DISSERTATION ON

A STUDY ON MEAN PLATELET VOLUME IN ACUTE CORONARY SYNDROME

Submitted in partial fulfilment of Requirements for

M.D.DEGREE EXAMINATION BRANCH-I INTERNAL MEDICINE THE TAMILNADU DR. M.G.R MEDICAL UNIVERSITY CHENNAI

INSTITUTE OF INTERNAL MEDICINE MADRAS MEDICAL COLLEGE RAJIV GANDHI GOVERNMENT GENERAL HOSPITAL CHENNAI - 600003.

APRIL 2012

CERTIFICATE

to certify that the dissertation entitled This is **''A** STUDY ON MEAN PLATELET VOLUME IN ACUTE **CORONARY SYNDROME**" is a bonafide work done by DR.S.VENKATESAN, Post Graduate Student. Institute of Internal Medicine, Madras Medical College, Chennai-3, in partial fulfillment of the University Rules and Regulations for the award of MD Branch - I Internal Medicine, under our guidance and supervision, during the academic year 2009 - 2012.

Prof.V.KANAGASABAI, M.D., **Dean,** Madras Medical College,

Madras Medical College, Rajiv Gandhi Government General Hospital, Chennai – 600 003.

Prof.V.KANAGASABAI, M.D., Prof. C. RAJENDIRAN, M.D.,

Director & Professor, Institute of Internal Medicine, MMC & RGGH, Chennai – 600 003.

DECLARATION

I solemnly declare that the dissertation entitled "A STUDY ON MEAN PLATELET VOLUME IN ACUTE CORONARY SYNDROME" is done by me at Madras Medical College, Chennai-3 during May 2011 to November 2011 under the guidance and supervision of Prof. C. RAJENDIRAN, M.D., to be submitted to The Tamilnadu Dr M.G.R Medical University towards the partial fulfillment of requirements for the award of M.D DEGREE IN GENERAL MEDICINE BRANCH-I.

Dr.S.VENKATESAN.

Place: Chennai Date:

ACKNOWLEDGEMENT

At the outset, I would like to thank **Prof.V.KANAGASABAI**, **M.D.**, Dean, Madras Medical College, for having permitted me to conduct the study and use the hospital resources in the study.

I express my heartfelt gratitude to my chief **Prof. C. RAJENDIRAN, M.D.,** Director, Institute of Internal Medicine for his inspiration, advice and guidance in making this work complete.

I am extremely thankful to Assistant Professors of Medicine **Dr. S. BASKER, M.D., Dr. R. MUTHUSELVAN, M.D., and Dr. ANUSUYA, M.D.,** for guiding me with their corrections and prompt help rendered whenever approached.

I thank the Professor, Assistant Professors, Post graduates and the technical staff in the Department of Cardiology, Department of Pathology and Department of Biochemistry for their guidance and cooperation in the study.

I am also indebted to thank all the patients and their caring relatives. Without their humble cooperation, this study would not have been possible.

ABBREVIATIONS

CAD	-	Coronary artery disease
AP	-	Angina pectoris
ACS	-	Acute coronary syndrome
AMI	-	Acute myocardial infarction
UA	-	Unstable angina
STEMI	-	ST elevation MI
NSTEMI	-	Non ST elevation MI
HT	-	Systemic Hypertension
DM	-	Diabetes mellitus
WBC	-	White blood cell
TC	-	Total count
Р	-	Polymorphs
L	-	Lymphocytes
E	-	Eosinophils

ТВ	-	Total bilirubin
DB	-	Direct bilirubin
SGOT	-	Aspartate transferase
SGPT	-	Alanine transferase
MPV	-	Mean platelet volume
PDW	-	Platelet distribution width
P-LCR	-	Platelet – Large cell ratio
TC	-	Total cholesterol
TGL	-	Triglycerides
HDL	-	High density cholesterol

CONTENTS

S.NO	TITLE	PAGE NO
1.	INTRODUCTION	1
2.	AIMS AND OBJECTIVES	3
3.	REVIEW OF LITERATURE	4
4.	MATERIALS AND METHODS	32
5.	OBSERVATION AND RESULTS	36
6.	DISCUSSION	64
7.	LIMITATIONS OF STUDY	72
8.	CONCLUSION	73
9.	BIBLIOGRAPHY	
10.	ANNEXURES	
	MASTER CHART	
	• ETHICAL COMMITTEE APPROVAL ORDER	

BIBLIOGRAPHY

- 1) Braunwald's Heart disease 9th edition.
- 2) Harrison's principles of Internal Medicine 18th edition.
- 3) Robbins and cotrans pathologic basis of disease 8th edition
- Mean platelet volume in acute coronary syndrome Van tip dergisi 17(3):89-95,2010.
- Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease, British Journal of Hematology, volume 117,issue 2, pages 399-404, may 2002.
- 6) Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 2003; 24(1):28-66.
- 7) Bertrand ME, Simoons ML, Fox KA, Wallentin LC, Hamm CW, McFadden E, et al. Task Force on the Management of

Acute Coronary Syndromes of the European Society of Cardiology. Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2002; 23: 1809-1840.

- Pahor M, Elam MB, Garrison RJ, Kritchevsky SB, Applegate WB. Emerging noninvasive biochemical measures to predict cardiovascular risk. Arch Intern Med 1999; 159(3):237-245.
- 9) Onat A, Hergenç G, Yıldırım B, Uysal Ö, Keleş İ, Çetinkaya A, et al. Türkerişkinlerinde kanda fibrinojen düzeyi ve bazı risk parametreleri ile ilişkisi. Türk Kardiyol Dern Arş. 2000; 28:115-120.
- 10) Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M, Mannhalter C, et al. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br. J. Haematol 2002; 117:399-404.
- 11) 11.Weinberger I, Fuchs J, Davidson E, Rotenberg Z. Circulating Aggregated Platelets, Number of Platelets per Aggregate, and Platelet Size During Acute Myocardial Infarction. Am J Cardiol 1992; 70:981-983.

- Fuchs J, Weinberger I, Rotenberg Z, Joshua H, Almozlino A,
 Agmon J. Circulating Aggregated Platelets in Coronary
 Artery Disease. Am J Cardiol 1987; 60:534-537.
- Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into thepathogenesis of acute ischemic syndromes. Circulation 1988; 77:1213-1220.
- 14) Fuster V, Jang IK. Role of Platelet- Inhibitor Agents in Coroner Artery Disease. In Topol EJ (ed). Textbook of interventional cardiology. Philadelphia, W.B.Saunders Company 1994;3-22
- 15) Davies MJ, Thomas AC, Knapman PA, Hangartner JR. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation 1986; 73:418-427.
- 16) Antiplatelet Trialists Collaboration. Collaborative over view of randomized trials of antiplatelet therapy. I: Prevention of death,myocardial infarction and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994; 308:81-106.

- 17) Mehta SR, Yusuf S. Clopidogrel in Unstable angina to prevent Recurrent Events Study Investigators. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial program; rationale, design and baseline characteristics including a meta-analysis of the effects of thienopyridines in vascular disease. Eur Heart J 2000; 21:2033-2041.
- 18) Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study Investigators. N Engl J Med 1998; 338:1488-1497.
- Karpatkin S. Heterogeneity of human platelets. II. Functional evidence suggestive of young and old platelets. J Clin Invest 1969;48:1083-1087.
- 20) Martin JF, Bath PM, Burr ML. Influence of platelet size on outcome after myocardial infarction. Lancet 1991; 338:1409-1411.
- 21) Schoene NW. Design Criteria: tests used to assess platelet

function. Am J Clin Nutr. 1997; 65(Sup):1665-1685.

- 22) Davies MJ, Thomas AC. Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 1984;310:1137-1140.
- 23) Tunstall-Pedoe H, Kuulasmaa K, Mähönen M, Tolonen H, Ruokokoski E, Amouyel P. for theWHO MONICA trends and determinants in cardiovascular (monitoring disease)Project. Contribution of trends in survival andDemir ve ark. Van Tip Dergisi: 17 (3): 89-95, 2010 Van Tip Dergisi, Cilt:17, Say1:3, Temmuz/2010 95 coronary-event rates to changes in coronaryheart disease mortality: 10-year results from 37 WHO MONICA Project populations. Lancet 1999; 353:1547-1557.
- 24) Kishk YT, Trowbridge EA, Martin JF. Platelet volume subpopulations in acute myocardial infarction: an investigation of their homogeneity for smoking, infarct size and site. Clin Sci 1985; 68:419-425.
- Sümbüloğlu K, Sümbüloğlu V. Biyoistatistik. Hatiboğlu Yayınevi. Ankara, 1998.

- 26) McKarns SC, Smith CJ, Payne VM, Doolittle DJ. Blood parameters associated with atherogenic and thrombogenic risk in smokers and nonsmokers with similar life-styles. Mod Pathol 1995; 8:434-440.
- 27) Koenig W. Epidemiology of coronary heart disease. ZKardiol 1998; 87:3-7.
- Karpatkin S. Heterogeneity of human platelets. VI.
 Correlation of platelet function with platelet volume. Blood 1978; 51:307-316.
- 29) Bath PM, Butterworth RJ. Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis 1996; 7: 157-161.
- 30) Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR. Platelet size as a determinant of platelet function. J Lab Clin Med 1983; 101:205-213.
- 31) Martin JF, Trowbridge EA, Salmon GL, Plumb J. The biological significance of platelet volume: its relationship to bleeding time, platelet thromboxane B2 production and megakaryocyte nuclear DNA concentration. Thromb Res

1983; 32:443-460.

- 32) Van der Loo B, Martin JF. A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler Thromb Vasc Biol 1999; 19:672–679.
- 33) Erne P, Wardle J, Sanders K, Lewis SM, Maseri A. Mean platelet volume and size distribution and their sensitivity to agonists in patients with coronary artery disease and congestive heart failure. Thromb Haemost 1988; 59:259-263.
- 34) Martin JF, Plumb J, Kilbely RS, Kishk YT. Changes in volume and density of platelets in myocardial infarction. Br Med J 1983; 287: 456-459.
- 35) Martin JF, Trowbridge T, Slater D. Mean platelet volume in MI. Br Med J 1983; 287: 1798.
- 36) Pizzulli L, Yang A, Martin JF, Luderitz B. Changes in platelet size and count in unstable angina compared to stable angina or non cardiac chest pain. Eur Heart J 1998; 19:80-84.
- 37) Halbmayer WM, Haushofer A, Radek J, Schon R, Deutsch M, Fischer M. Platelet size, fibrinogen and lipoprotein (a) in coronary heart disease. Coron Artery Dis 1995; 6:397-402.

- 38) Butkiewicz AM, Kemona H, Dymicka- Piekarska V, Bychowski J. Betathromboglobulin and platelets in unstable angina. Kardiol Pol 2003; 58:449-455.
- 39) 39. Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues.
 Platelets 2002; 13: 301-306.
- 40) 40. Mathur A, Robinson MS, Cotton J, Martin JF, Erusalimsky JD. Platelet reactivity in acute coronary syndromes: evidence for differences in platelet behaviour between unstable angina and myocardial infarction. Thrombosis and Haemostasis 2001; 85:989-994.
- 41) 41. Henning BF, Zidek W, Linder B, Tepel M. Mean platelet volume and coronary heart disease in hemodialysis patients. Kidney Blood Press Res 2002; 25:103-108.
- 42) 42. Brown AS, Martin JF. The megacaryocyte platelet system and vascular disease. Eur J Clin Invest 1994; 24(Suppl) 1:9-15.
- 43) 43. Senaran H, Ileri M, Altinbas A, Kosar A, Yetkin E,
 Ozturk M, ve ark. Thrombopoietin and mean platelet volume in coronary artery disease. Clin Cardiol 2001; 24:405-408.

- 44) How to calculate mean platelet volume? yahoo answers.
- 45) Increased mean platelet volume in patients with acute coronary syndrome, archives of pathology and laboratory medicine, sep 2009.
- 46) Increased mean platelet volume reflects sympathetic overactivity Experimental and clinical cardiology, 2004 Winter; 9(4): 243–247.
- Platelet volume indices in patients with coronary artery disease and acute myocardial infarction: an Indian scenario J Clin Pathol 2006;59;146-149 doi:10.1136/jcp.2004.025387.

INTRODUCTION

Acute coronary syndrome is a very important cause of morbidity and mortality despite the recent advances in its diagnosis and treatment.

Coronary heart disease may manifest as silent myocardial ischemia, stable angina pectoris (AP), unstable AP, myocardial infarction (STEMI and NSTEMI), heart failure, and sudden cardiac death.

It is important to identify the risk factors in coronary heart disease as they have a very important place in the prevention of acute coronary syndromes, and also in the follow-up and treatment of patients with coronary heart disease.

Platelets play a critical role in the formation of thrombus on the ruptured plaque and subsequent progression to myocardial infarction. Hence, acetyl salicylic acid, thienopyridine, and glycoprotein IIb/IIIa inhibitors, which all inhibit platelet functions, are used in the treatment of ACS.

Platelets are heterogeneous in size, density, and activity. Alterations of these parameters may be associated with pulling the

trigger of acute coronary syndrome and its spread. Large platelets are more adhesive and tend to aggregate more than smaller ones. Increase of platelet volume may contribute to increased prothrombotic tendency of atherosclerotic plaque in acute coronary syndrome and increased risk of intracoronary thrombus formation in AMI cases.

In this study, we aimed to investigate the significance of mean platelet volume and acute coronary syndrome, in comparison with control and stable AP group.

AIMS AND OBJECTIVES OF THE STUDY

- To study the significance of mean platelet volume and acute coronary syndrome.
- To compare mean platelet volume in ACS, stable angina pectoris and healthy controls.

REVIEW OF LITERATURE

CORONARY ARTERY DISEASE is a major cause of morbidity and mortality in any part of world. The better known risk factors are

- 1) Age
- 2) Family history
- 3) Cigarette smoking
- 4) Elevated LDL cholesterol
- 5) Hypertension
- Diabetes mellitus which is accepted to be a coronary heart disease equivalent.

Apart from these,

- a. Lipoprotein (a)
- b. Endothelial dysfunction
- c. Homocysteine
- d. C Reactive protein are considered as new risk factors of coronary heart disease.

These risk factors account for only a part of ACS cases. Hence, it is essential to identify other related risk factors to predict individual risk in the development of ACS.

ACUTE MYOCARDIAL INFARCTION¹

Aspects of Diagnosis	of Myocardial	Infarction b	y Different
Techniques			

TECHNIQUE	FEATURES
Pathology	Myocardial cell death
Biochemistry	Markers of myocardial cell death recovered from blood samples
Electrocardiography	Evidence of myocardial ischemia (ST and T wave abnormalities); evidence of loss of electrically functioning cardiac tissue (Q waves)
Imaging	Reduction or loss of tissue perfusion; cardiac wall motion abnormalities

REVISED DEFINITION OF MYOCARDIAL INFARCTION¹

Criteria for Acute, Evolving, or Recent MI

Either of the following criteria satisfies the diagnosis for

acute, evolving, or recent MI:

- Typical rise and/or fall of biochemical markers of myocardial necrosis with at least one of the following:
 - a. Ischemic symptoms
 - b. Development of pathologic Q waves in the ECG

- c. Electrocardiographic changes indicative of ischemia (STsegment elevation or depression)
- Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality
- 2) Pathologic findings of an acute myocardial infarction

CRITERIA FOR HEALING OR HEALED MYOCARDIAL INFARCTION¹

Any one of the following criteria satisfies the diagnosis for healing or healed myocardial infarction:

- Development of new pathologic Q waves in serial ECGs. The patient may or may not remember previous symptoms.
 Biochemical markers of myocardial necrosis may have normalized, depending on the length of time that has passed since the infarction developed.
- 2) Pathologic findings of a healed or healing infarction

CLASSIFICATION OF MYOCARDIAL INFARCTION¹

ТҮРЕ	FEATURES
1	Spontaneous myocardial infarction related to ischemia caused by a primary coronary event such as plaque erosion and/or rupture, fissuring, or dissection

ТҮРЕ	FEATURES
2	Myocardial infarction secondary to ischemia caused by increased oxygen demand or decreased supply (e.g., coronary artery spasm, coronary embolism, anemia, arrhythmias, hypertension, hypotension)
3	Sudden unexpected cardiac death, including cardiac arrest, often with symptoms suggestive of myocardial ischemia, accompanied by presumably new ST-segment elevation, or new LBBB, or presumably new major obstruction in a coronary artery by angiography and/or pathology, but death occurring before blood samples could be obtained, or before the appearance of cardiac biomarkers in the blood
4a	Myocardial infarction associated with PCI
4b	Myocardial infarction associated with stent thrombosis, as documented by angiography or autopsy
5	Myocardial infarction associated with CABG

CABG = coronary artery bypass grafting; LBBB = left bundle branch block.

PATHOLOGY OF AMI²

STEMI usually occurs when coronary blood flow decreases abruptly after a thrombotic occlusion of a coronary artery previously affected by atherosclerosis. A slowly developing, highgrade coronary artery stenosis does not typically precipitate STEMI because of the development of a rich collateral network over time. Instead, STEMI occurs when a coronary artery thrombus develops rapidly at a site of vascular injury. This injury is produced or facilitated by factors such as cigarette smoking, hypertension, and lipid accumulation².

STEMI occurs when the surface of an atherosclerotic plaque becomes disrupted (exposing its contents to the blood) and conditions (local or systemic) favor thrombogenesis. A mural thrombus forms at the site of plaque disruption, and the involved coronary artery becomes occluded. Histologic studies indicate that the coronary plaques prone to disruption are those with a rich lipid core and a thin fibrous cap^2 .

After an initial platelet monolayer forms at the site of the disrupted plaque, various agonists (collagen, ADP, epinephrine, serotonin) promote platelet activation. After agonist stimulation of platelets, thromboxane A_2 (a potent local vasoconstrictor) is released, further platelet activation occurs, and potential resistance to fibrinolysis develops².

In addition to the generation of thromboxane A_2 , activation of platelets by agonists promotes a conformational change in the glycoprotein IIb/IIIa receptor. Once it is converted to its functional

state, this receptor develops a high affinity for soluble adhesive proteins (integrins) such as fibrinogen. Since fibrinogen is a multivalent molecule, it can bind to two different platelets simultaneously, resulting in platelet cross-linking and aggregation².

The coagulation cascade is activated on exposure of tissue factor in damaged endothelial cells at the site of the disrupted plaque. Factors VII and X are activated, ultimately leading to the conversion of prothrombin to thrombin, which then converts fibrinogen to fibrin. Fluid-phase and clot-bound thrombin participate in an auto amplification reaction leading to further activation of the coagulation cascade. The culprit coronary artery eventually becomes occluded by a thrombus containing platelet aggregates and fibrin strands.²

DEFINITION¹

STABLE angina pectoris typically manifests as a deep, poorly localized chest or arm discomfort (rarely described as pain), reproducibly precipitated by physical exertion or emotional stress, and relieved within 5 to 15 minutes by rest or sublingual nitroglycerin.

UNSTABLE angina is defined as angina pectoris (or equivalent type of ischemic discomfort) with at least one of three features:

- Occurring at rest (or minimal exertion) and usually lasting
 >20 minutes (if not interrupted by the administration of a nitrate or an analgesic)
- Being severe and usually described as frank pain and of new onset (within 1 month).
- Occurring with a crescendo pattern (i.e., pain that awakens the patient from sleep or that is more severe, prolonged, or frequent than previously).

Approximately two thirds of patients with unstable angina

have evidence of myocardial necrosis on the basis of elevated cardiac serum markers, such as cardiac-specific troponin T or I and creatine kinase isoenzyme (CK)–MB, and thus have a diagnosis of NSTEMI. As troponin measurements become progressively more sensitive, an increasing fraction of patients with NSTE-ACS exhibit some release of troponin, and therefore these should be considered cases of NSTEMI with a reciprocal reduction in the fraction with unstable angina.

CLASS	DEFINITION		
Severity			
Class I	New onset of severe angina or accelerated angina; no rest pain		
Class II	Angina at rest within past month but not within preceding 48 hr (angina at rest, subacute)		
Class III	Angina at rest within 48 hr (angina at rest)		
Clin	ical Circumstances		
A) Secondary angina	Develops in the presence of extra cardiac condition that intensifies myocardial ischemia		
B) Primary angina	Develops in the absence of extra cardiac condition		
C) Post infarction angina	Develops within 2 wk after acute myocardial infarction		

BRAUNWALD CLINICAL CLASSIFICATION OF UA/NSTEMI $^{\rm 1}$

CLASS	DEFINITION
Intensity of treatment	Patients with unstable angina may also be divided into three groups according to whether unstable angina occurs: (1) in the absence of treatment for chronic stable angina, (2) during treatment for chronic stable angina, or (3) despite maximal anti-ischemic drug therapy. The three groups may be designated by subscripts 1, 2, and 3, respectively.
Electrocardiographic changes	Patients with unstable angina may be further divided into those with or without transient ST-T wave changes during pain.

UA/NSTEMI = unstable angina/non–ST elevation myocardial infarction.

PATHOLOGY OF UNSTABLE ANGINA/NSTEMI²

UA/NSTEMI is most commonly caused by a reduction in oxygen supply and/or by an increase in myocardial oxygen demand which is superimposed on a lesion that causes coronary arterial obstruction, usually an atherothrombotic coronary plaque.

Four pathophysiologic processes that may contribute to the development of UA/NSTEMI have been identified²:

 Plaque rupture or erosion with a superimposed nonocclusive thrombus, believed to be the most common cause; in such patients, NSTEMI may occur with downstream embolization of platelet aggregates and/or atherosclerotic debris

- Dynamic obstruction e.g., coronary spasm, as in Prinzmetal's variant angina (PVA)
- Progressive mechanical obstruction e.g., rapidly advancing coronary atherosclerosis or restenosis following percutaneous coronary intervention (PCI)
- UA secondary to increased myocardial oxygen demand and/or decreased supply e.g., tachycardia, anemia

More than one of these processes may be involved.²

CARDIAC BIOMARKERS

The ACC and AHA guidelines recommend cTnI or cTnT as the preferred first-line markers, but CK-MB (by mass assay) is an acceptable alternative. The preference for cardiac troponins reflects the greater specificity of these markers compared with CK-MB and the prognostic value of troponin elevations in the presence of normal CK-MB levels. If the initial set of markers is negative in patients who have presented within the first 6 hours of the onset of pain, the guidelines recommend that another sample be drawn in the time frame of 8 to 12 hours after symptom onset.

Cardiac-specific Troponin T (cTnT) and Cardiac specific Troponin I (cTnI) have amino-acid sequences different from those of the skeletal muscle forms of these proteins. These differences permitted the development of quantitative assays for cTnT and cTnI with highly specific monoclonal antibodies. Since cTnT and cTnI are not normally detectable in the blood of healthy individuals but may increase after STEMI to levels >20 times higher than the upper reference limit (the highest value seen in 99% of a reference population not suffering from MI), the measurement of cTnT or cTnI is of considerable diagnostic usefulness, and they are now the preferred biochemical markers for MI. The cardiac troponins are particularly valuable when there is clinical suspicion of either skeletal muscle injury or a small MI that may be below the detection limit for creatine phosphokinase (CK) and its MB isoenzyme (CKMB) measurements, and they are, therefore, of particular value in distinguishing UA from NSTEMI. Levels of cTnI and cTnT may remain elevated for 7–10 days after STEMI.²

CK rises within 4–8 h and generally returns to normal by 48– 72 h. An important drawback of total CK measurement is its lack of specificity for STEMI, as CK may be elevated with skeletal muscle disease or trauma, including intramuscular injection. The MB isoenzyme of CK has the advantage over total CK that it is not present in significant concentrations in extra cardiac tissue and, therefore, is considerably more specific. However, cardiac surgery, myocarditis, and electrical cardioversion often result in elevated serum levels of the MB isoenzyme. A ratio (relative index) of

CKMB mass: CK activity 2.5 suggests but is not diagnostic of a myocardial rather than a skeletal muscle source for the CKMB elevation.²

BIOMARKERS IN ACS²

Many hospitals are using cTnT or cTnI rather than CKMB as the routine serum cardiac marker for diagnosis of STEMI, although any of these analytes remain clinically acceptable. It is not costeffective to measure both a cardiac-specific troponin and CKMB at all time points in every patient.

While it has long been recognized that the total quantity of protein released correlates with the size of the infarct, the peak protein concentration correlates only weakly with infarct size. Recanalization of a coronary artery occlusion (either spontaneously or by mechanical or pharmacologic means) in the early hours of STEMI causes earlier peaking of biomarker measurements because of a rapid washout from the interstitium of the infarct zone, quickly overwhelming lymphatic clearance of the proteins.

The non-specific reaction to myocardial injury is associated with polymorphonuclear leukocytosis, which appears within a few hours after the onset of pain and persists for 3–7 days; the white blood cell count often reaches levels of 12,000–15,000/dL. The erythrocyte sedimentation rate rises more slowly than the white blood cell count, peaking during the first week and sometimes remaining elevated for one or two weeks².

Serum myoglobin and heart-type fatty acid binding protein (H-FABP) are smaller molecules and diffuse through interstitial fluids more rapidly after cell death than the larger CK and troponin molecules; they become abnormal as early as 30 minutes after myocardial injury. Because neither is specific to myocardial tissue, however, false-positive rates in Emergency Department populations are high.

Ischemia-modified albumin (IMA) has been approved by the U.S. Food and Drug Administration for clinical use. The albumin cobalt binding test for the detection of IMA is based on the observation that the affinity of the N-terminus of human albumin for cobalt is reduced in patients with myocardial ischemia. As with the other markers, however, the clinical specificity of IMA in the broad population of patients with chest pain and suspected ACS remains an area for further investigation.

B-type natriuretic peptides (BNP and N-terminal pro-BNP [NT-proBNP]) arise in the setting of increased ventricular wall stress. Natriuretic peptides are most commonly used to aid in the diagnosis of heart failure. BNP levels can be elevated in the setting of transient myocardial ischemia, and the magnitude of elevation in

ACS is correlated with prognosis. However, the lack of specificity of natriuretic peptide elevation for ACS limits its use as a diagnostic marker.

Many patients presenting with ACS, including those without evidence of myocyte necrosis, have elevated concentrations of inflammatory biomarkers such as C-reactive protein, serum amyloid A, myeloperoxidase, or interleukin-6 (IL-6). To date, no study has identified exact decision cut points or shown an incremental benefit on an admission or treatment strategy based on these new markers, so the clinical usefulness of these observations remains uncertain.
LIPIDS AND MI

During the first 24 to 48 hours after admission, total cholesterol and high-density lipoprotein (HDL) cholesterol remain at or near baseline values but generally fall precipitously after that. The fall in HDL cholesterol after STEMI is greater than the fall in total cholesterol; thus, the ratio of total cholesterol to HDL cholesterol is no longer useful for risk assessment unless measured early after MI. A lipid profile should be obtained on all STEMI patients who are admitted within 24 to 48 hours of symptoms. The success of lipid-lowering therapy in primary and secondary prevention studies and evidence that hypolipidemic therapy improves endothelial function and inhibits thrombus formation indicate that early management of serum lipids in patients hospitalized for STEMI is advisable. For patients admitted beyond 24 to 48 hours, more accurate determinations of serum lipid levels are obtained approximately 8 weeks after the infarction has occurred²

21

PLATELETS³

Platelets are disc-shaped, anucleate cell fragments that are shed from megakaryocytes in the bone marrow into the blood stream. They play a critical role in normal hemostasis, by forming the hemostatic plug that initially seals vascular defects, and by providing a surface that recruits and concentrates activated coagulation factors. Their function depends on several glycoprotein receptors, a contractile cytoskeleton, and two types of cytoplasmic granules. *α-Granules* have the adhesion molecule P-selectin on their membranes and contain fibrinogen, fibronectin, factors V and VIII, platelet factor 4 (a heparin-binding chemokine), platelet-derived growth factor (PDGF), and transforming growth factor-β (TGF-β). *Dense (or δ) granules* contain ADP and ATP, ionized calcium, histamine, serotonin, and epinephrine³.

After vascular injury, platelets encounter Extra cellular matrix constituents such as collagen and the adhesive glycoprotein vWF. On contact with these proteins, platelets undergo:

- 1) Adhesion and shape change,
- 2) Secretion (release reaction), and
- 3) aggregation

Platelet adhesion to Extra cellular matrix is mediated largely via interactions with vWF, which acts as a bridge between platelet surface receptors (e.g., glycoprotein Ib [GpIb]) and exposed collagen. Although platelets can also adhere to other components of the ECM (e.g., fibronectin), vWF-GpIb associations are necessary to overcome the high shear forces of flowing blood. Reflecting the importance of these interactions, genetic deficiencies of vWF or its receptor (Bernard-Soulier syndrome) result in bleeding disorders³.

Secretion (release reaction) of both granule types occurs soon after adhesion. Various agonists can bind platelet surface receptors and initiate an intracellular protein phosphorylation cascade ultimately leading to degranulation. Release of the contents of dense-bodies is especially important, since calcium is required in the coagulation cascade, and ADP is a potent activator of platelet aggregation. ADP also begets additional ADP release, amplifying the aggregation process. Finally, platelet activation leads to the appearance of negatively charged phospholipids (particularly phosphatidylserine) on their surfaces. These phospholipids bind calcium and serve as critical nucleation sites for the assembly of complexes containing the various coagulation factors³.

23

Platelet aggregation follows adhesion and granule release. In addition to ADP, the vasoconstrictor thromboxane A_2 is an important platelet-derived stimulus that amplifies platelet aggregation, which leads to the formation of the primary hemostatic plug. Although this initial wave of aggregation is reversible, concurrent activation of the coagulation cascade generates thrombin, which stabilizes the platelet plug via two mechanisms³.

First, thrombin binds to a protease-activated receptor on the platelet membrane and in concert with ADP and TxA_2 causes further platelet aggregation. This is followed by platelet activation, an event that is dependent on the platelet cytoskeleton that creates an irreversibly fused mass of platelets, which constitutes the definitive secondary hemostatic plug³.

Second, thrombin converts fibrinogen to fibrin in the vicinity of the platelet plug, functionally cementing the platelets in place.

The interplay of platelets and endothelium has a profound impact on clot formation. The endothelial cell-derived prostaglandin PGI_2 (prostacyclin) inhibits platelet aggregation and is a potent vasodilator; conversely, the platelet-derived prostaglandin TxA_2 activates platelet aggregation and is a

24

vasoconstrictor. Effects mediated by PGI_2 and TxA_2 are exquisitely balanced to effectively modulate platelet and vascular wall function: at baseline, platelet aggregation is prevented, whereas endothelial injury promotes hemostatic plug formation. The clinical utility of aspirin (an irreversible cyclooxygenase inhibitor) in persons at risk for coronary thrombosis resides in its ability to permanently block platelet TxA_2 synthesis. Although endothelial PGI₂ production is also inhibited by aspirin, endothelial cells can resynthesize active cyclooxygenase and thereby overcome the blockade. In a manner similar to PGI₂, endothelial-derived nitric oxide also acts as a vasodilator and inhibitor of platelet aggregation³.

MEAN PLATELET VOLUME

Platelets are heterogeneous in their size, density, and functional activity¹⁹. Alterations in these parameters may result as pulling the trigger of acute coronary syndrome and its spread²⁰.

As atherosclerotic plaque rupture begins the thrombogenic phenomenon in ACS, the functional activity of circulating platelets plays vital role in the progression of thrombus formation²¹.

Large platelets are more adhesive and tend to aggregate more than smaller platelets as assessed by in vitro aggregometry. They also exhibit increased levels of procoagulatory surface proteins such as P-selectin and glycoprotein IIIa. Increase in platelet volume may contribute to increased prothrombotic tendency of atherosclerotic plaque in acute coronary syndrome and increased risk burden of intracoronary thrombus formation in Acute myocardial infarction cases⁵.

Platelet volume is an important indicator of platelet function and activation. Larger platelets have more secretory granules and mitochondria and are more active than the small platelets. As they lead to the formation and dissemination of intracoronary thrombus,

26

larger and hyperactive platelets accelerate the emergence of acute coronary syndrome.

It has been suggested that increased platelet volume measured after MI might be a determinant factor for future ischemic episodes and outcome.

Because MPV is a simple and inexpensive laboratory measurement, it might be considered a useful rule-out test along with other conventional cardiac biomarkers for the risk stratification of ACS patients admitted to the emergency departments.

A study showed MPV had great diurnal and nocturnal variation that can be attributed to alterations in the autonomic nervous system⁴⁶.

It has been show that there is a correlation between sympathetic activity and MPV in AMI patients. It can be explained by the effects of the adrenergic system on peripheral platelet activation and thrombopoiesis in bone marrow.

The effects of the adrenergic system occurs in two ways in the peripheral circulation.

27

- Platelet activation via alpha₂-adrenoreceptor activation changes the shape and hence increases MPV.
- 2) Larger, activated platelets which are sequestered in the spleen can be released into the circulation following exercise or following administration of adrenaline, and leads to the increase in MPV following physical effort⁴⁶.

It has been shown that admission MPV in AMI patients is an independent factor for impaired reperfusion and related mortality. MPV measurement is an easy and feasible way to detect high-risk patients who need different approaches and treatments.

MEAN PLATELET VOLUME⁴⁵

The mean platelet volume result is calculated and produced by an automated analyzer, and is a calculation of the average size of platelets, whereas MCV is a calculation of the average size of individual red blood cells.

Normal Range7.5-11.5 fl

If MPV is reduced

It implies the platelets are smaller than normal. They are known as Micro thrombocytes⁴⁵.

CAUSES:-

1. Aplastic Anemia -

An acquired disorder in which the bone marrow stops producing new blood cells.

2. Wiskott-Aldrich Syndrome -

An inherited immune deficiency disease.

3. Thrombocytopenia-absent radii (TAR Syndrome) -

A rare inherited disorder in which there are low platelets and absence of the radius bones in the forearms.

4. Storage Pool Disease -

A mild bleeding disorder that causes bruising.

If MPV is increased

It implies the platelets are larger than normal. They are known as Macro thrombocytes⁴⁵.

CAUSES:-

1. Idiopathic Thrombocytopenic Purpura -

A bleeding disorder in which the blood does not clot.

2. Bernard-Soulier Disease -

A congenital disorder where the platelets lack receptors to adhere to the walls of the blood vessels.

3. May-Hegglin Anomaly -

A rare, inherited disorder characterized by abnormally large platelets.

4 Greater risk of heart attacks and stroke-

As there are increased numbers of large, hyperaggregable platelets there is increased risk of ischemic events.

MPV is known to be increased in patients at the time of admission for MI, and it is postulated that alterations in the entire megakaryocyte-platelet-hemostatic axis precede MI. MPV increases before MI for three reasons⁴⁶:

- 1) The life span of platelets is approximately eight days, and the increase in MPV is seen within the first 12 h of admission
- The increase in MPV persists six weeks after discharge when the infarct would be largely healed
- 3) Log normality of platelet volume is preserved.

Recent studies have revealed the in vitro data on the therapeutic effects on platelet size of Losartan, an angiotensin II receptor antagonist, or Doxazosin, an alpha1-adrenoreceptor antagonist. These observations have not yet been confirmed. In a small study with 30 patients, found platelet aggregation inhibitors have no effect on MPV values⁵.

MATERIALS AND METHODS

SETTING

This study is conducted in Cardiology department (CCU & OP) and Medicine department of Madras medical college in collaboration with Department of Pathology and Biochemistry.

ETHICAL APPROVAL

Obtained.

STUDY DURATION

This study was conducted over a period of 7 months from may 2011 to November 2011.

STUDY POPULATION

Patients admitted with acute coronary syndromes in coronary care unit and medical wards, stable angina pectoris patients followed in cardiology op and medical op, and healthy controls in medical wards and medicine op in Rajiv Gandhi Govt General Hospital.

CASE DEFINITION

Acute myocardial infarction:

Ischemic symptoms

Development of pathologic Q waves in the ECG

Electrocardiographic changes indicative of ischemia (STsegment elevation or depression)

Imaging evidence of new regional wall motion abnormality

Unstable angina:

Angina pectoris (or equivalent type of ischemic discomfort) with at least one of three features:

- Occurring at rest (or minimal exertion) and usually lasting
 >20 minutes (if not interrupted by the nitroglycerin administration.)
- Being severe and usually described as frank pain, and of new onset (within 1 month).
- Occurring with a crescendo pattern (i.e., pain that awakens the patient from sleep or that is more severe, prolonged, or frequent than previously).

Stable angina pectoris:

Deep, poorly localized chest or arm discomfort (rarely described as pain), reproducibly precipitated by physical exertion or emotional stress, and relieved within 5 to 15 minutes by rest or sublingual nitroglycerin in whom ECG may be normal or show ischemic changes.

SAMPLING

Patients are allotted by convenience sampling in each group.

TYPE OF STUDY

It is a hospital based cross sectional study.

INCLUSION CRITERIA

Patients with

- 1. Acute myocardial infarction
- 2. Unstable angina
- 3. Stable angina pectoris
- 4. Healthy controls

EXCLUSION CRITERIA

- 1. Sepsis, immune thrombocytopenia
- 2. Severe hepatic and renal disease
- 3. Patients on anti-inflammatory agents,
- 4. Anti-coagulation and anti-platelet agents except aspirin.

SAMPLE SIZE

50 patients admitted with ACS, 50 patients with stable angina pectoris and 50 healthy controls.

METHODS

Blood samples for Mean platelet volume were taken at the time of admission in all ACS patients which were examined within 1 hour. Blood samples from Stable AP patients and healthy controls were also taken randomly in OP and wards and examined within 1 hour. samples were also sent for CBC, RFT, LFT. All persons were subjected to ECG and ECHOCARDIOGRAPHY. Mean platelet volume was analysed by Automatic analyzer.

STATISTICAL ANALYSIS

The tests used are

ANOVA

Chi-square test

Data were collected and statistical significance was analysed.

RESULTS

SEX AND ACS

DIAGRAM 1:

TABLE 1.1 :

SEX	FREQUENCY	PERCENTAGE
MALE	41	82%
FEMALE	9	18%
TOTAL	50	100%

TABLE 1.2 :

SEX	MEAN	N	STD	STD
			DEVIATION	ERROR OF
				MEAN
MALE	9.583	41	.7450	.1163
FEMALE	9.822	9	.3232	.1077
TOTAL	9.626	50	.6919	.0978

TABLE 1.3:

MPV	Sum of	Df	Mean	F	Sig
	squares		square		p value
Between	.423	1	.423	.881	.353
sexes					

AGE GROUP AND ACS

TABLE 2.1

AGE GROUP	FREQUENCY	PERCENTAGE
30-40	13	26%
41-50	20	40%
51-60	13	26%
61-70	3	6%
71-80	1	2%
TOTAL	50	100%

DIAGRAM 2 :

TABLE 2.2 :

MPV	Sum of	df	Mean	F	Sig
	square		square		P value
Between	11.939	26	.459	.917	.587
groups					

TYPE OF ACS BASED ON ECG

TABLE 3.1:

MI	FREQUENCY	PERCENTAGE
AWMI	16	32%
ASMI	7	14%
IWMI	7	14%
IW + PWMI	4	8%
IW+ PW+ RVMI	1	2%
UA	15	30%

DIAGRAM 3:

HYPERTENSION AND ACS

TABLE 4.1:

HYPERTENSION	FREQUENCY	PERCENTAGE
YES	29	58%
NO	21	42%

DIAGRAM 4 :

TABLE 4.2 :

MPV	Sum of	Df	Mean	F	Sig
	square		square		P value
Between	.346	1	.346	.719	.401
groups					

DIABETES AND ACS

TABLE 5.1:

DIABETIC	FREQUENCY	PERCENTAGE
YES	26	52%
NO	24	48%

DIAGRAM 5:

TABLE 5.2:

MPV	Sum of	Df	Mean	F	Sig
	square		square		P value
Between	1.430	1	1.430	3.116	.084
groups					

PRIOR CAD AND ACS

TABLE 6.1:

PRIOR CAD	FREQUENCY	PERCENTAGE
YES	6	12%
NO	44	88%

DIAGRAM 6 :

TABLE 6.2 :

MPV	Sum of	Df	Mean	F	Sig
	square		square		P value
Between	.108	1	.108	.223	.639
groups					

SMOKING AND ACS

TABLE 7.1:

SMOKING	FREQUENCY	PERCENTAGE	
YES	30	73%	
NO	20	27%	

DIAGRAM 7:

TABLE 7.2 :

MPV	Sum of	Df	Mean	F	Sig
	squares		square		P value
Between	1.255	1	1.255	2.712	.106
groups					

ALCOHOL AND ACS

TABLE 8.1:

ALCOHOL	FREQUENCY	PERCENTAGE	
YES	34	82%	
NO	16	18%	

DIAGRAM 8 :

TABLE 8.2:

MPV	Sum of	Df	Mean	F	Sig
	squares		square		P value
Between	.003	1	.003	.006	.937
groups					

KILLIP CLASSIFICATION

TABLE 9.1:

Killip class	Frequency	Percentage	Mortality	Percentage
1	16	45%	0	0%
2	12	33%	1	17%
3	4	11%	1	17%
4	4	11%	4	66%
Total	35	100%	6	100%

DIAGRAM 9:

TABLE 9.2:

MPV	Sum of	Df	Mean	F	Sig
	squares		square		P value
Between	2.968	3	.989	2.225	.104
groups					

MEAN PLATELET VOLUME IN COMPARISON

TABLE 10 :

GROUP	MEAN PLATELET VOLUME (Femtolitre)
ACS	9.6
STABLE ANGINA	8.2
HEALTHY CONTROL	7.9

ECHOCARDIOGRAPHY FINDINGS IN ACS

TABLE 11.1:

Echo	Frequency	Percentage
NO RWMA	13	26%
RWMA	11	22%
MILD LV DYSFUNCTION	11	22%
MOD LV DYSFUNCTION	8	16%
SEVERE LV DYSFUNCTION	7	14%
TOTAL	50	100%

RWMA- REGIONAL WALL MOTION ABNORMALITY

DIAGRAM 11 :

TABLE 11.2 :

MPV	Sum of	Df	Mean	F	Sig
	squares		square		
Between	4.326	4	1.081	2.544	.052
groups					

MEAN PLATELET VOLUME IN ACS

TABLE	12.1:
-------	-------

GROUP	MEAN PLATELET VOLUME(FEMTOLITRE)
AWMI	9.6
ASMI	9.6
IWMI	9.7
IW+PWMI	10.0
IW+PW+RVMI	9.8
UA	9.5

DIAGRAM 12 :

TABLE 12.2 :

MPV	Sum of	Df	Mean	F	Sig
	squares		square		
Between	.860	5	.172	.335	.889
groups					
PLATELET COUNT IN COMPARISON

TABLE 13:

PLATELET COUNT	MEAN cells/dl
ACS	2,15,340
STABLE ANGINA PECTORIS	2,26,740
HEALTHY CONTROLS	2,13,880

DIAGRAM 13:

MPV PDW P-LCR IN COMPARISON

TABLE 14:

MPV – MEAN PLATELET VOLUME

PDW – PLATELET DISTRIBUTION WIDTH

P-LCR – PLATELET LARGE CELL RATIO

DIAGRAM 14 :

GROUP	MPV(fl)	PDW%	P-LCR
ACS	9.6	14.2	29.2
STABLE AP	8.2	12.9	24.7
HEALTHY CONTROLS	7.9	13.1	23.5

OUTCOME AND DEATH

TABLE 15.1:

OUTCOME	FREQUENCY	PERCENTAGE
IMPROVED	44	88
EXPIRED	6	12

DIAGRAM 15 :

TABLE 15.2 :

MPV	Sum of	Df	Mean	F	Sig
	squares		square		
Between	2.246	1	2.246	5.084	.029
groups					

MPV AND DEATH

TABLE 16:

PATIENT NAME	DEATH	MPV(femtolitre)
MARIMUTHU	AWMI	9.6
BALAJI	AWMI	9.8
FATHIMA	ASMI	10.2
YUVACHANDRAN	IWMI	10.4
DEVAN	IW+PWMI	10.8
MUNUSAMY	IW+PW+RVMI	9.8

DIAGRAM 16 :

COMPARISON OF GROUPS BY MPV

TABLE 17:

			P-value	Sig/ Not Sig
	$\begin{array}{l} ACS \\ 9.6 \pm 0.7 \end{array} \text{ group}$	Stable AP group: 8.2 ± 0.6	0.000	Sig
MPV (Fl)	Stable AP group 8.2 ± 0.6	Control group: 7.9 ± 0.5	0.006	Sig
	$\begin{array}{c} ACS \\ 9.6 \pm 0.7 \end{array} \text{ group}$	Control group: 7.9 ± 0.5	0.000	Sig

TABLE 18:

COMPARISON OF GROUPS BY MEAN PLATELET COUNTS

			P-value	Sig/ Not Sig
	ACS group 215340 ± 63491.5	Stable AP group 226740 ± 49723.6	0.524	Not Sig
Platelet count	Stable AP group 226740 ± 49723.6	Control group 213880 ± 41747.8	0.440	Not Sig
	ACS group 215340 ± 63491.5	Control group 213880 ± 41747.8	0.989	Not Sig

DISCUSSION

In our study, three groups were taken into account. Acute coronary syndrome, stable angina pectoris and healthy controls respectively.

In our study the significance of mean platelet volume in acute coronary syndrome is the prime concern and they were compared with the other two groups.

Samples for Mean platelet volume were taken at the time of admission in ACS group. MPV was reported by automatic analyzer. Statistical significance in MPV was analysed in each group.

AGE AND MPV IN ACS

Mean age of patients who sustained ACUTE CORONARY SYNDROME was 48 in my study. Mean age in male was 46.7% and female was 52.4%. Mean age in males is less than that of female. No statistical significance was detected in MPV between various age groups in relation to ACS (p value is .587 i.e. >.05).

SEX DISTRIBUTION AND MPV IN ACS

Out of 50 patients, 41(82%) were males and 9(18%) were females. In a study⁵ the 70.8% were males. No statistical

significance was detected in MPV between the two sexes in relation to ACS (p value is .353 i.e. >.05).

TYPE OF ACS

In my study, out of 50 ACS patients, 16(32%) had AWMI, 7(14%) had ASMI, 7(14%) had IWMI, 4(8%) had IW+PWMI, 1(2%) had IW+PW+RVMI and 15(30%) had UNSTABLE ANGINA.

HYPERTENSION AND MPV IN ACS

29(58%) were hypertensive and 21(42%) were nonhypertensive. In a similar study⁵ et al 60% were males. No statistical significance was detected in MPV between the hypertensive and non-hypertensive in relation to ACS (p value is .401 i.e. >.05).

DIABETES AND MPV IN ACS

26 (52%) were diabetic and 24(48%) were non diabetic. In a similar study⁵ 36.2% were diabetic. No statistical significance was detected in MPV between diabetics and non-diabetics in relation to ACS (p value is .084 i.e. >.05).

SMOKING AND MPV IN ACS

30(73%) were smoker out of 41 males. None of the females were smokers. 20(82%) were non-smoker. No statistical significance was detected in MPV between smokers and nonsmokers in relation to ACS (p value is .106 i.e. >.05).

ALCOHOL AND MPV IN ACS

34 (68%) were consuming alcohol and 16(32%) did not consume alcohol. No statistical significance was detected in MPV between alcoholics and non-alcoholics in relation to ACS (p value is .937 i.e. >.05).

KILLIP CLASSIFICATION AND MPV IN ACUTE MYOCARDIAL INFARCTION

Patients were divided into 4 based on this classification. 15 (45%) were in Class 1, 12 (33%) were in class 2, 4 (11%) were in class 3 and 4(11%) were in class 4. No statistical significance was detected in MPV between the various killip groups in relation to ACS (p value is .104 i.e. >.05).

KILLIP CLASSIFICATION AND OUTCOME IN ACUTE MYOCARDIAL INFARCTION

Patients in each killip class were analysed for death as outcome. Out of the total 0 (0%) death in class 1, 1 (8%) death in class 2, 1 (25%) death in class 3 and 4 (100%) deaths in class 4 occurred.

ECHO FINDINGS AND MPV IN ACS

In our study, echo findings were analysed. 13 (26%) had NO RWMA, 11(22%) had RWMA, 11(22%) had MILD LV DYSFUNCTION, 8(16%) had MODERATE LV DYSFUNCTION, 7(14%) had SEVERE LV DYSFUNCTION. No statistical significance was detected in MPV between various echo findings in relation to ACS (p value is .052 i.e. >.05).

MEAN PLATELET VOLUME

Our study showed that mean platelet volume (Femtolitres) in ACS group was 9.6, STABLE AP group was 8.2 and HEALTHY CONTROLS was 7.9. Mean platelet volume were comparable between ACS and STABLE AP with statistically significant difference of 0.000(<0.5). Similarly mean platelet volume were comparable between STABLE AP AND HEALTHY CONTROLS with significant difference of 0.006(<0.5), ACS and HEALTHY CONTROLS with significant difference of 0.000(<0.5).

In a similar study⁴ which compared unstable AP and AMI patients, MPV in unstable AP was 9.0 ± 1.0 fl, and 8.9 ± 0.8 fl in AMI patients. MPV were similar between these two groups with no statistically significant difference p=0.999.

In stable AP patients, MPV as 7.5 ± 0.6 fl and 7.2 ± 0.6 fl in control group, respectively. MPV were comparable between these two groups with no statistically significant difference p=0.126.

When unstable angina pectoris and AMI cases were compared to each of stable angina pectoris and control groups, it was observed that MPV was increased.

Here in our study too, there is statistically significant difference between ACS and other two groups which is similar to the above cited study⁴.

In the study by Endler et al¹⁰, compared AMI patients to those with stable AP, found MPV to be increased which is consistent with our study.

In the study by Kishk et al²⁴. which compared AMI patients to stable angina pectoris and control groups detected that the former group had lower platelet count and higher MPV than the latter groups. In our study, mean platelet volume was higher in AMI group than others but platelet count was not reduced.

The study by Puzzili et al³⁶. found that MPV was higher in unstable angina pectoris patients, compared to stable angina and control groups which is consistent with our study.

MEAN PLATELET VOLUME IN ACS

In our study mean platelet volume in AWMI was 9.6, ASMI was 9.6, IWMI was 9.7, IW+PWMI was 10.0, IW+PW+RVMI was 9.8 and UA was 9.5. No statistical significance was detected in MPV between the various types of ACS (p value is .889 i.e. >.05).

PLATELET COUNT AND ACS

In our study, platelet counts in three groups were analysed. Mean value in ACS group was 2,15,340 cells/dl, STABLE AP was 2,26,740 cells/dl and HEALTHY CONTROLS was 2,13,880 cells/dl. While comparing between the groups there was no statistical difference between any groups.

In a similar study⁴ unstable AP patients, mean platelet count was $239.6 \pm 59.2 \ge 109$ /L respectively; and $228.5 \pm 74.1 \ge 109$ /L in AMI patients. Mean platelet count was similar between these two groups with no statistically significant difference p=0.791.

In stable AP patients, mean platelet count was detected as $268.3 \pm 73.5 \text{ x}$

109/L, and 285.5 \pm 80.9 x 109/L in control group, respectively. Mean platelet count was comparable between these two groups with no statistically significant difference p=0.586.

When unstable angina pectoris and AMI cases were compared to each of stable angina pectoris and control groups, it was observed that platelet counts were decreased.

Hence in our study the results were not convincing while comparing to the above study in terms of platelet count.

PLATELET DISTRIBUTION WIDTH AND ACS

In our study mean value of in ACS group was 14.2%, STABLE AP was 12.9% and HEALTHY CONTROLS was 13.1%.

PLATELET-LARGE CELL RATIO AND ACS

In our study mean value of P-LCR in ACS group was 29.2,

STABLE ANGINA was 24.7 and HEALTHY CONTROLS was 23.5.

OUTCOME AND MPV IN ACS

In our study, 6(12%) patients expired and 44(88%) survived out of 50 in the ACS group. Statistical significance was detected in MPV between the outcomes in relation to ACS (p value is .029 i.e. < .05).

It is revealed from the study that MPV is increased in ACS group in comparison with stable angina pectoris and healthy controls. Statistical difference has been showed in MPV between the groups.

LIMITATIONS OF STUDY

- MPV has been reported to be dependent on a number of variables
 - a. Time of analysis after venipuncture,
 - b. Method of analysis,
 - c. Anticoagulant used
 - d. Specimen storage temperature.
- 2) The population studied is small when compared to other studies.
- 3) Cardiac biomarkers were not done for all the patients.
- 4) Coronary angiography was not done for all the patients.

CONCLUSION

- Mean platelet volume was found to be increased in ACS group when compared to Stable angina pectoris and Healthy controls.
- Statistically significant difference in mean platelet volume was found between the three groups respectively.
- 3) Mean platelet volume is an easy and feasible test, it can be used as along with other cardiac biomarkers in patients coming with chest pain to evaluate for acute coronary syndrome.
- More comprehensive studies are required to further evaluate of the beneficial effects of platelet aggregation inhibitors or other drugs on patients with increased MPV.

N A ME	ACE	SEV	DDESENTATION	DUDATION	UVDEDTENSION	DIADETES		SMORING		PDmm ha	DIII CE		THDOMDOL VSIS
INAME	AGE	SEA	FRESENTATION	DURATION	HIFEKIENSION	DIADETES	FRICK CAD	SWOKING	ALCOHOL	Drinning	FULSE	KILLIF	INKOWIDOLISIS
Loganathan	30	М	AWMI	4 hrs	NO	NO	NO	YES	YES	100/70	108	3	YES
Vasu	43	М	ASMI	12 hrs	YES	NO	NO	YES	YES	130/80	102	2	YES
Paramasiyam	46	М	IWMI	5	NO	YES	NO	NO	YES	120/80	96	2	YES
Varadharaj	55	М	AWMI	4	YES	YES	NO	YES	YES	150/90	96	1	YES
Amulu	62	F	UA	8	NO	NO	YES	NO	NO	110/80	102	1	YES
Devan	36	М	IW+PWMI	3	NO	YES	NO	NO	NO	100/80	40	3	YES
Chittibabu	68	М	IWMI	7	YES	NO	NO	YES	YES	120/80	72	1	YES
Fathima	54	F	ASMI	5	YES	YES	NO	NO	NO	80/?	?	4	NO
Saravanan	35	М	AWMI	4	NO	NO	NO	YES	YES	150/90	102	1	YES
Gopal	40	М	UA	8	YES	NO	NO	NO	YES	110/90	96		NO
Ramadoss	47	М	UA	4	YES	YES	NO	YES	YES	160/90	102		NO
Saseeb	52	М	AWMI	10	NO	YES	NO	YES	YES	140/80	120	2	YES
Velu	56	М	AWMI	6	YES	YES	NO	YES	YES	120/80	108	1	YES
Ravi	42	М	IWMI	4	YES	NO	NO	YES	NO	110/80	96	2	YES
Mariammal	45	F	AWMI	6	YES	NO	YES	NO	NO	100/70	102	1	YES
Vimala	54	F	IW+PWMI	4	NO	YES	NO	NO	YES	100/80	108	2	YES
Raji	50	М	UA	4	YES	YES	NO	YES	YES	160/100	96		NO
Yuvachandran	58	М	IWMI	5	YES	YES	NO	YES	YES	100/60	84	2	YES
Vinayagam	38	М	UA	7	NO	NO	NO	YES	NO	130/90	102		NO
Thangadurai	36	М	UA	4	YES	NO	NO	YES	YES	110/80	108		NO
Veeramani	40	М	UA	11	YES	NO	NO	NO	NO	120/80	96		NO
Nidhi	42	М	AWMI	6	NO	NO	YES	YES	NO	110/80	102	1	YES
Panneer	50	М	ASMI	5	YES	YES	NO	YES	YES	150/90	96	2	YES
Raja	65	М	UA	5	NO	YES	NO	NO	YES	110/90	102		NO
Balaji	39	М	AWMI	6	NO	YES	NO	YES	YES	60/?	?	4	NO
Kani	48	М	AWMI	8	YES	YES	NO	NO	YES	200/100	120	3	NO
Parasuram	56	М	IW+PWMI	6	YES	NO	NO	YES	YES	90/60	54	3	YES
Prabakar	40	М	UA	7	YES	NO	NO	YES	YES	160/90	108		NO
Parameswari	46	F	ASMI	5	NO	YES	NO	NO	NO	110/80	96	1	YES
Rathinavel	54	М	UA	4	NO	NO	NO	NO	YES	150/90	96		NO
James	50	М	UA	1	YES	YES	NO	YES	YES	140/90	102		NO
Vetri	34	М	IWMI	4	NO	NO	NO	YES	YES	100/80	96	1	YES
Munusamy	42	М	I+P+RVMI	3	YES	YES	NO	YES	YES	70/?	?	4	NO
Vennila	56	F	AWMI	6	NO	NO	NO	NO	NO	160/100	108	1	YES
Sivasankaran	48	М	UA	6	YES	NO	YES	NO	YES	150/100	102		NO
Munivel	44	М	AWMI	4	NO	NO	NO	YES	YES	140/90	96	1	YES
Pankajam	37	F	ASMI	5	YES	YES	NO	YES	NO	210/110	108	2	NO
Ismail	49	М	AWMI	3	NO	YES	NO	YES	YES	160/90	120	1	YES
Veerammal	74	F	UA	8	YES	NO	NO	NO	NO	160/100	102		NO
Vendhan	44	М	UA	12	NO	YES	NO	YES	YES	130/90	96		NO
Karthik	60	Μ	AWMI	5	YES	NO	YES	NO	NO	110/70	96	1	YES

NAME	AGE	SEX	PRESENTATION	DURATION	HYPERTENSION	DIABETES	PRIOR CAD	SMOKING	ALCOHOL	BPmm hg	PULSE	KILLIP	THROMBOLYSIS
Mohammad	54	М	IWMI	4	YES	YES	NO	YES	NO	100/70	72	2	YES
Marimuthu	48	Μ	AWMI	6	NO	YES	NO	NO	YES	70/?	126	4	NO
Palani	56	Μ	ASMI	8	YES	NO	NO	NO	YES	170/100	64	2	YES
Veeraragavan	39	Μ	IW+PWMI	4	NO	YES	NO	YES	YES	130/90	102	1	YES
Ayyadurai	45	Μ	UA	4	NO	YES	NO	YES	YES	110/70	102		NO
Venda	44	F	ASMI	3	YES	NO	NO	NO	NO	110/80	96	1	YES
Periasamy	52	Μ	IWMI	5	YES	YES	NO	NO	YES	110/80	108	1	YES
Annamalai	40	М	AWMI	10	NO	YES	NO	YES	YES	100/80	120	2	YES
Prakash	45	М	AWMI	7	YES	NO	YES	YES	NO	140/90	102	2	YES

ECHO
NO RWMA
RWMA
MILD LV DYSFUNCTION
MODERATE
SEVERE

	тотат				PLATEL																
HEPARIN	COUNT	Р	L	Е	ET	SUGAR	UREA	CREATININE	TB	DB	ОТ	РТ	ТС	TGL	HDL	MPV	PDW	P-LCR	ЕСНО	HOSPITAL STAY	OUTCOME
	COUNT				COUNT																
	12000	72	26	2	204000	84	25	0.8	1.1	0.3	42	46	158	124	46	10.9	15.6	37.6	3	7	SURVIVED
	9600	68	30	2	186000	96	30	0.9	1	0.1	44	45	240	164	48	9.2	14.2	29.2	2	5	SURVIVED
	9700	66	30	4	126000	128	32	1	0.9	0.1	45	44	168	96	66	11.3	17.6	40.2	3	6	SURVIVED
	8600	72	26	2	304000	192	28	0.9	0.9	0.1	45	46	170	130	64	8.9	12.8	26.2	4	5	SURVIVED
	11000	66	33	1	208000	102	30	0.8	0.8	0.1	44	45	220	140	32	10.2	14.8	35.6	1	7	SURVIVED
	9600	74	24	2	192000	284	40	1.1	1	0.2	42	45	186	100	30	10.8	13.6	36.6	5	1	EXPIRED
	7200	72	26	2	174000	106	26	0.8	1	0.1	42	46	240	124	56	9.6	13.3	28.8	3	6	SURVIVED
YES	8400	66	30	3	120000	204	32	0.9	0.8	0.1	40	42	154	108	45	10.2	14.8	36.8	5	1	EXPIRED
	9400	64	33	3	304000	104	28	0.6	0.9	0.1	46	44	120	120	34	8.4	12.6	26.2	2	6	SURVIVED
YES	7200	70	26	4	286000	84	28	0.8	0.8	0.1	46	44	189	165	60	9.2	14	28.2	1	5	SURVIVED
YES	8900	64	33	3	204000	236	30	1	1	0.2	45	43	224	148	42	8.6	12.8	27	2	5	SURVIVED
	7400	66	32	2	124000	164	40	1.2	1	0.1	44	40	174	130	64	9.8	14.2	29.2	3	6	SURVIVED
	9400	56	40	4	240000	198	42	1.2	0.8	0.1	42	45	154	142	60	10	14.8	32.2	2	5	SURVIVED
	7000	68	30	4	194000	90	26	0.8	0.8	0.1	44	47	220	180	40	9.2	13.6	28.6	4	6	SURVIVED
	8200	70	28	2	300000	110	22	0.6	0.9	0.1	46	42	185	156	46	9.4	13.2	26	4	7	SURVIVED
	9900	68	26	6	120000	140	28	0.6	0.8	0.2	45	44	140	174	48	9.8	14.4	28.2	4	6	SURVIVED
YES	7600	69	30	1	181000	264	34	1.2	1	0.2	48	46	185	125	40	10.2	16	30.2	1	5	SURVIVED
	8200	64	34	2	240000	240	34	1.4	0.8	0.1	45	48	235	158	43	10.4	15.4	31.2	5	14 HRS	EXPIRED
YES	8600	60	34	6	288000	80	26	0.8	0.8	0.1	46	45	180	124	43	9.6	14.2	28.4	1	6	SURVIVED
YES	7400	68	30	2	150000	196	28	0.8	0.9	0.1	42	40	186	180	47	7.8	12.4	27.4	1	5	SURVIVED
YES	6200	66	30	4	186000	106	30	1	1.1	0.2	44	40	214	124	59	9.6	13.8	27.8	2	5	SURVIVED
	8000	64	32	4	240000	146	24	0.6	1.2	0.2	46	45	164	168	50	8.8	13.2	25.4	2	7	SURVIVED
	7400	80	16	4	186000	102	28	0.6	0.8	0.1	48	46	175	145	60	9.2	14.4	26.4	3	7	SURVIVED
YES	9400	69	28	3	360000	290	36	1.2	0.8	0.1	44	48	240	186	44	9.6	14.8	28.2	1	5	SURVIVED
YES	9800	54	40	6	172000	146	40	1.4	0.9	0.1	40	45	146	190	56	10.2	15.8	30.4	5	5	EXPIRED
YES	8800	68	29	3	268000	380	42	1.4	0.9	0.1	42	47	246	159	55	9.4	13.4	28.4	4	6	SURVIVED
	9000	62	32	6	142000	76	28	0.8	1.2	0.2	46	43	198	137	43	10.4	15	31.8	5	12	SURVIVED
YES	6800	72	22	6	246000	120	30	0.8	0.8	0.1	40	45	174	186	42	10.2	14.2	30.2	2	6	SURVIVED
	7200	66	32	2	190000	138	34	1.2	0.9	0.1	45	46	236	124	48	9.8	13.8	26.8	2	7	SURVIVED
YES	9200	69	28	3	320000	82	24	0.8	1	0.1	42	42	149	170	65	8.9	13.6	25.9	1	5	SURVIVED
YES	8600	64	32	4	178000	190	34	1	1	0.2	40	48	248	158	40	9.6	14.2	27.8	1	5	SURVIVED
	9400	71	26	3	240000	102	24	1	0.9	0.2	44	49	246	140	42	8.8	13.4	27.2	4	8	SURVIVED
YES	9200	70	28	2	181000	166	38	1.4	0.8	0.1	46	45	149	268	44	9.8	14.2	28.6	5	12 HRS	EXPIRED
	8400	68	28	4	120000	88	22	0.8	0.8	0.1	44	42	154	124	50	10.2	14.8	31.8	2	6	SURVIVED
YES	8540	66	30	4	342000	92	24	0.8	1	0.1	42	40	248	182	54	9.6	13.9	27.8	1	6	SURVIVED
	7000	66	30	4	196000	110	30	1	1.1	0.2	40	46	196	196	54	8.8	13.2	25.4	2	5	SURVIVED
YES	9200	64	32	4	246000	168	34	1	1	0.2	42	45	224	145	40	9.4	14	28.2	3	6	SURVIVED
	8600	66	32	2	180000	124	40	1.4	1	0.1	44	42	184	158	42	10.8	15.4	30.4	3	5	SURVIVED
YES	9600	59	36	5	274000	102	28	0.8	0.8	0.1	43	48	154	120	65	9.8	14.6	28.2	1	5	SURVIVED
YES	8400	68	30	2	144000	254	36	1.4	0.9	0.1	42	49	169	142	44	10.2	14.8	30.2	1	5	SURVIVED
	8300	62	32	6	268000	84	28	0.8	0.7	0.1	46	42	154	280	42	9.2	14.2	28.4	1	5	SURVIVED

HEPARIN	TOTAL COUNT	Р	L	Е	PLATEL ET COUNT	SUGAR	UREA	CREATININE	ТВ	DB	ОТ	РТ	тс	TGL	HDL	MPV	PDW	P-LCR	ЕСНО	HOSPITAL STAY	OUTCOME
	9500	64	32	4	172000	174	30	1	0.8	0.1	44	46	236	146	50	8.6	12.8	26.2	3	7	SURVIVED
YES	6900	66	33	1	189000	190	36	1.2	1	0.2	41	48	185	120	64	9.8	14.8	27.2	5	9 HRS	EXPIRED
	6400	70	28	2	348000	106	26	0.8	0.9	0.1	42	46	174	100	44	9.6	13.6	26.8	3	6	SURVIVED
	9000	68	30	2	169000	280	30	0.8	0.9	0.1	40	45	145	126	48	8.9	13.2	25.6	4	7	SURVIVED
YES	8200	60	36	4	283000	254	34	1.2	1	0.1	44	42	280	124	42	9.6	14.6	28.4	1	5	SURVIVED
	6400	64	32	4	182000	78	28	0.6	0.7	0.1	45	47	184	158	48	9.6	14.4	27.6	3	5	SURVIVED
	7600	66	32	2	170000	102	40	1.2	0.8	0.2	44	41	149	224	42	10.4	15.4	29.8	4	6	SURVIVED
	8400	68	30	2	240000	220	42	1.2	0.7	0.1	42	48	210	124	40	9.2	14.8	28.8	3	7	SURVIVED
	8200	66	31	3	190000	108	28	0.8	0.8	0.1	44	46	168	140	64	9.8	15	29.2	2	5	SURVIVED

NAME	AGE	SEX	HYPERTENSION	DIABETES	SMOKING	ALCOHOL	TOTAL COUNT	Р	L	E
Vikram	24	Μ	NO	NO	NO	YES	8000	56	40	4
Nalan	25	Μ	NO	NO	YES	YES	7000	66	32	2
Saravanan	29	Μ	YES	NO	YES	NO	8000	77	30	3
Zaheer	30	Μ	NO	NO	YES	YES	7700	74	22	4
Velammal	30	F	YES	NO	NO	NO	7600	65	33	2
Saradha	32	F	NO	YES	NO	NO	6800	62	36	2
Ragavan	32	Μ	YES	NO	YES	YES	6450	70	28	2
Thiagu	32	Μ	YES	YES	YES	YES	7800	62	26	2
Ranjith	32	Μ	NO	NO	YES	NO	6600	66	32	2
Kannadasan	33	Μ	NO	NO	YES	NO	7500	68	30	2
Vivek	34	Μ	NO	NO	YES	YES	6800	70	26	4
Baby	34	F	NO	NO	NO	NO	6400	64	32	4
Bama	34	F	NO	NO	NO	NO	5000	62	36	2
Saradhammal	34	F	NO	NO	NO	NO	8800	68	30	2
Karuppusamy	35	Μ	NO	NO	YES	YES	7800	74	22	4
Basker	35	Μ	NO	YES	YES	YES	5600	62	38	2
Varadhan	35	Μ	NO	YES	YES	NO	6800	64	32	4
Jaiganesh	35	Μ	NO	NO	YES	YES	8500	66	30	4
Bakkiam	35	F	NO	NO	NO	NO	6400	66	30	4
Ramesh	35	Μ	YES	NO	YES	YES	9900	68	30	2
Rani	36	F	YES	YES	NO	NO	8400	60	36	4
Ellammal	36	F	NO	NO	NO	NO	6600	64	32	4
Veeramani	36	Μ	NO	NO	NO	YES	10200	70	28	2
Kali	38	Μ	NO	NO	NO	YES	6200	70	26	4
Ravi	38	Μ	NO	NO	NO	YES	7200	62	36	2
Mangammal	38	F	YES	NO	NO	NO	6800	70	28	2
Sulaiman	38	Μ	YES	NO	NO	NO	7480	66	30	4
Mani	38	Μ	YES	YES	YES	YES	8100	70	28	2
Lalitha	38	F	YES	NO	NO	NO	5800	72	26	2
Velu	38	Μ	NO	NO	YES	NO	6600	62	36	2
Nandakumar	38	Μ	NO	NO	YES	NO	9000	70	28	2
Sabari	40	Μ	NO	YES	YES	YES	6800	64	32	4

NAME	AGE	SEX	HYPERTENSION	DIABETES	SMOKING	ALCOHOL	TOTAL COUNT	Р	L E
Adhithan	40	Μ	NO	NO	YES	YES	6000	72	26 2
Esther	40	F	NO	NO	NO	NO	7100	65	31 4
Laila	40	F	NO	NO	NO	NO	9000	70	26 4
Dhandapani	40	Μ	YES	NO	YES	YES	7800	68	30 2
Vellaiyan	40	Μ	YES	NO	YES	YES	7400	70	28 2
Rajasekar	42	Μ	NO	NO	NO	YES	5800	66	32 4
Mayandi	44	Μ	YES	NO	NO	YES	6500	60	36 4
Akbar	44	Μ	NO	NO	NO	YES	7000	72	26 2
Soodamani	45	F	NO	YES	NO	NO	5800	78	20 2
Kannan	45	Μ	NO	NO	YES	YES	6800	66	30 4
Sankar	45	Μ	YES	NO	NO	YES	7540	65	31 4
Pandian	45	Μ	NO	YES	YES	YES	7500	68	30 2
Manikandan	48	Μ	YES	NO	YES	YES	6500	72	24 4
Kala	50	F	NO	NO	NO	NO	8100	65	30 5
Parvadham	50	F	YES	NO	NO	NO	6800	64	32 4
Veearapandi	55	Μ	NO	YES	YES	YES	8000	68	30 2
Sadasivam	65	Μ	NO	NO	YES	YES	7000	62	36 2
Sarala	70	F	NO	YES	NO	NO	6450	60	36 4

ECHO

NO RWMA	1
RWMA	2
MILD LV DYSFUNCTION	3
MODERATE LV DYSFUNCTION	4
SEVERE LV DYSFUNCTION	5

PLATELET COUNT	SUGAR	UREA	CREATININT	TB	DB	OT	PT	TGL	TC	HDL	MPV	PDW	P-LCR	ECHO
220000	102	34	0.8	0.8	0.2	45	45	142	134	54	7.2	12.4	22.5	1
180000	98	36	1.1	0.8	0.1	40	48	100	164	52	7.4	12.6	22.4	1
200000	102	40	0.9	1	0.2	45	46	120	126	64	7.3	12.4	22.1	1
250000	98	28	0.6	0.9	0.2	50	42	112	108	45	8.2	13.4	24.2	1
220000	100	30	0.6	0.8	0.1	44	42	144	153	59	8.4	13.6	25.1	1
178000	246	24	0.8	0.8	0.2	48	40	140	165	54	8.4	14	24.5	1
240000	140	24	0.6	0.8	0.1	48	43	133	150	69	8.1	13.6	24.6	1
300000	102	28	0.6	0.9	0.1	45	48	130	200	68	7.5	12.9	22.5	1
210000	90	28	0.8	0.8	0.1	48	44	124	166	60	8	12.8	21.8	1
240000	98	28	0.6	0.9	0.1	45	45	182	155	58	7.4	12.4	21.9	1
198000	104	30	0.8	1	0.2	42	46	112	123	48	7.4	12.8	23.1	1
164000	84	38	0.8	0.9	0.2	40	47	154	120	68	7.8	13	22.5	1
145000	102	26	0.8	0.8	0.1	46	42	120	162	68	7.7	12.9	23.1	1
220000	114	24	0.8	0.8	0.1	48	46	102	165	48	8.2	13.8	25.4	1
168000	89	24	0.8	1	0.1	45	48	135	184	65	7.6	12.6	22.4	1
240000	120	28	0.8	0.8	0.1	49	48	144	165	62	7	12.1	21.4	1
240000	182	34	0.9	0.9	0.2	42	48	144	124	60	7.6	12.4	23.4	1
190000	114	34	0.8	0.8	0.2	45	48	122	179	62	7.8	12.5	22.3	1
180000	96	22	0.9	1	0.1	45	42	120	157	66	7.9	13.4	23.7	1
204000	98	32	0.6	1	0.2	44	44	120	175	65	8.1	13.6	24.5	1
212000	96	32	0.9	0.9	0.1	48	42	135	168	56	7.8	12.8	22.9	1
168000	98	28	0.8	1	0.3	40	48	156	135	56	7.2	13.2	22.1	1
190000	86	28	0.8	0.9	0.1	42	45	130	168	62	8.5	14.1	25.6	1
260000	88	34	0.6	0.9	0.1	42	46	100	123	64	8.2	13.8	24.1	1
200000	84	30	0.8	1	0.1	40	49	142	120	54	7.2	12.1	22.4	1
200000	96	26	0.8	0.8	0.1	44	40	100	135	56	8.1	13.9	24.5	1
240000	100	28	0.8	0.9	0.1	48	42	130	168	68	8.2	13.5	24.2	1
148000	80	38	0.6	0.7	0.2	44	50	134	240	60	8.2	13.6	24.5	1
280000	104	28	0.8	0.8	0.1	46	40	120	158	68	7.9	13.1	23.1	1
146000	90	24	0.8	0.8	0.1	40	44	102	153	48	8.9	14	26.5	1
290000	88	38	0.6	0.8	0.1	40	44	134	148	64	7.8	13.2	23.5	1
198000	126	30	0.6	0.8	0.1	48	48	120	169	54	8.2	13.8	24.9	1

PLATELET COUNT	SUGAR	UREA	CREATININT	TB	DB	OT	PT	TGL	TC	HDL	MPV	PDW	P-LCR	ECHO
180000	84	24	0.8	0.7	0.2	46	49	122	154	69	7.6	12.2	22.9	1
180000	89	34	0.6	0.8	0.1	44	48	124	158	54	7.9	12.4	22.6	1
340000	102	39	1	0.8	0.2	48	49	130	164	65	8.3	13.5	24.8	1
280000	88	26	0.8	1	0.2	44	45	110	189	60	7.4	12.7	22.7	1
240000	98	30	1	0.7	0.1	40	42	102	185	58	7.8	13.2	22.7	1
212000	102	30	0.6	0.9	0.1	45	42	150	124	68	7.6	12.4	22.8	1
190000	142	26	0.9	0.8	0.2	44	47	126	147	56	7.8	12.6	22.9	1
200000	76	28	0.6	0.8	0.1	48	42	132	186	67	8.2	13.8	24.4	1
200000	148	28	0.8	1	0.1	45	45	142	124	65	9.2	14.2	27.5	3
168000	98	34	0.8	0.9	0.1	42	45	142	195	64	7.5	12.7	22.1	1
200000	86	24	0.7	0.7	0.1	40	44	124	124	62	7.8	12.4	22.6	1
260000	140	30	0.8	0.9	0.1	42	40	100	146	56	8.1	13.4	24.8	1
250000	88	26	0.8	0.9	0.1	40	45	130	164	59	9.1	14.4	27.5	1
245000	142	35	1	1	0.1	46	49	100	154	54	6.8	11.8	21.4	3
180000	86	32	0.7	1	0.2	44	48	104	129	62	7.5	12.8	22.9	1
250000	86	30	0.9	1	0.2	45	46	122	124	58	8.5	14.6	25.1	1
180000	88	28	0.9	1	0.1	44	44	132	142	50	7.8	13.4	22.9	1
220000	124	32	1	0.9	0.2	42	45	120	168	68	7.6	12.8	21.8	3

NAME	AGE	SEX	PERTENSI	DIABETES	SMOKING	ALCOHOI	BP	PULSE	OTAL COUN	Р	L	Е	ATELET COU
Subramani	40	М	YES	NO	YES	NO	110/80	90	7400	66	32	2	250000
Thirulokchander	55	М	NO	NO	NO	NO	120/90	96	8400	64	34	2	246000
Ettiappan	34	М	NO	YES	YES	YES	140/90	102	7000	69	28	3	348000
Sampath	45	М	YES	YES	NO	YES	150/90	90	6800	72	26	2	246000
Vanmathi	58	F	YES	NO	NO	NO	120/80	90	6400	70	26	4	184000
Pradeep	60	М	YES	NO	YES	YES	110/90	84	7200	68	30	2	222000
Madasamy	38	М	NO	NO	YES	NO	110/90	96	7800	66	30	4	150000
Kavitha	50	F	NO	YES	NO	NO	120/80	96	6200	64	32	4	186000
Seethammal	42	F	YES	YES	NO	NO	160/100	90	9000	60	36	4	240000
Rajavel	40	М	YES	NO	NO	YES	140/90	90	5400	68	30	2	240000
Kannappan	56	М	YES	NO	YES	NO	120/90	102	8000	67	30	3	310000
Patrik	35	М	NO	YES	YES	NO	130/90	78	7400	66	31	3	180000
Raja	38	М	YES	NO	NO	YES	140/90	84	6800	58	36	6	168000
Mumtaj	45	F	YES	NO	NO	NO	110/90	84	7400	66	32	4	240000
Makimairaj	40	М	NO	YES	NO	YES	110/90	90	8000	69	30	1	256000
Chandran	30	М	NO	YES	YES	YES	120/80	78	7400	67	30	3	190000
Parthasarathy	36	М	YES	NO	YES	YES	130/90	72	7200	72	26	2	168000
Kamatchi	34	F	NO	NO	NO	NO	120/80	84	8000	71	26	3	280000
Kanagaraj	72	М	NO	YES	YES	NO	120/90	90	8100	68	30	2	220000
Siva	50	М	YES	NO	YES	YES	140/90	84	6900	69	28	3	196000
Elavarasan	45	М	NO	NO	YES	NO	110/80	78	8200	65	30	5	150000
Mala	38	F	NO	NO	NO	NO	120/90	96	8400	58	36	6	268000
Latha	54	F	YES	NO	NO	NO	160/90	84	6900	70	28	2	240000
Stalin	35	М	YES	NO	YES	YES	140/90	78	7500	70	28	2	300000
Kalaivani	48	F	YES	NO	NO	NO	140/90	72	7700	72	26	2	190000
Veera	46	М	YES	YES	YES	NO	110/90	90	8000	66	30	4	178000
Karunakaran	38	М	YES	NO	NO	YES	140/80	84	9200	68	30	2	250000
Vanitha	40	F	YES	YES	NO	NO	150/90	102	8600	64	32	4	286000
Lingam	44	М	YES	YES	YES	YES	110/80	96	8400	72	22	6	175000
Elumalai	38	М	NO	NO	YES	YES	110/80	90	7500	70	26	4	200000
Thiruveni	50	F	NO	YES	NO	NO	130/90	84	6800	66	30	4	280000

NAME	AGE	SEX	PERTENSI	DIABETES	SMOKING	ALCOHOI	BP	PULSE	OTAL COUN	Р	L	Е	ATELET COU
Vetrivel	52	М	YES	YES	YES	YES	150/90	90	8500	68	30	2	159000
Ayyanar	46	М	YES	YES	YES	NO	100/80	90	7900	68	30	2	180000
Geetha	38	F	NO	YES	NO	NO	100/80	78	5800	59	38	3	290000
Parthiban	45	М	YES	YES	NO	YES	140/90	78	7500	70	28	2	286000
Raniammal	40	F	NO	YES	NO	NO	110/80	72	8100	70	28	2	190000
Imran	37	М	YES	YES	YES	YES	150/80	84	6800	64	32	4	286000
Janakiraman	39	М	YES	YES	YES	YES	110/80	90	7400	66	32	4	290000
Babu	46	М	NO	YES	NO	YES	110/80	84	8000	66	30	4	195000
Joseph	67	М	YES	NO	YES	YES	150/90	78	5900	68	30	2	184000
Vadivu	60	F	YES	NO	NO	NO	160/100	90	6400	70	28	2	290000
Rathinam	54	М	NO	NO	YES	NO	120/80	90	6800	68	26	6	200000
Velmurugan	50	М	YES	NO	YES	YES	110/80	78	7200	70	28	2	185000
Ramasamy	38	М	NO	NO	NO	YES	120/80	72	8100	74	32	4	208000
Karuthamma	49	F	NO	NO	NO	NO	120/90	78	6800	69	30	1	195000
Kalimuthu	40	М	NO	YES	YES	YES	110/80	84	5700	66	30	4	280000
Deenadayalan	38	М	YES	YES	YES	YES	170/100	90	8200	64	32	4	200000
Venkat	56	М	YES	NO	YES	NO	140/90	78	7500	66	30	4	156000
Parameswaran	48	М	YES	NO	YES	YES	130/90	84	8400	60	36	4	286000
Thenali	40	М	YES	YES	YES	YES	120/90	90	7600	64	34	2	240000

ECHO	
NO RWMA	1
RWMA	2
MILD LV DYSFUNCTION	3
MODERATE LV DYSFUNCTION	4
SEVERE LV DYSFUNCTION	5

SUGAR	UREA	EATINI	TB	DB	OT	PT	TC	TGL	HDL	MPV	PDW	P-LCR	ECHO
96	28	0.6	0.9	0.1	34	36	186	120	64	7.8	11.8	23.2	1
102	30	0.8	0.9	0.2	36	38	154	140	66	8.2	12.4	25.6	1
110	26	0.9	0.8	0.1	40	40	200	112	54	7.6	11.8	22.9	1
90	30	1	1	0.1	39	35	240	162	68	8	12.6	23.5	1
80	32	0.6	0.7	0.1	38	36	186	140	44	9.2	13.8	27.2	1
109	22	0.5	0.8	0.2	35	38	154	100	40	8.8	12.8	25.8	1
120	28	0.8	0.8	0.2	34	39	170	114	58	7.6	12.2	22.8	1
180	22	0.4	0.9	0.1	36	35	164	125	44	8.4	12.8	25.5	1
102	26	0.6	0.8	0.1	39	34	200	142	52	8.2	11.9	24.9	3
99	30	1	1	0.2	35	38	140	105	44	9.4	14	28.2	1
140	32	0.9	1	0.1	38	35	184	134	48	7.4	11.6	22.5	1
110	28	0.8	0.8	0.1	37	35	154	110	62	8.2	12.6	24.6	1
98	25	0.8	0.9	0.1	35	38	164	142	42	8.6	12.8	25.2	1
108	22	0.6	0.7	0.1	36	39	174	186	40	7.9	11.8	22.4	1
240	26	0.8	1	0.2	40	42	180	120	48	8.4	12.6	24.4	1
98	30	0.8	1.1	0.3	42	40	240	135	58	9.1	13.9	27.2	1
134	32	0.9	0.9	0.2	44	48	148	140	56	8.6	12.5	25.4	1
86	32	1	0.9	0.1	41	40	168	120	66	7.9	11.8	22.8	1
145	24	0.8	0.8	0.1	40	38	148	100	68	7.6	12	22.4	3
84	22	0.8	0.9	0.2	35	39	164	124	59	8.2	12.6	24.8	1
90	28	0.8	1	0.1	36	38	200	135	67	8.8	13.4	25.2	1
90	30	1	0.8	0.1	38	38	154	142	45	9.2	14.2	28	1
110	30	0.9	1.1	0.2	36	40	186	108	68	8.6	13.8	25.4	1
85	24	0.6	0.8	0.1	34	40	248	154	56	8.8	14	25.1	1
80	24	0.8	0.9	0.2	40	42	174	120	68	7.6	12.4	22.4	1
148	22	0.8	0.8	0.1	42	39	164	220	64	9	14.2	27.4	1
125	29	1	0.8	0.1	35	38	180	145	50	8.4	13.6	25.2	1
220	21	0.6	0.9	0.2	36	38	142	168	40	7.8	12.8	22.6	3
96	20	0.6	0.9	0.2	38	40	175	120	54	8	12.2	24.8	1
142	28	0.8	1	0.1	34	40	164	109	64	8.2	12.6	24.8	1
102	25	0.8	1	0.2	42	38	234	120	48	8.6	13.4	25.4	1

SUGAR	UREA	EATINI	TB	DB	OT	PT	TC	TGL	HDL	MPV	PDW	P-LCR	ECHO
245	23	0.6	0.8	0.1	40	38	182	107	44	8.2	13.4	25.6	3
140	22	0.8	0.7	0.1	42	42	168	132	46	7.4	12.2	22.8	1
96	28	1	0.7	0.1	40	39	124	110	40	7.2	11.9	22.4	1
186	26	0.8	0.9	0.2	30	35	169	122	56	9.2	14.2	27.5	1
120	24	0.8	1	0.1	35	40	174	114	58	8.4	12.8	25.6	1
155	21	0.6	0.9	0.2	36	40	242	158	45	8.6	13.2	25.2	1
84	28	1	0.9	0.1	35	38	154	164	44	7.2	12.1	22.6	4
98	34	1.2	0.8	0.1	34	38	280	100	64	8	13.2	24.8	1
80	28	0.9	1	0.2	40	42	146	175	40	7.8	12.4	22.6	1
140	36	0.8	0.8	0.1	42	38	225	122	48	7.4	12.2	23	1
90	29	0.8	0.9	0.2	42	36	146	104	68	8.2	13.2	24.4	1
79	21	0.6	0.8	0.1	35	40	154	112	50	8.6	13.4	25.2	3
110	30	0.8	0.7	0.1	36	42	220	145	52	9.4	14.2	28.2	1
84	34	1	0.9	0.2	38	40	188	119	44	7.6	11.9	22.4	1
190	27	0.6	1	0.1	48	38	168	124	58	8.2	13.3	24.8	1
154	25	0.8	0.9	0.2	42	40	169	104	40	8.4	13.9	25.2	1
98	34	1.1	1	0.1	42	38	245	144	42	7.8	12.8	22.8	1
88	26	0.8	0.9	0.1	40	38	180	186	64	8.2	13.4	25.8	1
124	28	0.9	0.8	0.2	47	46	165	180	58	8.4	13.8	25.6	1

INSTITUTIONAL ETHICS COMMITTEE MADRAS MEDICAL COLLEGE, CHENNAI -3

Telephone No: 04425305301 Fax : 044 25363970

CERTIFICATE OF APPROVAL

To Dr. Venkatesan. S PG in MD General Medicine Madras Medical College, Chennai -3.

Dear Dr. Venkatesan. S

The Institutional Ethics Committee of Madras Medical College reviewed and discussed your application for approval of the proposal entitled "A study on mean platelet volume in acute coronary syndrome" No. 12042011.

The following members of Ethics Committee were present in the meeting held on 21.04.2011 conducted at Madras Medical College, Chennai -3.

1.	Prof. S.K. Rajan, MD	-	Chairperson
2.	Prof. V. Kanagasabai MD	10220	Deputy chairman
	Dean, Madras Medical College, Chennai-3,		
3.	Prof. A. Sundaram, MD	1010	Member Secretary
	Vice Principal, Madras Medical College, Chennai -3		La de la conserva Caler Estadaret Servez Statadore 🖉
4.	Prof R. Sathianathan MD	1012	Member
5.	Prof R. Nandhini, MD	And the	Member
	Director, Institute of Pharmacology, MMC, Ch-3		
6.	Prof. Pregna B. Dolia MD		Member
	Director, Institute of Biochemistry, MMC, Ch-3		
7.	Prof. C. Rajendiran .MD	-	Member
	Director, Institute of Internal Medicine, MMC, Ch-3		
8.	Thiru. A. Ulaganathan	And some	Layperson
	Administrative Officer, MMC, Chennai -3		
9.	Thiru. S. Govindasamy . BA.BL	-	Lawyer
10.	Tmt. Arnold Soulina		Social Scientist

We approve the proposal to be conducted in its presented form.

Sd /. Chairman & Other Members

The Institutional Ethics Committee expects to be informed about the progress of the study, any SAE occurring in the course of the study, any changes in the protocol and patient information / informed consent and asks to be provided a copy of the final report

Member Secretary, Ethics Committee