressure:

Changes in blood pressure were similar to changes in systolic blood pressure. There was a 27% rise in diastolic pressure from the baseline during the procedure. It was highest during and following intubation. It started declining by 10 mmHg at the end of fifth minute.

Mean Arterial Pressure:

The mean arterial pressure rise was up to 29% from the baseline during the period of study. It was maximum during and following intubation. It started declining by 10 mmHg at the fifth minute. There was a further decline of about 8 mmHg at the end of the study.

Group B (Esmolol 1.0 mg/kg)

Heart rate:

The rise in heart rate was about 12% in this group during the whole study period. There was a initial decline in heart rate of about 5 per minute following Esmolol. The maximum heart rate was observed following intubation. It started declining at the fifth minute and there was further decline to baseline values at the seventh minute.

No rhythm disturbances were observed.

Systolic blood pressure:

There was a 24% rise in systolic blood pressure from the baseline during the study period. The highest value recorded was during and following intubation. It started declining at the end of seventh minute.

Diastolic blood pressure:

Changes in blood pressure were similar to changes in systolic blood pressure. There was a 22% rise in diastolic pressure from the baseline during the procedure. It was highest during and following intubation. It started declining to baseline values at the end of seventh minute.

Mean arterial pressure:

There was a 22% rise in mean arterial pressure from the baseline during the procedure. It was highest during and following intubation. There was a decline in mean arterial pressure at fifth minute.

Group C (Esmolol 1.5 mg/kg)

Heart rate:

There was only about 5% rise in heart rate from the baseline values during the entire study period. The maximum rise was observed during intubation and at one minute following intubation. The rise was modest of about 2-3 beats per minute. It started declining to baseline values at fourth minute. There was a further decline in heart rate from the baseline values at sixth and seventh minute.

No rhythm disturbances were observed.

Systolic blood pressure:

The rise in systolic blood pressure was about 18% during the entire study period. The maximum values were observed during intubation. It started declining following intubation. At the seventh minute it reached the baseline values.

Diastolic blood pressure:

There was an initial decline in diastolic blood pressure following Esmolol and during induction from the baseline. There was a rise of about 16% during and following intubation. It started declining at the fifth minute and reached baseline value at sixth minute. It further decline below baseline at seventh minute.

Variables	Group A	Group B	Group C
Heart Rate	18%	12%	5%
Systolic Blood Pressure	31%	24%	18%
Diastolic Blood Pressure	27%	22%	17%
Mean Arterial Pressure	29%	22%	17%

Comparison of variables on the three groups

Heart rate and rhythm:

In Group A, the rise in heart rate was about 18% from the baseline values during and following intubation and it took longer time to reach the baseline values. There was a rise of about 16 beats per minute from baseline following laryngoscopy and intubation.

In Group B, there was an initial fall in heart rate following bolus dose of Esmolol and there was a rise of about 8 beats per minute following laryngoscopy and intubation. The rise in heart rate was about 12% from the baseline following laryngoscopy and intubation. It returned back to baseline value at the sixth minute.

In Group C the rise in heart rate was modest of about 2-3 beats per minute and the values returned to baseline values at the fourth minute. The rise was 5% from the baseline values with least fluctuation in heart rate during the study period. There was a decline in heart rate at fourth minute and a further decline was observed at sixth and seventh minute from the baseline values.

There is **no statistical significance** among the mean value of heart rate at the pre-medication time(p > 0.05). But it is **significantly different** during administration of Esmolol bolus, induction, intubation during and for about seven minutes following laryngoscopy and intubation. It was significantly lower in Group C than in Groups A and B (p<0.001). The initial fall in Group B is because of its direct action on cardiac conducting system.

There was no record of arrhythmias in any of the patients in any of the group. This is probably because of all the patients are of ASA Class I and II with no history of hypertension or no other cardiac ailments.

Blood Pressure:

Systolic blood pressure:

There is **no statistical significance** on mean value among the three groups at Pre-Medication and during administration of Esmolol bolus (p>0.05).

But, it is **statistically significant** on all other period of study (p<0.001) in between the three groups.

There is 31%, 24% and 18% increase from base line during the operation in group A, group B and group C respectively. The rise in the systolic blood pressure is comparatively less in Group C from the Groups A and B.

Higher mean value reached at intubation in all 3 groups.

Diastolic blood pressure:

There is **no statistical significance** on mean of Diastolic Blood Pressure at Pre-Medication and Esmolol (p>0.05). But, it is **statistically significant** during induction (p<0.05). It is also **statistically significant** from the period of intubation to the end of study period(p<0.001)..

. There is up to 27%, 22% and 17% increase from base line during the operation in group A, group B and group C respectively.

Higher mean value reached at intubation in all the groups.

Mean arterial pressure:

There is **no statistical significance** on mean value of MAP up to Induction during the period of study (p>0.05). But it is **statistically significant** after the induction till the end of the study period (p<0.001).

There is up to 29%, 22% and 17% increase from base line during the operation in group A, group B and group C respectively.

Higher mean value reached at intubation in all 3 groups.

DISCUSSION

Laryngoscopy and intubation produces hemo dynamic stress response characterized by hypertension and tachycardia. This neuro endocrine response causes a variety of complications in patients with cardiac disease due to imbalance between myocardial oxygen supply and demand like ST changes, ventricular arrhythmias and pulmonary oedema.

This is also hazardous in patients with vascular pathologies that cause weakening of the lining of the major arteries in particular cerebral and aortic aneurysms. In patients with hydrocephalus or intra cranial mass lesions the increase in cerebro spinal fluid pressure may produce transient impairment of cerebral perfusion.

Direct laryngoscopy³ that does not exceed 15 seconds duration is helpful in minimizing the blood pressure elevation evoked by this painful stimulus.

In view of the frequent occurrence of hypertension and tachycardia during laryngoscopy even in the normotensive individual, it is perhaps rather surprising that complications have not been met very often. Reason for this may be the transient nature of the hypertension which usually lasts for less than ten minutes. It is possible however that some of the complications that occur during intubation or even later in the course of anaesthesia may be precipitated by an episode of hypertension and tachycardia following endo tracheal intubation.

This reflex response may be diminished or modified locally, centrally or peripherally and attempts have been made to accomplish this with varying success by different techniques and agents. No effective drug has been found out so far to abolish this response.

Ebert TJ and Bernstein JS (1990)⁶ studied that hemodynamic response to Rapid sequence induction and intubation in healthy patients with a single bolus dose of Esmolol. They concluded that Esmolol 2 mg/kg bolus effectively attenuated heart rate, systolic blood pressure, diastolic blood pressure increases produced by laryngoscopy and intubation. In our study also we took 2 minute as the time for administering Esmolol prior to laryngoscopy and intubation.

Sheppard et al⁷ (1990) compared different bolus dose of Esmolol and concluded that attenuation of intubation response is adequate following 100 mg of Esmolol.

Helfman SM et al⁹ (1991) compared the efficacy of Lidocaine, Fentanyl, Esmolol to obtund the intubation responses and concluded that only Esmolol provided constant and reliable part against increase in heart rate and systolic blood pressure accompanying laryngoscopy and intubation. Miller D.R et al (1991)¹⁰ in their Canadian multicentre trial involving 548 patients concluded that 100 mg bolus Esmolol is safe and effective agent. This dose of Esmolol combined with low dose of Fentanyl (2-3mcg/kg) results in effective control of both heart rate and blood pressure while avoiding important side effect.

Ganbatz C.L et al ¹¹(1991) also had similar results of Miller D.R et al.,

Vucovic M et al¹² (1992) studied about the use of Esmolol for management of cardiovascular responses to laryngoscopy and tracheal intubation and found that pressor response to laryngoscopy was significantly less marked in patients given Esmolol 2 minutes before intubation which was similar to our timing of drug administration.

Vucovic M et al¹² (1992) concluded randomized control trial with 500 mcg/kg/min for 2 minutes and maintenance 100 mcg/kg/min till intubation and showed that heart rate , systolic blood pressure were significantly decreased in Esmolol group.

Kovac et al (1992)¹⁴ concluded that in an eye patient with coronary artery disease, or in any patient whom increase in heart rate may be detrimental, Esmolol may be a useful adjunct in combination with low dose alfentanil to attenuate the increase in heart rate due to laryngoscopy and intubation. Yuan L,Chia YY (1994)¹⁵ studied the efficiency of bolus dose Esmolol in blunting the stress response comparing 100 mg Esmolol versus 200 mg Esmolol. They concluded that both bolus dose of Esmolol could effectively attenuate the increase the heart rate, hypertension produced by laryngoscopy and intubation, furthermore, Esmolol 200 mg presented a better hemodynamic stability than100 mg Esmolol. In our study Esmolol 1.5 mg/kg provided better hemodynamic control than Esmolol 1mg/kg bolus.

Sharma S, Ghania A $(1995)^{16}$ also concluded adequate hemodynamic control was obtained with the administration of Esmolol bolus 2mg/kg.

Weist D et al $(1995)^{17}$ made a review of the rapeutic efficacy and pharmacokinetic characteristics of Esmolol.

Singh H et al (1995)¹⁸ in their study concluded that Lidocaine 1.5 mg/kg IV and Nitroglycerine 2 mcg/kg IV were effective in controlling the acute hemodynamic response following laryngoscopy and intubation. Esmolol 1.4 mg/kg was significantly more effect than either Lidocaine or Nitroglycerine in controlling heart rate or mean arterial pressure increase during intubation.

Sharma et al¹⁹ (1996) compared the ability of different bolus doses of Esmolol to blunt the hemodynamic response to laryngoscopy and intubation in treated hypertensive patients. Concluded that Esmolol 100mg given as bolus is effective as well as safe in blunting the response. In our study it was Esmolol 1.5 mg/kg IV bolus was effective and safe in blunting the response.

Feng C.K et al $^{20}(1996)$ concluded that Esmolol only could reliably offer protection against increase in both heart rate and systolic blood pressure. Low dose Fentanyl (2 mcg/kg) prevented heart rate but not increase in heart rate and 2 mg/kg lidocaine had no effect.

Wang L et $al^{22}(1999)$ concluded that 1.2 mg/kg bolus of Esmolol is effective and safe. We also used Esmolol in the range of 0.5 mg/kg to 1.5 mg/kg, which was also safe.

Bensky et al $(2000)^{24}$ in their study concluded that small dose of Esmolol may block the increase in heart rate and blood pressure resulting from laryngoscopy and intubation.

Figueredo, E.Garcia- Fuentes EM (2001)²⁵ compared the results of 38 randomized control trial involving different regimen and doses of Esmolol and found that the most effective regimen was a loading dose of 500 mcg/kg/min over 4 minute, followed by continuous infusion dose of 200-300 mcg/kg/min.

Analysis of the length of our study showed that Esmolol 1.5 mg/kg was more effective in attenuating the heart rate response to laryngoscopy and intubation.

Also, Esmolol 1.5 mg/kg was effective in attenuating the blood pressure increase accompanying laryngoscopy and intubation.

CONCLUSION

On taking into consideration the criteria which I chose to study the hemo dynamic changes expected, I found that the dose of Esmolol 1.5 mg/kg (Group C) to be effective in attenuating the hemo dynamic responses during laryngoscopy and endo tracheal intubation with no major adverse effects of Esmolol.

BIBLIOGRAPHY

- Goodman & Gilman's., The pharmacological basis of therapeutics, 11th ed., Chapter. 10. Adrenergic agonist and antagonist. Pg 271-291.
- Miller's Anesthesia. Sixth Ed. Chapter 16. Pg 653-658.
 Pharmacology of Esmolol.
- Robert K. Stoelting., Anaesthesia and co-existing disease 4th Ed. Chapter 5., Pg 102.
- King, B,D., Harris, L.C., JR. Creinfenstein, F.E. Elder, J.D., and Dripps R.D (1951). Circulatory responses to direct laryngoscopy and endo tracheal intubation. - British Journal of Anaesthesiology 65: 216-219.
- Ebert T.J (1989); Circulatory response to laryngoscopy The comparative effects of placebo, Fentanyl and Esmolol; Canadian Journal of Anaesthesia 1989 May;36: 301-6.
- Ebert T.J.Bernstein, J.S.Sodwe, D.F, Roerig.D. (1990). Attenuation of hemodynamic response to rapid sequence induction and intubation in healthy patients with a single bolus of Esmolol. Journal of Clinical Anaesthesia 1990. Jul- Aug; 2 (4) : 243-52.

- Sheppard et al (1990). A bolus dose of Esmolol attenuating tachycardia and hypertension after tracheal intubation. Canadian Journal of Anaesthesia 1990 Mar (27): 202-5.
- Oxorn.D, Konxj.W, Hill.J. (1990). Bolus doses of Esmolol for the prevention of peri operative hypertension and tachycardia. Canadian Journal of Anaesthesia. 1990. Mar. 37 (2): 206-9.
- Helfman S.M., Gold M.I. Delisser E.A (1991) Which drug prevents tachycardia and hypertension associated with tracheal intubation. Lidocaine, Fentanyl, Esmolol: Anaesth- Analgesia, 1989; 68,101-104.
- Miller.D.R, Maurtineaux R.J, Wynands J.E, Hill J (1991). Bolus administration of Esmolol for controlling the hemodynamic response to tracheal intubation.- The Canadian Multicenter trial .Canadian Journal of Anaesthesia 1991 Oct. 38 (7) 849-58.
- Ganbatz C.L., Wehner R.J (1991). Effect of Esmolol and Fentanyl in controlling rise in heart rate and blood pressure during intubation. AANA Journal 1991 Feb. 59(1): 19-26.
- Vucovic. M, Pordy G. M., Ellid F.R (1992). Esmolol hydrochloride for management cardiovascular response to laryngoscopy and tracheal intubation; British Journal of Anaesthesia (1992). May; 68 (5) 529 -30.

- Chung K.S et al (1992). A comparison of Fentanyl, Esmolol and their combination for blunting the hemodynamic responses during rapid sequence intubation. Canadian Journal of Anaesthesia – 1992. Oct. 39 (8) 74 -9.
- Kovac A.L, Bennets P.S, Ohara.S, L.A. Greca B.A, Khan J.A, Calkins J.W (1992). Effects of Esmolol on hemodynamic and intra ocular pressure response to Succinylcholine and intubation following low dose Alfentanil premedication. Journal of Clinical Anaesthesia 1992. Jul – Aug. 4 (4) 315-20.
- Yuan. L, Chia Y.Y (1994). The effect of single bolus dose of Esmolol for controlling tachycardia and hypertension during laryngoscopy and tracheal intubation. Acta.Anaesthesiology Scandinavia 1994. Sep. 32 (3) 147 – 152.
- Sharma.S, Ghani.A, Win.N, Ahmad.M (1995). Two bolus doses of Esmolol for attenuation of hemodynamic response to tracheal intubation. Medical Journal of Malaysia 1995, Dec; 50(4); 372-6.
- Weist.D (1995). Esmolol. A review of its therapeutic efficacy and pharmacokinetics characteristics. Clinical Pharmacokinetics 1995 (Mar) 28 (3) 190-202.
- Singh H, Vichitrejpaisal P, Gaines.G.Y, White P.F (1995).
 Comparative effects of Lidocaine, Esmolol, Nitroglycerine in

modulating response to intubation. Journal of Clinical Anaesthesia 1995 Feb: 7 (1) 5-8.

- Sharma. S et al (1996). Esmolol blunts the hemodynamic response to tracheal intubation in treated hypertensive patients. Canadian Journal of Anaesthesia 1996 Aug. 43 (8): 728 – 32.
- Feng. C.K. et al., (1996). Comparison of Lidocaine, Fentanyl, Esmolol for attenuating cardiovascular response to laryngoscopy and intubation. Acta.Anaesthesiology Scandinavia 1996 Jun.34 (2); 61 -7.
- Kindler C.H, Schumacher P.G, Schneider. M.C, Urwvyler.A (1996). Effects of IV Lidocaine and / or Esmolol on hemodynamic response to laryngoscopy and intubation. Journal of Clinical Anaesthesia 1996. Sep.8 (6): 491-496.
- 22. Wang. L, et al (1999). Bolus administration of Esmolol for preventing the hemodynamic response to tracheal intubation.
- 23. Atlee J.L et al: (2000) Use of Esmolol, Nicardipine or their combination to blunt hemodynamic changes after intubation.
 Anaesthesia-Analgesia 2000 Feb; 90 (2) 280-5.
- Bensky K.P. Donafine- Spencer.L, Hertz G.E (2000). Effect of Esmolol on laryngoscopy and intubation. AANA Journal 2000 Oct, 68 (5) 437 – 42.

- 25. Figueredo. F, Garcia- Fuentes E.M (2001) Assessment of the efficacy of Esmolol on the hemodynamic changes induced by laryngoscopy and tracheal intubation: A meta- analysis. Acta.Anaesthesiology Scandinavia 2001, 45: 1011-1022.
- Levitt M.A, Dursden G.M (2001). Effect of Esmolol versus Lidocaine to attenuate hemodynamic response to intubation in head trauma patients. Academic Emergency Medi.2001.Jan 8 (1) 19-24.
- 27. S.Bansal, M.Pawar (2002) hemodyamic responses to laryngoscopy and intubation in patients with Pregnancy induced hypertension.
 Effect of IV Esmolol with or without Lidocaine.
 International Journal of Obstetric Anaesthesia. Vol. 11, Issue 1, Jan.2002 P 4-8.
- Tan.P.H. et al (2002) combined use of Esmolol and Nicardipine to blunt the hemodynamic changes following laryngoscopy and intubation. –Anaesthesia 2002 Dec 57 (12) 1207-12.
- Fernandez- Galinski.S, Bermejo.S, Mansilla.R, Polo, Puig.M.M, (2004). Comparison of effects of Alfentanil, Esmolol or Clonidine when used as adjuvant during induction of general anaesthesia. 2004; Jun: 21(6); 476-82.

PROFORMA

Name:	Age/ Sex:	IP no:	Ht:
Wt:			

Clinical Diagnosis:

Surgery:

Investigations

Hb	PCV	BT	СТ	ECG	CXR	RFT

Monitors

ECG	NIBP	SpO2	ETCO2

Premedication:

Preoxygenation:

Induction:

Maintenance:

Esmolol Dose:

TIME	After pre-med	At esmolol	Induction	At scoline	At intubation (2 min)	At 3 min	At 4 min	At 5 min	At 6 min	At 7 min
Heart rate										
Blood pressure (Systolic)										
Blood pressure (Diastolic)										
Mean Arterial Pressure										

	MAP	103	112	110	101	105	104	102	102	96	8	<u>10</u>	105	8	104	101	101	111	108	106	101
MIN	080	8	96	4	88	8	86	88	86	22	2	86	8	2	88	2	8	4	8	88	86
AT 7 MIN	SBP	130	145	142	128	138	135	130	135	125	130	128	135	130	136	135	135	146	145	143	140
	HB	96	91	8	102	91	102	11	8	<u>6</u>	97	8	92	10	106	8	92	91	33	4	8
	MAP	106	114	112	105	109	106	105	105	101	107	106	105	104	108	106	106	114	114	111	107
AT 6 MIN	080	94	8	96	92	91	8	88	88	86	8	91	8	88	8	88	8	96	35	92	88
AT 6	SB	132	148	145	131	146	141	139	140	130	141	140	138	136	14	142	140	152	152	151	146
	띂	8	33	92	104	33	104	114	102	103	8	35	2	106	108	33	33	4	97	96	33
	MAP	108	121	121	116	114	100	109	<u>10</u>	106	112	113	110	108	112	110	109	121	120	117	112
AT 5 MIN	쭪	33	104	104	35	96	94	91	92	8	24	96	92	92	2	91	6	102	103	8	92
AT	윮	135	155	151	145	151	141	146	143	139	148	149	143	142	150	148	148	160	158	157	152
	۳	2 100	4 95	2 95	4 106	35	5 106	5 116	3 104	0 106	101	97	5 96	3 108	6 110	6 97	7 97	5 96	5 99	1 98	8
~	MAP	8 112	8 124	5 122	8 114	0 118	8 115	5 115	5 113	3 110	0 120	2 119	8 115	5 113	7 116	7 116	9 117	5 125	5 125	1 121	8 118
AT 4 MIN	DBP	98	108	1 106	86	100	98	96 t	36	t 93	100	1 102	8	36	5 97	1 97	t 99	5 106	5 106	101	38
AT	욠	3 140	98 158	99 154	0 148	0 156	0 149	0 154	6 148	1 144	6 160	0 161	0 148	2 148	5 156	1 154	2 154	0 165	3 166	3 161	2 158
	AP HR	119 103	132 9	129 9	117 110	124 100	117 110	117 120	118 106	115 111	121 106	124 100	117 100	115 112	118 115	117 101	122 102	131 100	131 103	126 103	122 102
≥	DBP MAP	104	113 1	110 1	101	104	101	1	100	1	101	104	101	1	38	99	105 1	112 1	112 1	107 1	102 1
AT 3 MIN	SBP DE	149 1	170 1	168 1	151 10	165 10	155 10	155	154 10	148	163 10	164 1	151 10	150	158	155	158 10	170 1	170 1	166 1	164 1
A		105	100	101	112 1	102	113 1	122	108	113 1	108	102	103	114 1	117 1	103 1	105 1	103 1	105 1	106 1	104 1
Z	DBP MAPHR	611	133	129	117	128	122	113	122	611	123	123	11	611	611	119	127	134	130	128	125
BATIC	8	104	115	110	101	100	104	8	105	8	103	104	101	101	8	101	108	116	112	61	105
AT INTUBATION	ß	151	171	168	151	168	158	145	156	160	165	165	150	155	160	156	165	170	168	168	167
AT	똪	106	102	<u>6</u>	114	104	115	124	110	115	108	102	105	115	119	105	108	105	105	107	104
IN	SBP DBP MAP	96	112	113	101	110	107	96	107	102	108	109	100	103	107	107	108	115	. 115	113	112
SCO	P 08	58	2 98	5 98	0 86	95	5 94	8	4 96	1 87	2 94	3 94	2 84	88	91	6 93	96	5 100	6 101	5 98	4 96
AFTER SCOLINE		98 125	90 142	91 145	106 130	94 140	106 135	115 128	100 134	103 131	96 142	92 143	101 132	105 133	110 140	94 136	96 140	94 145	95 146	95 145	93 144
	APH	2	101	8	92 10	8	94	81	101 1(93 1(201	5	93 1(96 1(96 1	2	5	11	20	5	101
CIIO	P N	2	8	. 98	29	86	88	Я	86	8	8	6	8	2	8	88	88	96	33	88	88
AT INDUCTION	SBP DBP MAPHR	113	128	130	120	126	125	115	126	120	135	134	120	125	126	125	128	138	137	128	128
AI	똪	101	94	95	t 109	1 97	108	1116	5 102	1 108	101	97	1 107	111	5 114	8	100	38	99	97	7 96
d	MAP	74 88	90 102	86 101	74 84	89 101	84 96	72 84	85 96	73 84	88 101	86 96	78 91	82 95	84 96	85 96	90 101	92 102	91 102	4 96	88 97
AT ESMOLOI	SBP DBP																			5	
ATE		100 118	92 128	96 132	110 114	96 127	108 125	118 111	102 126	110 115	100 129	96 128	110 118	110 121	113 128	98 126	101 130	96 132	98 131	98 125	94 128
	AP HR	88	102	101	85 1	8	96 1	84	96 1	85	98	8	80	94	96 1	96	100	100	10	S	8
MED	DBP MAP	4	88	8	22	86 1	2	1	2	33	2	ŝ	76	81	2	2	8	9	8	2	86
AT PREMED	SBP D	117	130	132	112	128	121	110	121	112	128	129	116	120	124	121	126	130	128	121	126
A	۳	91	8	8	53	8	8	9	8	8	88	8	66	8	102	87	8	8	88	8	8
BMI		22.8	20.8	21.8	20.4	22.6	19.5	20.4	22	20.8	20.1	22.6	20.8	20.2	20	22.6	20.3	24.5	23.6	22.4	21.6
P.No		16846	12462	15205	11067	12670	13854	10385	11669	13147	13905	15036	15666	15757	16493	21026	16485	18782	17259	11436	10519
ex I.		2 1	1	2 1	2 1	1	2 1	2 1	2 1	2 1	2 1	2 1	2 1	2 1	2 1	12	11	1	1	1	1
Age S		39	43	\$	26	\$	8	22	6	26	\$	\$	8	39	8	37	25	47	£	8	45
S.No Wt Age Sex I.P.No BMI		8	52	8	49	8	20	8	33	8	8	28	2 50	8	1 50	28	5 52	7 54	3 56	9 56	54
S.N		A1	A2	A3	4 4	A5	A6	A7	A 8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20

Group-A

	МАР	103	<u>6</u>	8	106	106	105	101	33	4	8	107	66	33	<u>6</u>	97	8	66	102	8	97
	DBP	ŝ	2	8	57	92	8	ŝ	29	92	8	8	2	29	82	ŝ	86	2	86	2	8
AT 7 MIN	SBP	135	132	8	137	138	137	8	126	123	8	143	132	126	138	123	126	131	136	131	130
-	HR	S	88	2	6	8	8	5	8	8	8	8	8	2	8	96	8	88	8	6	8
	MAP	104	<u>10</u>	5	11	11	6	8	97	96	8	112	103	97	<u>10</u>	97	102	103	<u>10</u>	104	철
N	DBP N	88	87	8	2	2	32	88	2	8	88	2	88	8	2	8	88	87	15	8	8
AT 6 MIN	SBP D	138	137	135	142	142	142	136	8	128	135	148	137	130	143	128	130	137	141	136	136
-	HR S	97	91	86	8	92	91	81	88	11	33	81	87	35	92	96	92	6	86 1	68	88
	MAP	109	<u>10</u>	8 8	Ħ	118	Ξ	60	8	8	²⁰	116	106	8	¹⁰	102	109	106	108	106	107
N	DBP	8	8	8	96	8	2	8	8	2	8	8	8	82	8	88	12	8	8	8	91
AT 5 MIN	SBP	143	142	140	147	148	147	141	137	133	140	154	142	135	148	132	145	141	146	142	141
	HR S	8	11	88	12	2	8	8	8	8	97	8	88	97	2	8	2	92	88	12	8
	MAP	112	113	112	115	118	117	Ξ	106	10	11	119	11	10	11	103	Ħ	113	Ξ	112	112
N	DBP	33	8	96	8	g	96	33	8	88	8	<u>10</u>	92	86	91	91	8	8	92	34	\$
AT 4 MIN	SBP	146	145	14	53	152	151	¥		135	145	156	146		150	135	148	14	149	146	145
	HR	8	8	8	8	8	8	8	2	33	8	8	8	8	2	8	96	2	8	92	8
	MAP	120	120	115	119	118	119	115	11	106	113	125	115	108	115	108	114	120	115	116	116
MIN	080	101	10	8	101	8	8	97	\$	8	96	5	96	8	2	2	8	10	96	8	96
AT 3 MIN	SBP	151	150	148	154	155	155	148	145	139	148	160	151	14	155	138	151	150	153	150	150
		<u>10</u>	33	8	4	97	99	8	8	35	<u>10</u>	8	92	8	33	8	96	4	90	33	8
S	MAPHR	120	120	113	119	118	118	115	111	106	113	126	115	108	116	108	114	120	115	117	115
AT INTUBATION	흉	104	104	<u>10</u>	101	100	66	8	94	6	96	106	97	6	96	24	96	104	96	101	8
Ĩ		154	152	148	155	156	155	149	145	138	149	161	151	14	156	138	152	152	153	151	151
AI	또	102	97	100	92	96	96	99	3 102	96	97	96	35	38	t 92	97	93	99	99	91	1 92
¥	SBP DBP MAP	105	102	100	105	105	5	101	8	8	102	110	101	35	104	8	104	102	101	102	104
SCO	B	90	88	86	90	8	8	87	2	3 76	88	96	86	81	8	38	88	8	85	87	88
AFTER SCOLINE		92 135	85 132	90 128	85 135	88 133	87 132	93 129	91 126	88 118	92 131	80 140	85 131	91 125	85 136	91 118	87 138	89 132	90 133	85 132	86 138
	DBP MAPHR	8	97 8	8	8	97 8	97 8	96	8	2	96	102	92 8	8	97 8	2	8	87	96	96	8
AT INDUCTION	BP	똶	8	22	86	8	容	52	92	2	81	89 1	22	2	똶	88	8	8	2	81	똶
DQ	SBP	125	122	118	125	123	124	611	116	8	121	129	120	115	126	108	128	122	121	121	128
AT	띂	62	6	2	8	8	6	88	12	8	97	8	8	96	6	96	6	2	88	8	6
_	MAP	10	8	96	102	8	8	96	92	8	96	106	97	96	105	86	102	100	101	10	102
MOLC	SBP DBP	86	86	81	8	88	86	81	28	76	81	92	81	78	8	73	86	86	87	86	8
AT ESMOLOL	ß	130	128	120	129	128	128	121	120	116	120	135	124	120	134	112	135	128	129	128	128
~		35	94	33	96	92	99	35	97	92	91	91	33	94	91	96	96	91	35	8	86
	DBP MAP HR	8	97	8	133	97	97	8	8	8	1 97	102	8	8	8	2	102	8	97	1 97	97
AT PREMED	B	2	25	\$	8	8	8	98	3 76	2	2	88	86	22	88	7	8	\$8	81	25	12
ATP	SBP	85 128	90 125	85 124	88 130	91 125	90 125	85 124	0 118	2 112	96 121	3 131	88 126	94 118	90 128	96 110	1 130	92 124	84 126	88 125	8 131
-	£	22.6 8	21.4 9	24 8	21.4 8	21.2 9	22.2 9	22.2 8	19.6 100	20.5 102	21 9	25.1 83	19.5 8		22.3 9	19.2 9	.2 91	21.3 9	21.4 8	21.7 8	21.9 88
0 BIV														1 22.2			22.2				
S.No Wt Age Sex I.P.No BMI		13365	13716	10820	11461	10933	14756	13419	10246	14885	18627	13509	18884	10521	12008	11648	13362	13711	14774	15165	15179
Sex			1			-	1		2	2	2		-) 2) 2	5	2	2		2	2
't Age		4 45	5 40	88	*	30	0 26	35	5 27	20	35	8 42	0 27	8	1 50	0 26	48	8 35	5 25	9 35	9
No V		7	55	8	89 T	55	5	60	54	45	48	11 68	12 50	13 50	14 51	50	B16 50	1 48	18 55	l9 49	20 50
S		瑥	82	8	8	韶	8	87	8	8	B10	B11	B12	B13	B14	815	8	817	B18	B19	B20

Group-B

	9	8	55	101	8	8	8	8	96	8	S	8	56	4	8	104	<u>6</u>	102	96	Я	101
z	P MAP	2	23	87 1	2	4	8	8	2	22	8	2	8	92	2		85	86 1	23	8	11
AT 7 MIN	080 080	126	123	130	126	117	128	128	127	124	127	129	126	123	127	135	130	135	128	126	135
A	SBP	94	90	92	94	103 1	8	86 1	85	8	2	1 22	90	.T	3	8	85	2	90	93	78 1
	AP HR	8	8	철	8	90	101	101	66	96	8	1 1 1 1	8	96	8	105	8	106	3	8	53
≥	DBP MAP	86	2	8	86	92	86	86	2	5	82	86	8	2	8	6	88	8	8	8	8
AT 6 MIN	SBP DE	130	127	134	130	011	131	132	131	127	131	133	130	127	130	137	135	140	132	131	139
A	HR	95 1	91 1	93 1	95 1	104	90	87 1	86 1	80	84 1	78 1	91 1	89 1	94	80	86 1	85 1	92 1	94 1	78 1
	MAP H	5	10	10	5	93 1	10	철	g	8	10	901	8	66	3	3	901	3	10	[]	6
Ę	DBP	8	86	12	8	5	8	88	88	82	86	8	88	8	8	S	12	8	88	86	8
AT 5 MIN	SBP	135	131	138	135	123	135	137	135	131	136	138	134	131	133	141	138	14	137	135	143
	HR S	56	8	2	96	5	11	87	86	82	2	8	52	92	ß	5	87	8	8	55	8
	MAP	¹⁰	105	11	107	96	8	²⁰	106	<u>1</u>	106	6	5	102	10	114	<u>11</u>	118	¹⁰	106	113
MIN	DBP	8	8	42	91	8	8	91	8	8	8	8	8	86	8	8	4	8	92	8	96
AT 4 MIN	SBP	139	135	142	139	127	14	142	139	135	14	143	137	135		146	143	148	141	14	148
	۳	97	4	З	97	105	92	8	88	8	8	82	8	94	8	82	88	86	94	96	22
	MAP	113	109	114	111	102	112	110	108	106	111	114	109	106	11	120	115	118	112	110	118
AT 3 MIN	BB	8	4	97	4	88	97	93	92	8	94	97	4	8	ß	101	8	<u>10</u>	96	94	101
AT 3	В	144	140	147	144	131	145	147	14	140	145	148	141	138	145	151	148	151	146	144	153
	۳	8	96	97	66	108	24	91	8	8	87	2	ß	96	8	22	8	88	96	8	8
NOI	MAP	113	109	114	Ħ	102	112	110	109	107	112	114	109	106	110	120	115	118	112	11	118
UBAT	0BP	38	94	8	5 94	8	5 96	93	5 91	91	5 95	3 97	1 94	90	4	2 104	8	2 101	5 96	4 94	101
AT INTUBATION	SBP	98 145	96 140	97 148	100 145	108 131	94 146	91 149	90 145	85 140	87 146	84 148	95 141	96 138	96 144	85 152	90 150	88 152	97 146	98 144	83 153
	MAP HR	102	106	101	100 10	91 10	6	8	8	36	101	102	8	5	8	108	20	108	100	101	110
AFTER SCOLINE	DBP M/	1	92 1	1	85	92	2	.1	8	83	86 1	87 1	86 1	83	86	<u>1</u>	90	1	1	87 1	96
ERSC	SBP DI	130	135	135	130	116	131	134	131	125	131	134	129	114	129	138	132	138	131	129	138
AFT		93 1	92 1	9	94 1	103	8	86 1	8	8	82 1	7	8	91	91	16	86 1	8	92 1	91	78 1
N	SBP DBP MAPHR	96	100	8	33	82	91	96	96	91	35	8	2	8	91	101	97	66	96	2	103
E S	留	8	86	87	8	88	75	81	81	78	81	8	81	76	28	86	8	86	8	81	8
AT INDUCTION	R SBP	88 122	87 127	96 127	9 123	98 106	84 123	94 126	90 125	92 116	93 123	90 126	4 121	86 106	86 121	85 130	92 124	89 130	87 121	86 121	91 130
-	MAP HR	96 8	101 8	99	<u>95</u>	83	92 8	97 9	8	93 9	97 9	99	94 84	81 8	92 8	103 8	99	100 8	100	94 8	102 9
lol	DBP M	뙁	1	86	81	2	26	82	\$	8	똶	86	5	8	2	200	87	86 1	.1	8	90
AT ESMOLOI	SBP DI	122	127	127	123	110	124	128	127	120	124	126	121	108	120	134	126	128	124	121	128
AT	H S	80	8	8	91 1	<u>6</u>	93 1	101	92 1	93 1	96 1	92 1	8	93 1	92 1	8	91 1	9	95 1	92 1	91 1
	MAP HR	8	104	102	8	8	4	8	101	96	99	8	97	86	\$	106	101	101	102	97	102
AT PREMED	DBP	86	92	88	2	71	28	82	87	2	88	88	2	71	2	91	88	88	8	81	92
VT PR	ß	126	130	131	125	115	128	130	129	121	126	128	125	11	121	136	129	131	128	125	130
~	띂	91	92	8	92	102	88	6	91	6	86	92	88	8	8	86	8	91	88	88	87
BM		22.7	21.9	21.5	20	22.2	20.7	21	20.7	21.5	20	21.5	22.5	22.2	20.8	23.4	22.6	23.4	25	20.2	25.7
S.No Wt Age Sex I.P.No BMI		18760	17102	16136	18181	10385	12875	13362	13909	10388	12029	11268	16275	16100	16680	10688	20723	22441	21238	24400	25455
Sex		2	2	2	2	2	2	2	2	-		-	2	2	7	-					-
Age		36	45	45	8	22	8	45	45	23	23	ж	37	38	8	\$	8	42	30	21	42
Vo Wt		45	5	5	45	S	5	\$	52	99	0 50	1 60	2 55	3 50	48	5 60	6 58	7 60	8	9 55	0 58
S.N		U	2	ឌ	2	ម	99	5	쫑	ප	믱	듼	CI3	끰	<u>C</u> 4	5	C16	CI7	89	ឡ	S

Group-C