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1. INTRODUCTION 

1.1. Prostate cancer 

 Prostate cancer is the second most common malignancy among men in the 

world. Prostate cancer occurs in prostate gland, which is a small walnut-shaped gland 

that produces the seminal fluid that nourishes and transports sperm. Prostate cancer 

usually grows slowly and initially remains confined to the prostate gland, where it may 

not cause serious harm. While some types of prostate cancer grow slowly and may need 

minimal or no treatment, other types are aggressive and can spread quickly. Prostate 

cancer begins when cells in the prostate gland start to grow uncontrollably. 

 The prostate is below the bladder and in front of the rectum. The size of the 

prostate changes with age. In younger men, it is about the size of a walnut, but it can be 

much larger in older men. Just behind the prostate are glands called seminal vesicles 

that make most of the fluid for semen. The urethra, which is the tube that carries urine 

and semen out of the body through the penis, goes through the center of the prostate. 

Prostate cancer occurrence is high in developed countries and recorded the lowest in 

central Asian countries. (Ahmedin et al., 2011) 

 Causative factors for prostate cancer are multiple which include increasing age, 

race, ethnicity, family history, environmental pollution, diet and obesity, smoking, 

frequent sex and sexually transmitted diseases. (Osamu et al., 2002) 

1.2. Types and treatment of prostate cancer 

• Localized prostate cancer 

• Metastatic prostate cancer 

Localized prostate cancer treatment is stage specific. Radical prostatectomy (surgical 

removal of the prostate gland), image guided radiotherapy which includes 3D 

conformal radio therapy and intensity modulated radio therapy are widely used to treat 
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localized prostate cancer. For metastatic prostate cancer the therapy is aimed at 

reducing the circulating prostate specific antigen and the androgen level. This can be 

established by androgen deprivation therapy (ADT) and combined androgen blockade 

therapy (CAB).  

ADT includes:  

• Surgical castration - bilateral orchiectomy (removal of both the testes) and the 

standard castrate level of testosterone (≤ 20ng/dl) is achieved within 12hr.  

• Pharmacological castration using Gonadotropin releasing hormone (GnRH) 

receptor agonist or GnRH receptor antagonist. There will be an initial rise in the 

testosterone concentration by using GnRH receptor agonist but after 2 to 4 

weeks castration level of testosterone is maintained.  

CAB includes: 

• Pharmacological or surgical Castration. 

• Androgen receptor (AR) antagonists are used to prevent AR activation by 

dihydrotestosterone. There are two types of AR antagonist, steroidal and non-

steroidal. They competitively inhibit the binding of androgens to AR ligand 

binding pocket.  

• DHT synthesis inhibitors (Table 1). (Heidenreich et al., 2011). 
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Table 1:  Drugs used in prostate cancer treatment 

Hormonal therapy 

GnRH agonist                     Leuprolide, Goserilin, Triprorelin, Histrelin, Busrelin 

GnRH antagonist               Abarelix, Degarelix, Cetrorelix, Ganirelix 

Non-steroidal anti-androgens Flutamide, Bicalutamide, Nilutamide 

Steroidal anti-androgens Cyproterone acetate, Megesterol, Medroxyprogesterone 

DHT synthesis inhibitors Ketoconazole, Abiraterone acetate 

Non hormonal therapy 

Cytotoxic agents                 Docetaxel 

 

1.3. Prostate cancer targets 

1.3.1. AR mediated pathway    

 The normal development and maintenance of the prostate is dependent on 

androgen acting through the AR. AR remains important in the development and 

progression of prostate cancer. AR expression is maintained throughout prostate cancer 

progression, and the majority of androgen-independent or hormone refractory prostate 

cancers express mutated AR. Mutation of AR, especially mutations that result in a 

relaxation of AR ligand specificity, may contribute to the progression of prostate cancer 

and the failure of endocrine therapy. Similarly, alterations in the relative expression of 

AR co-regulators have been found to occur with prostate cancer progression and may 

contribute to differences in AR ligand specificity or transcriptional activity. Prostate 

cancer progression is also associated with increased growth factor production and an 

altered response to growth factors of prostate cancer cells.  (Heinlein et al., 2004). 

 Androgen action can be considered to function through an axis involving the 

testicular synthesis of testosterone, its transport to target tissues, and the conversion by 
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5- α reductase to the most active metabolite 5-dihydrotestosterone (DHT). Testosterone 

(TST) and DHT exert their biological effects through binding to AR and inducing AR 

transcriptional activity. The androgen-induced transcriptional activation of AR is 

modulated by the interaction of AR with co-regulators and by phosphorylation of AR 

and AR co-regulators in response to growth factors. (Heinlein  et al., 2002) (Buchanan 

et al., 2001).  Approximately 80 -90% of prostate cancers are dependent on androgen at 

initial diagnosis, and endocrine therapy of prostate cancer is directed toward the 

reduction of serum androgens and inhibition of AR. (Denis et al., 2000). 

The prostate specific antigen is the biological marker for androgen mediated 

prostate cancer. The prostate specific antigen (PSA) test clearly provides the 

opportunity for clinically relevant prostate cancer to be detected. However, in some 

patients the PSA test may lead to investigations which can identify clinically 

insignificant cancers, which would not have become evident in a man's lifetime. In 

addition, a raised PSA may often indicate benign prostatic enlargement, and this may 

provide an opportunity for treatment of this condition before complications develop.     

(Kirby et al., 2016).  

1.3.2. Estrogen receptor mediated pathway 

 Although AR signaling is the main molecular tool regulating growth and 

function of the prostate gland, estrogen receptor β (ER-β) is involved in the 

differentiation of prostatic epithelial cells and numerous anti-proliferative actions on 

prostate cancer cells. ER-β agonist is promising as an anticancer therapy and in the 

prevention of prostate cancer. (Paraskevi et al., 2014) 

1.3.3. Phosphoinositide 3-kinase (PI3K) pathway 

 The phosphoinositide 3-kinase (PI3K) pathway, a critical signal transduction 

system linking oncogenes and multiple receptor classes to many essential cellular 
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functions, is perhaps the most commonly activated signaling pathway in human cancer. 

Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in 

the development and maintenance of Castration resistant prostate cancer. This pathway, 

which is deregulated in the majority of advanced Prostate cancer, serves as a critical 

nexus for the integration of growth signals to downstream cellular processes such as 

protein synthesis, proliferation, survival, metabolism and differentiation, thus providing 

mechanisms for cancer cells to overcome the stress associated with androgen 

deprivation.(Pixu et al., 2009)(Edlind et al.,2014). Studies suggest that 

PI3K/Akt/mTOR signaling is upregulated in 30-50% of prostate cancers, often through 

loss of PTEN. Molecular changes in the PI3K/Akt/mTOR signaling pathway have been 

demonstrated to differentiate benign from malignant prostatic epithelium and are 

associated with increasing tumor stage, grade, and risk of biochemical recurrence. 

(Todd et al., 2016). 

1.3.4. Bcl-2 over expression 

 The Bcl-2 family constitutes both agonists and antagonists of apoptosis that 

function at least in part through protein-protein interactions between various members 

of the family. The final outcome depends on the relative ratio of death agonists and 

antagonists. The Bcl-2 expression has been closely associated with the androgen 

independent phenotype of prostate cancer. Cytotoxic chemotherapy may be used as 

palliative therapy in androgen independent prostate cancer but has not been found 

effective. Most chemotherapeutic cytotoxic agents induce apoptosis in cancer cells by 

direct and indirect action on the cell cycle. In vitro and in vivo studies have established 

that the Bcl-2 expression confers an anti-apoptotic activity against androgen withdrawal 

and cytotoxic chemotherapy. It thus offers a tempting potential target for therapeutic 

manipulations of prostate cancer. The up-regulation of BCL-2 after androgen ablation 
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in prostate carcinoma cell lines and in a castrated-male rat model further established a 

connection between BCL-2 expression and prostate cancer progression. (Catz et al., 

2003) 

1.4. Cucurbitacin 

1.4.1. Phytochemistry 

 Cucurbitacins which are structurally diverse triterpenes with cucurbitane 

skeleton, found in the members of Cucurbitaceae and several other plant families 

possess immense pharmacological potential. They differ from most other tetracyclic 

triterpenes by being highly unsaturated and containing numerous keto-, hydroxyl- and 

acetoxy groups. Chemically, cucurbitacins are ranked according to the presence of 

various functional groups on rings A and C, diversity in the side chain and stereo-

chemical considerations. They are widely distributed in the plant kingdom, where they 

act as heterologous chemical pheromones that protect plants from external biological 

insults. Chemically, Cucurbitacins are ranked according to the presence of various 

functional groups on rings A and C, diversity in the side chain and stereochemical 

considerations. (Zheng  et al., 2007) 

1.4.2. Mechanism of anti-cancer activity 

 In general, cucurbitacins are considered to induce apoptosis by selectively 

inhibiting the JAK/STAT pathways. However, other mechanisms are also implicated in 

their apoptotic effects. These include the MAPK pathway, PARP cleavage, expression 

of active caspase-3, decreased pSTAT3 and JAK3 levels, as well as decreases in 

various downstream STAT3 targets such as Mcl-1, Bcl-2, Bcl-XL, and cyclin D3. All 

the above mentioned markers were implicated in apoptosis and the cell cycle control 

(Ríos et al., 2012). Being a triterpenoid, cucurbitacin might be a precursor of steroid. 

The structure of cucurbitacin resembles the structure of steroids. Approximately 80-
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90% of prostate cancers are dependent on androgen at initial diagnosis, and endocrine 

therapy of prostate cancer is directed toward the reduction of serum androgens and 

inhibition of AR (Heinlein et al., 2004).  

 The initial evidence of docking studies had revealed that the cucurbitacins have 

high binding for the AR. However, there has been no biological evidence to prove the 

same. Hence, in this study, we evaluated the prostate cancer activity of cucurbitacins by 

AR antagonism. Cucurbitacin is a novel compound for steroid dependent prostate 

cancer study. 
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2. LITERATURE REVIEW 

2.1. Role of AR in prostate cancer 

 The normal development and maintenance of the prostate is dependent on 

androgen acting through the AR. AR remains important in the development and 

progression of prostate cancer. AR expression is maintained throughout prostate cancer 

progression, and the majority of androgen-independent or hormone refractory prostate 

cancers express AR. Mutation of AR, especially mutations that result in a relaxation of 

AR ligand specificity, may contribute to the progression of prostate cancer and the 

failure of endocrine therapy by allowing AR transcriptional activation in response to 

anti-androgens or other endogenous hormones. Similarly, alterations in the relative 

expression of AR co-regulators have been found to occur with prostate cancer 

progression and may contribute to differences in AR ligand specificity or 

transcriptional activity. Prostate cancer progression is also associated with increased 

growth factor production and an altered response to growth factors by prostate cancer 

cells. The kinase signal transduction cascades initiated by mitogenic growth factors 

modulate the transcriptional activity of AR and the interaction between AR and AR co-

activators. The inhibition of AR activity through mechanisms in addition to androgen 

ablation, such as modulation of signal transduction pathways, may delay prostate 

cancer progression. (Heinlein et al., 2004) 

2.2. AR structure and functions 

 AR is a nuclear receptor encoded by a single gene located on human X-

chromosome at Xq11-12 region that spans more than 90kb and contains 8 exons. 

Human AR is a 900-920 amino acid containing protein and the variations are due to the 

polymorphism in the length of polyglutamine (CAG repeats) and polyglycine (GGN 

repeats) tracts of the first exon.  
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Like other nuclear receptors AR is also divided into 4 regions  

• Variable amino terminal domain or Activation function 1 (AF1),  

• DNA binding domain,  

• Hinge Region,  

• Ligand binding domain (LBD) / Activation function-2 (AF-2).  

Two isoforms of AR (A&B) are expressed in humans. AR-B isoform is predominantly 

expressed over AR-A isoform and the ratio of AR-B to AR-A isoform is 10:1 (Nigel et 

al., 2010).  

2.2.1. Structure and function of AR amino terminal domain  

 The amino terminal domain approximately contains half the molecule of AR 

and is required for full transcriptional activity.  The activity of AR depends on various 

transactivation units (TAU) within the amino terminal domain. The amino terminal 

domain of AR contains two transactivation units namely TAU-1 and TAU-5. TAU-1 

appears to be important in ligand dependant activation and TAU-5 is responsible for 

constitutive activation of AR. The 
23

FQNLF
27 

motif is involved in the ligand dependant 

intramolecular amino/carboxyl terminal interaction which is essential for full activation 

of AR because this interaction is essential for receptor stabilization, prevents ligand 

dissociation from AR, increases the DNA binding affinity, creates surface area for 

recruitment of co-activators etc. This ligand dependant amino/carboxyl terminal 

interaction occurs between the first motif of amino terminal domain with helices 3, 4 

and 12 of AF-2 domain overlapping the binding site of p160/SRC family of co-

activators (Scott et al., 2007). The second motif WXXLF is responsible for constitutive 

activation of AR in the absence of ligand or amino terminal domain. The 
433

WXXLF
437

 

motif interacts with LBD outside of AF-2 domain (Bin et al., 2000)  
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2.2.2. Structure and Function of AR DNA binding domain  

 DNA binding domain of AR is highly conserved and plays a major role in AR 

nuclear localization, receptor dimerization, specific and non-specific DNA binding. 

DNA binding domain is made of 3 α-helices having 2 zinc finger motifs and a short C- 

terminal extension. Each zinc finger consists of 4 cysteine residues and a Zn
-1

 ion. The 

first zinc finger (P-box) is involved in the sequence recognition and directly binds to 

major groove of hormone response element (HRE) in the DNA. The second zinc finger 

(D-box) is involved in the stabilization of DNA bound AR interactions and mediate 

DNA dependant intermolecular protein-protein interactions (homo dimerization) (Scott 

et al., 2007). 

 In AR the carboxy terminal extension amino acids provide an additional dimer 

interface along with second zinc finger that is required for selective and high affinity 

binding of AR to specific androgen response elements (Edward et al., 2002). 

2.2.3. Structure and functions of hinge region 

 Hinge region is flexible and separates the DNA binding domain from Ligand 

binding domain. The hinge region of AR has a transcriptional inhibiting motif made of 

highly basic amino acids and has an attenuating effect on AF-2 by interfering with the 

recruitment of co-activators. Deletion of the inhibiting motif enhances the 

intramolecular N/C terminal interaction which is necessary for AR transcriptional 

function as discussed in Variable amino terminal domain but impairs the hormone 

dependant nuclear translocation because of the deletion of nuclear localization signal 

and also affects DNA binding and receptor stability (Annemie et al., 2007). 
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2.2.4. Structure and function of LBD 

 The LBD of AR consists of 12 α-helices and 1 β-sheet that fold to form triple 

layered α-helical sandwich which creates a hydrophobic ligand binding pocket in which 

ligand binds (Fig.1). 

 Agonist binding to LBD causes helix-12 to lay over the ligand binding pocket 

and exposes the groove necessary for intramolecular N/C interaction. Antagonist 

binding displaces the helix-12 away from ligand binding pocket and unveils the binding 

surface for co-repressor NcoR/SMRT interaction and inhibition of AR transcriptional 

activity. (Osguthorpe et al., 2011). 

Fig. 1: Crystal structure of wild AR showing α-helices and β-strand folding 

 

Fig 2: Essential Hydrogen bond interactions of DHT 
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2.2.5. Ligand dependant AR activation  

 The ligand dependant activation is required for maximum activation of full 

length AR. Upon androgen binding to AR LBP, AR dissociates from heat shock 

proteins (HSP), undergoes ligand dependant intramolecular amino-carboxy terminal 

interaction, phosphorylation, nuclear translocation, DNA dependant homodimerization, 

co-activator recruitment, binding to specific androgen response elemnts and initiation 

of transcription. AR resides predominantly in cytoplasm is associated with HSP and 

chaperons. HSP also have active role in transcriptional activation of the receptor 

because HSP 90 binds to AR LBD and keeps it in an active conformation so that AR is 

able to bind androgens. Androgen binding to LBP results in the dissociation of HSP 

from AR, helix 12 to fold over the LBP to enclose the ligand unmasking the necessary 

grooves to form intramolecular amino-carboxy terminal interaction, dimerization and 

exposes nuclear localization signal. Phosphorylation of AR also plays an important role 

in transcriptional activity of AR. The newly translated AR is phosphorylated at serine 

residues 506, 641, 653 as a post-translational modification which increase the ligand 

acquiring properties. Antagonist binding does not enhance receptor phosphorylation. 

After translocation into nucleus AR undergoes DNA dependant intermolecular 

homodimerization (Jin et al., 2009). 

Table 2: Drugs available for prostate cancer 

S. No Drug Classification 

1. Bicalutamide Anti-androgen 

2. Enzalutamide Anti-androgen 

3. Flutamide Anti-androgen 

4. Nilutamide Anti-androgen 

5. Cyproterone acetate Anti-androgen 
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6. Abiraterone acetate Anti-androgen and CYP17A1 inhibitor 

7. Cabazitaxel Taxane derivative and anti-microtubular agent 

8. Docetaxel Taxane derivative and anti-microtubular agent 

9. Degarelix Testosterone inhibitor 

10. Goserelin acetate LHRH agonist 

11. Leuprolide acetate LHRH agonist 

12. Triprorelin acetate LHRH agonist 

13. Mitoxantrone hydrochloride Anti-tumor antibiotic 

14. Sipulencel – T Cellular immunological agent 

15. Histrelin  GnRH inhibitor 

16. Buserelin acetate GnRH inhibitor 

17. Ketoconozole Inhibitor of CYP17 and TST synthesis 

18. Radium 223 dichloride Radiopharmaceutical 

19. Prednisone Corticosteroid 

20. Hydrocortisone Corticosteroid 

21. Dexamethasone Corticosteroid 

22. Denosumab Monoclonal antibody 

23. Zoledonic acid Bisphosphonate 

Ref: (National cancer institute) (Gerald  et al., 2017) 

Table 3: Drugs  in clinical trial for prostate cancer 

S. No Drug Phase 

1. Vaccine-Based Immunotherapy Regimen (VBIR) I 

2. AZD8186 I 

3. ZEN003694 I 
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4. Abiraterone Acetate With or Without Cabazitaxel  II 

5. ARN-509+Abiraterone acetate+Leuprolide with Stereotactic, Ultra-

Hypofractionated Radiation  

II 

6. JNJ-56021927 in Combination with Abiraterone Acetate and 

Prednisone Versus Abiraterone Acetate and Prednisone in Subjects 

with Chemotherapy-naive Metastatic Castration-resistant Prostate 

Cancer 

III 

Ref: (Memorial Sloan Kettering cancer centre, 2017)  

2.3. The role of ER-β in prostate cancer
 

 ER-β is encoded by chromosome locus 14q22–24 and it is expressed in both 

stromal and luminal epithelial cells of the human prostate. ERα is expressed mainly in 

prostate stroma. (Fixemer et al., 2003). As a member of the nuclear receptor family, 

ERβ acts individually, forming homodimers (ERβ/β) or heterodimers (ERβ/α). Ligand-

induced dimerization leads to translocation of dimer to the nucleus, binding with co-

regulatory proteins and interaction with responsive elements (binding sites) in the 

promoter regions including nuclear factor-κB (NF-κB) and activator protein 1 (AP-1). 

ERβ binds indirectly to these alternative binding sites through the recruitment of 

cofactors to the receptor. (Heldring et al., 2007). However, less is known about the 

interactions between ERβ and transcriptional cofactors. ERβ/β and ERα/β homo- and 

hetero dimers, respectively, exhibit anti-proliferative effects as they activate different 

target genes. Interestingly, ERα/β heterodimer is more stable than the ERβ/β 

homodimer. Overall, ER dimerization is a crucial step in defining ER signaling. 

Interestingly, prostate morphogenesis occurs under the control of androgens and 

is modulated by estrogens (Marker et al., 2003). However, ERβ is not required in early 

stages of prostate development, as it appears to be expressed in the prostate after 2 wks 
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in the life of newborn mice following ERα expression (Omoto et al., 2005). Moreover, 

in the developing rodent prostate gland, ERα-induced excessive estrogenic exposure 

leads to permanent alternation of the gland including squamous metaplasia, 

inflammation and epithelial dysplasia as reported by an in utero study (Prins et al., 

2006). Notably, the developmental pattern for ERβ in the human prostate is different 

from the rodent. Apparently, ERβ is the only detectable ER in the developing human 

fetal prostate. However, by year 11 post-natally, expression of ERβ is restricted to the 

basal epithelial cells and prostate stromal compartments, similar to adult human 

prostate. (Shapiro et al.,2005). Thus, in the developing human prostate, ERβ is the 

predominant ER in both stromal and epithelial cells (Adams et al., 2002). 

 In the adult human prostate, ERβ is characterized as an important mediator of 

epithelial differentiation (Imamov et al., 2004). The mechanisms through which ERβ 

maintain differentiation involve the degradation of hypoxia-inducible factor 1α (HIF-

1α) (Mak et al., 2010). ERβ enhances transcription of prolyl hydroxylase domain-

containing protein 2 (PHD2) that hydroxylates HIF-1α and marks HIF for destruction 

by the von Hippel-Lindau tumor suppressor (VHL) (Mak et al., 2013). Additionally, 

ERβ appears to have antiproliferative actions which are independent from the 

alternations of systemic androgen concentration and the activation of ERα, as 

documented in aromatase-knockout mice treated with ERβ-specific agonists 

(McPherson et al., 2007). There, ERβ seemed to have a suppressive role in the 

proliferation process, stimulating the differentiation of adult prostate epithelial cells. 

 

2.4. Role of Bcl-2 protein family in regulation of apoptosis in prostate cancer 

In-vitro studies have highlighted the role of Bcl-2 proteins as important 

regulators of the apoptotic pathway in several cell types Bcl-2, the prototype of this 
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family, was discovered by studies of t(14:18) chromosomal translocations, which are 

frequent in non-Hodgkin lymphomas and follicular lymphomas. The name Bcl-2 (B 

cell lymphoma/leukemia gene2) signifies the close association of this gene to these 

malignancies in which enhanced expression was initially believed to arise solely as a 

result of these translocations, resulting in the juxta-position of the Bcl-2 gene to a 

potent enhancer element sequence of the Ig H gene. Several genes have been identified 

and designated as the Bcl-2 family based on their sequence homology to Bcl-2. These 

genes include both positive and negative regulator of apoptosis.(Chaudhary et al.,1999) 

2.5. Role of  PI3K/Akt/mTOR pathway in prostate cancer 

 One pathway with a prominent role in prostate cancer is the PI3K/Akt/mTOR 

pathway. Current estimates suggest that PI3K/Akt/mTOR signaling is upregulated in 

30-50% of prostate cancers, often through loss of PTEN. Molecular changes in the 

PI3K/Akt/mTOR signaling pathway have been demonstrated to differentiate benign 

from malignant prostatic epithelium and are associated with increasing tumor stage, 

grade, and risk of biochemical recurrence. Multiple inhibitors of this pathway have 

been developed and are being assessed in the laboratory and in clinical trials, with 

much attention focusing on mTOR inhibition. Current clinical trials in prostate cancer 

are assessing efficacy of mTOR inhibitors in combination with multiple targeted or 

traditional chemotherapies, including bevacizumab, gefitinib, and docetaxel. (Todd et 

al., 2009) 

 

2.6. Caspase pathway 

 Caspases involved in apoptosis have been subclassified by their mechanism of 

action and are either initiator caspases (caspase-8 and -9) or executioner caspases 

(caspase-3, -6, and -7). (David et al., 2013). Initiator caspases activate executioner 
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caspases that subsequently coordinate their activities to demolish key structural proteins 

and activate other enzymes.   

 The extrinsic apoptosis pathway is activated through the binding of a ligand to a 

death receptor, which in turn leads, with the help of the adapter proteins 

(FADD/TRADD), to recruitment, dimerization, and activation of caspase-8. Active 

caspase-8 then either initiates apoptosis directly by cleaving and thereby activating 

executioner caspase (-3, -6, -7), or activates the intrinsic apoptotic pathway through 

cleavage of BID to induce efficient cell death. The intrinsic or mitochondrial apoptosis 

pathway can be activated through various cellular stresses that lead to cytochrome c 

release from the mitochondria and the formation of the apoptosome, comprised of 

APAF1, cytochrome c, ATP, and caspase-9, resulting in the activation of caspase-9. 

Active caspase-9 then initiates apoptosis by cleaving and thereby activating executioner 

caspases (Fig 3). 

Fig 3: Caspase pathway 

 

 

2.7. Cucurbitacin 

 Cucurbitacins are found in many of the cucurbitaceous plants (Kaushik et al., 

2015). This diverse group of compounds may prove to be important lead molecules for 

future research. Research focused on these unattended medicinal leads from the nature 
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can prove to be of immense significance in generating scientifically validated data with 

regard to their efficacy and possible role in various diseases. Medicinal and toxic 

properties of these compounds have stimulated a continuing interest in them. (Kupchan 

et al., 1978). Many genus of Cucurbits viz. Trichosanthes, Cucurbita, Cucumis and 

Citrullus are affluent in cucurbitacins. These compounds have also been discovered in 

other plant families like Scrophulariaceae, Cruciferae, Datiscaceae, Primulaceae, 

Rubiaceae etc. The diversity of cucurbitacins lies in variety of its side chain derivatives 

that contribute to their disparate pharmacological actions. (Stuppner et al., 1993). The 

bitter taste of plant species like cucumber has been attributed to the presence of 

cucurbitacins.  

 The first cucurbitacin was isolated as a crystalline substance in 1831 and was 

named α-elaterin. Certain plant species rich in cucurbitacins like Momordica hold 

coveted position in different system of traditional medicines for curative effects in 

metabolic disease like diabetes. All cucurbitacins contain a basic 19-(10→9β)-abeo--

10α-lanost-5--ene ring skeleton. A common feature among all compounds in the 

category of Cucurbitacins is the presence of 5, (6) --double bond. The difference of 

Cucurbitacins from steroidal nucleus lies in the fact that in basic structure of 

Cucurbitacins a methyl group is located at C-9 rather than C-10. (Dinan, et al., 2001) 

Most of the Cucurbitacins are tetracycline, but some representatives have an extra ring 

due to formal cyclization between C--16 and C--24 as in cucurbitacins S and T. 

(Gamlath et al., 1998) The Cucurbitacins differ from most of the other tetracyclic 

triterpenes by being highly unsaturated and contains numerous keto--, hydroxyl--, and 

acetoxy--groups. (Jorn et al., 1998) Certain Cucurbitacins have been discovered in the 

form of glycosides and some of them lack C--11 carbonyl function (Stuppner et al., 
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1991). Cucurbitacin B inhibits ATP citrate lyase which is a key enzyme that plays 

crucial role in cancer cell metabolism in prostate cancer (Gao et al., 2014).  

 The structural composition of following Cucurbitacins are known and have been 

designated by the letters: A, B, C, D, E, F, G, H, I, J, K, L, O, P, Q, R and S.  

Cucurbitacin I caused reduction of growth in breast and prostate carcinoma cell lines 

(MDA-MB-231, MDA-MB-468, Panc-1), in vitro, as well as in nude mice xenograft 

models (Sun et al., 2008). Cucurbitacin Q induces apoptosis more potently in human 

and murine tumors. Furthermore, in HeLa cells, cucurbitacins inhibited DNA, RNA, 

and protein synthesis (Witkowski et al., 1984). The 23, 24-dihydrocucurbitacin B and 

cucurbitacin R, inhibit proliferation and/or induce apoptosis in colon cancer cell lines. 

Cucurbitacin E inhibits the proliferation of prostate cancer cells and caused disruption 

of the cytoskeleton structure of actin and vimentin (Duncan et al., 1996). Cucurbitacin 

A and I act by inhibition of only JAK2 and STAT3 respectively. It has been reported 

that cucurbitacin E inhibited tumor angiogenesis by inhibiting JAK-STAT3 and 

mitogen activated protein kinases (MAPK) signaling pathways. It has been reported 

that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down-

regulating both the human telomerase reverse transcriptase and c-Myc expression in 

breast cancer cells (Kaushik et al., 2015). 

2.7.1. Cucurbitacin and Anti-inflammatory activity 

Cucurcitacin analogues viz. Cucurbitacin R and DHCB have been reported to 

possess anti-inflammatory potential and their action is reported to be mediated by 

inhibition of tumor necrosis factors (TNF)-α and other mediators of inflammation such 

as nitric-oxide synthase-2 and cyclo-oxygenase-2 (Escandell et al.,2008). Cucurbitacins 

B, D, E and I have been reported to inhibit cyclo-oxygenase -2 enzymes with no effect 

on COX-1 enzymes. (Jayaprakasam et al.,2003). The anti-inflammatory response of 23, 
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24-dihydrocucurbitacin D (DHCD) have been hypothesized to get mediated through 

blocking of NF-κ B activation thereby obstructing the release of nitrous oxide. DHCD 

can be taken up as probable lead and appraised for providing a promising anti-

inflammatory agent. (Park et al., 2004 ). 

2.7.2. Cucurbitacin and Antitumor activity 

Very less information is available on the role of Cucurbitacins at molecular 

level which has lead to slow advancement in the development of Cucurbitacins as anti-

cancer agents. (Kee et al., 2008). In relation to cancer, targets of Cucurbitacin actions 

involve growth inhibition, arrest of cell cycle at G2/M phase and induction of apoptosis 

in cancer cell. (Liu et al., 2000). The mechanisms underlying anti-tumorigenic 

potentials of Cucurbitacins involve inhibition of Janus kinase/Signal Transducer 

Activator of Transcription 3 (JAK/STAT3) signaling pathway whose activation is 

required for the proliferation and sustainment of cells. (Bowman et al., 2000). The role 

of Cucurbitacin I in suppressing phosphotyrosine STAT3 in cancer cell lines and 

cancerous lung cells of humans has been reported. (Blaskovich et al., 2003). Although 

Cucurbitacin B, E, and I act by inhibiting the activation of both JAK2 and STAT3, 

Cucurbitacin A and I acts by inhibition of only JAK2 and STAT3 respectively. (Sun et 

al., 2005). It has been reported that Cucurbitacin E inhibited tumor angiogenesis by 

inhibiting JAK-STAT3 and mitogen activated protein kinases (MAPK)- signaling 

pathways (Dong et al., 2010). The role of interference with actin cytoskeleton has been 

attributed to anti-proliferative effects of Cucurbitacin B and E. The anti-proliferative 

activities have been correlated directly with the disruption of the F-actin cytoskeleton. 

(Duncan et al., 1996). It has been proposed that the combination of Cucurbitacin B with 

docetaxel may augment the chemotherapeutic effects by suppression STAT3 in patients 

with laryngeal cancer. (Liu et al., 2000). It is expected that cucumber fruits have anti-
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tumor effects since they have been reported to contain Cucurbitacin C. (Higashio et al., 

2002) It has been reported that cucurbitacin B exerts an anticancer effect by inhibiting 

telomerase via down-regulating both the human telomerase re verse transcriptase and c-

Myc expression in breast cancer cells. (Duangmano et al., 2010) 

2.7.3. Cucurbitacin and Anti-artherosclerotic activity 

There have been reports on Cucurbitacin B and E in glycosidic form to exhibit 

inhibitory effect on lipid oxidation products like- malonaldehyde (MDA) and 4-

hydroxynonenal (4-HNE). (Tannin-Spitz et al.,2007). These reports bolster the 

therapeutic role of Cucurbitacins in artherosclerosis, which involves modification of 

lipoproteins by involvement of- MDA and 4-HNE. (Saba et al., 2010) 

2.7.4. Cucurbitacin and Anti-diabetic activity 

There have been a plethora of reports on the role of Cucurbitacins for their 

cytotoxic, hepatoprotective, cardiovascular, and antidiabetic effects. (Park et al., 2004). 

Cucurbitane triterpenoids present in momordica fruits are noted for antidiabetic and 

anticancer activities, this may provide leads as a class of therapeutics for diabetes and 

obesity. (Tan et al., 2008). The 5’-adenosine monophosphate-activated protein kinase 

(AMPK) pathway is suggested as a probable mechanism for the stimulation of GLUT4 

translocation by triterpenoids from M. charantia. It is particularly interesting in relation 

to diabetes and obesity because activation of AMPK increases fatty acid oxidation, 

inhibits lipid synthesis, and can improve insulin action. An analogue of 23,24-

dihydrocucurbitacin F from Hintonia latiflora has been reported to possess significant 

hypoglycemic and antihyperglycemic effects. The probable mechanism underlying-- 

antihyperglycemic effect could be stimulation of insulin release and regulation of 

hepatic glycogen metabolism. (Jose et al., 2007) 
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2.7.5. Miscellaneous activity of cucurbitacin 

It has been reported that the concentration of Cucurbitacin C in the leaves is an 

important parameter in spider mite resistance in Cucumis sativus, perhaps by acting as 

an antagonist of a spider mite ecdysteroid receptor. (Balkema et al., 2003). The steroid 

like resemblance of Cucurbitacin D may possess therapeutic effects via inhibition of 

Na
+
/K

+
-ATPase. (Chen et al.,2010). The role of Cucurbitacins as preventive and radical 

scavenging antioxidant has also been reported. Cucurbitacins have also been reported to 

possess adaptogenic activity. Cucurbitacins have been reported to increase the rat 

capillary permeability and to demonstrate antifertility effects in female mice. (Shohat et 

al.,1972). Cucurbitacin D has been reported to inhibit ovulation in mice. There has been 

protective role of Cucurbitacins acting as allomones in many plant species. Role of 

Cucurbitacins as anti-feedants for few insects, birds and as kairomones (Cucurbitacin 

B, E, D, I and L) for diabroticite beetles have been reported. (Subbiah. 2011). It is 

reported that Cucurbitacins act via Cuc receptors located on the maxillary palpi. They 

arrest the searching behavior of diabroticite beetles and produce a compulsive feeding 

behavior. Role of Cucurbitacin B and D in controlling diabrotic beetles can be an 

interesting approach. (Escandell et al.,2007). 

2.7.6. Cucurbitacin I (JSI-124) induces apoptosis via p53 pathway in HepG2 cells 

 JSI-124 inhibited the proliferation and induced Hoechst 33258-stained 

chromatin condensation in HepG2 cells in a concentration- and time-dependent manner. 

Flow cytometry revealed that 1.00 µmol/L JSI-124 treatment increased the apoptotic 

rate significantly in HepG2 cells compared with the control cells. Furthermore, JSI-124 

significantly enhanced the mRNA expressions of p53 and its downstream apoptotic 

factors, including Bax and Fas, but did not change the gene expression of the p53 tumor 

suppressor, MDM2. The 48-hour treatment of JSI-124 in HepG2 cells significantly 
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increased the levels of p53 and cleaved caspase-3 proteins. Conclusion JSI-124 induces 

the apoptosis of HepG2 cells through the activation of p53 and its downstream pro-

apoptotic factors. (Wu et al., 2017) 

Cucurbitacin I dose- and time-dependently inhibited the proliferation of five OS 

cell lines. Following cucurbitacin I treatment, STAT3 was inactivated and analysis of 

Mcl-1, cleaved PARP and caspase-3 indicated apoptosis induction. Expression of cell 

cycle regulator proteins, such as phospho-cyclin D1, c-Myc and survivin, were 

suppressed. Finally, cucurbitacin I potently inhibited the tumor growth of human OS 

143B cells in nude mice. In-vitro and in-vivo results suggest that STAT3 inhibition by 

cucurbitacin I will be an effective and new approach for the treatment of Osteosarcoma. 

(Oi et al., 2016 ) 

2.7.7. Cucurbitacin I and cardio-toxicity 

 The mechanisms of cucurbitacin-I-induced cardiotoxicity are examined by 

investigating the role of MAPK-autophagy-dependent pathways. After being treated 

with 0.1-0.3µM cucurbitacin-I for 48h, H9c2 cells showed a gradual decrease in the cell 

viabilities, a gradual increase in cell size, and mRNA expression of ANP and BNP 

(cardiac hypertrophic markers). Cucurbitacin-I concentration-dependent apoptosis of 

H9c2 cells was also observed. The increased apoptosis of H9c2 cells was paralleling 

with the gradually strong autophagy levels. Furthermore, an autophagy inhibitor, 3-

MA, was used to block the cucurbitacin-I-stirred autophagy, and then the hypertrophy 

and apoptosis induced by 0.3µM cucurbitacin-I were significantly attenuated. In 

addition, cucurbitacin-I exposure also activated the MAPK signaling pathways, 

including ERK1/2, JNK, and p38 kinases. Interestingly, only the ERK inhibitor U0126, 

but not the JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580, weakened the 

induction of 0.3µM cucurbitacin-I in hypertrophy, autophagy and apoptosis. The 
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findings suggest that cucurbitacin-I can increase the autophagy levels of H9c2 cells, 

most likely, through the activation of an ERK-autophagy dependent pathway, which 

results in the hypertrophy and apoptosis of cardiomyocytes. (Wu et al., 2016 ) 

2.7.8. Mechanism of cucurbitacin I in gastric cancer cells 

 Deng et al., for the first time systematically studied the underlying molecular 

mechanisms of Cu-I-induced gastric cancer cell death both in vitro and in vivo. In this 

study, they show that Cu-I markedly inhibits gastric cancer cell growth by inducing 

G2/M phase cell cycle arrest and apoptosis at low nanomolar concentrations via a 

STAT3-independent mechanism. Notably, Cu-I significantly decreases intracellular 

GSH/GSSG ratio by inhibiting NRF2 pathway to break cellular redox homeostasis, and 

subsequently induces the expression of GADD45α in a p53-independent manner, and 

activates JNK/p38 MAPK signaling. Interestingly, Cu-I-induced GADD45α and 

JNK/p38 MAPK signaling form a positive feedback loop and can be reciprocally 

regulated by each other. Therefore, the present study provides new insights into the 

mechanisms of antitumor effects of Cu-I, supporting Cu-I as an attractive therapeutic 

drug in gastric cancer by modulating the redox balance. (Deng et al., 2016) 

 

2.7.9. Cucurbitacin I and Breast cancer 

 Qi et al used JSI-124 (Cucurbitacin I), a selective JAK/STAT3 signaling 

pathway inhibitor, to investigate the role of STAT3 in tumor angiogenesis of a human 

BC cell line in vitro. JSI-124 inhibited cell viability, proliferation, adhesion, migration 

and tube formation of a human BC cell line MDA-MB-468. After transfection with 

pMXs-Stat3C, a dominant active mutant, the inhibitory effects of JSI-124 on MDA-

MB-468 were abolished. Furthermore, JSI-124 reduced the phosphorylation of STAT3. 

These results suggested that JSI-124 inhibited tumor angiogenesis of the human BC cell 
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line in vitro through the reduction of STAT3 phosphorylation. In addition, JSI-124 

could reduce VEGF transcription and secretion, suggesting that JSI-124 is also 

involved in the inhibition of the VEGF autocrine loop in the tumor microenvironment. 

(Qi et al., 2015) 

The small GTPase Rac1 has been widely implicated in mammary tumorigenesis 

and metastasis. Previous studies established that stimulation of ErbB receptors in breast 

cancer cells activates Rac1 and enhances motility via the Rac-guanine nucleotide 

exchange factor P-Rex1. As the Janus tyrosine kinase 2 (Jak2)/signal transducer and 

activator of transcription 3 (Stat3) pathway has been shown to be functionally 

associated with ErbB receptors, Lopez et al asked if this pathway could mediate P-

Rex1/Rac1 activation in response to ErbB ligands. They found that the anticancer agent 

cucurbitacin I, a Jak2 inhibitor, reduced the activation of Rac1 and motility in response 

to the ErbB3 ligand heregulin in breast cancer cells. However, Rac1 activation was not 

affected by Jak2 or Stat3 RNA interference, suggesting that the effect of cucurbitacin I 

occurs through a Jak2-independent mechanism. Cucurbitacin I also failed to affect the 

activation of P-Rex1 by heregulin. Subsequent analysis revealed that cucurbitacin I 

strongly activates RhoA and the Rho effector Rho kinase (ROCK) in breast cancer cells 

and induces the formation of stress fibers. Interestingly, disruption of the RhoA-ROCK 

pathway prevented the inhibitory effect of cucurbitacin I on Rac1 activation by 

heregulin. Lastly, they  found that RhoA activation by cucurbitacin I is mediated by 

reactive oxygen species (ROS). The ROS scavenger N-acetyl L-cysteine and the 

mitochondrial antioxidant Mito-TEMPO rescued the inhibitory effect of cucurbitacin I 

on Rac1 activation. In conclusion, these results indicate that ErbB-driven Rac1 

activation in breast cancer cells proceeds independently of the Jak2 pathway. Moreover, 
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they established that the inhibitory effect of cucurbitacin I on Rac1 activity involves the 

alteration of the balance between Rho and Rac. (Lopez et al., 2013) 

2.7.10. Cucurbitacin I and colon cancer 

Song et al., examined the chemopreventive potential of cucurbitacin I, a natural 

component extracted from plants of the Cucurbitaceae family, in the colon cancer cell 

line COLO205. They hypothesized that cucurbitacin I would prevent colon cancer cell 

migration and invasion, and sensitize colon cancer cells to chemotherapy. The data 

demonstrated that exposure of the COLO205 cells to cucurbitacin I significantly 

decreased cell viability. Furthermore the data demonstrated for the first time that in the 

COLO205 cells, cucurbitacin I could suppress the cell migration and invasion, and 

harbor chemosensitization activity against colon cancer. The anticancer activity of 

cucurbitacin I was accomplished by downregulating p-STAT3 and MMP-9 expression. 

Collectively, the results suggest that cucurbitacin I may be a potent adjuvant 

chemotherapeutic agent for colon cancer with anti-migration, anti-invasion and 

chemosensitizing activities. (Song et al., 2015). Cucurbitacin-I reduced colon cancer 

cell proliferation by enhancing apoptosis and causing cell cycle arrest at the G2/M 

phase. (Kim et al., 2014).  

 

Table 4: Cucurbitacins and their activity 

Cucurbitacin Structure Activity Reference 

A 

 

No reported 

biological activity 

found. 

 

 

 

----- 
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B 

 

Anti-proliferative 

activity in prostate 

and breast cancer.  

Gao et 

al.,2014. 

Duangmano  et 

al.,2010. 

C 

 

No reported 

biological activity 

found. 

 

 

 

----- 

D 

 

 Inhibits proliferation 

and induce apoptosis 

of T-cell leukemia 

cells correlating NF-

κB inhibition and 

down-regulation of 

the expression of 

antiapoptotic proteins 

Bcl-xL and Bcl-2 

Ding et 

al.,2011 

E 

 

Cucurbitacin E-

induced disruption of 

the actin and vimentin 

cytoskeleton in 

prostate carcinoma 

cells and inhibits 

tumor angiogenesis 

through VEGFR2 

mediated JAK2/ 

STAT3 signaling 

pathway. 

Duncan et al., 

1996. 

 Dong et al., 

2010. 

F 

 

Cucurbitacin F 

induces cell cycle 

G2/M arrest and 

apoptosis in human 

soft tissue sarcoma 

cells. 

Lohberger et 

al., 2015. 
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G 

H 

I 

J 

K 

L 
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No reported 

biological activity 

found. 

 

 

 

-----

 

No reported 

biological activity 

found. 

 

 

 

-----

 

Anti-tumor activity 

against colon cancer, 

gastric cancer, 

osteosarcoma breast 

cancer. 

Deng 

al.,

Qi 

Ren 

al.,

et al.,

Kim 

2014.

al.,

 

No reported 

biological activity 

found. 

 

 

 

-----

 

No reported 

biological activity 

found. 

 

 

 

-----

 

No reported 

biological activity 

found. 

 

 

 

-----
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----- 

Deng et 

al.,2016,  

Qi et al.,2015, 

Ren et 

al.,2014, Song 

et al.,2015. 

Kim et al 

2014. Oi et 

al.,2016. 

----- 

----- 

----- 
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O 

 

No reported 

biological activity 

found. 

 

 

 

----- 

P 

 

No reported 

biological activity 

found. 

 

 

 

----- 

Q 

 

Selective STAT3 

activation inhibitor 

with potent antitumor 

activity 

Sun et al., 

2008. 

R 

 

Reduces the 

inflammation and 

bone damage 

associated with 

adjuvant arthritis in 

Lewis rats by 

suppression of tumor 

necrosis factor-alpha 

in T lymphocytes and 

macrophages. 

Escandell et 

al., 2007. 

S 

 

No reported 

biological activity 

found. 

 

 

 

----- 

U 

 

No reported 

biological activity 

found. 

 

 

 

----- 
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3. OBJECTIVES AND PLAN OF STUDY 

3.1 Objectives 

� To identify Cucurbitacin derivative, which is having high affinity towards 

prostate cancer targets by in-silico method. 

� To evaluate the cytotoxic activity of the cucurbitacin derivative in prostate 

cancer cell lines by MTT assay. 

� To elucidate the apoptotic mechanism of cucurbitacin in prostate cancer cell line 

by caspase assay, acridine orange\ethidium bromide staining methods and gene 

expression studies. 

 

3.2 PLAN OF STUDY 

3.2.1 Phase І 

3.2.1.1 In-Silico study 

� In-silico study comprises of molecular docking of cucurbitacin derivatives (A – 

U) with prostate cancer target proteins like AR, ER-β, PI3K-α, Bcl2 and AKT. 

� Cucurbitacin which is having Glide score more than the standard in concerned 

protein will be studied further. 

� Selected cucurbitacins will be examined in QikProp for its ADME properties 

and toxicity. 

� One lead molecule will be taken for in-vitro studies in cancer cell lines. 

3.2.2 Phase ІІ 

3.2.2.1 In-Vitro study   

� Culturing LNCaP and PC3 cell lines using RPMI + 10% FBS and DMEM + 

10% FBS respectively in 5% CO2 at 37˚ C. 
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� MTT assay of standard bicalutamide and cucurbitacin will be done in LNCaP 

and PC3 cell lines to evaluate the IC50 value.  

� Determination of apoptosis mechanism by ethidium bromide/acridine orange 

staining method and caspase 3, 8, 9 assay. 

� PCR studies – to detect the expression of genes such as Bax, Bcl2 and PSA 

(Prostate Specific Antigen). 
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4. MATERIALS AND METHODS 

4.1. Materials 

4.1.1. Chemicals used in this study 

Table 5: Chemicals used for this study 

S. No Chemical Manufacturer 

1. Cucurbitacin I Phytolab 

2. DMSO Thermo fisher scientific 

3. DMEM Gibco 

4. RPMI Gibco 

5. Trypsin Sigma 

6. Phosphate buffer saline Gibco 

7. FBS Sigma 

8. MTT Himedia 

9. Dihydrotestosterone Himedia 

10. Bicalutamide Santa cruz 

11. Acridine orange  Himedia 

12. Ethidium bromide Himedia 

13. Caspase 3 assay kit Biovision 

14. Caspase 8 assay kit Biovision 

15. Caspase 9 assay kit Biovision 

16. TRI reagent Sigma 

17.  Chloroform Nice chemicals 

18.  High capacity cDNA conversion kit Applied biosystems 
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Table 6: Instruments used in this study 

S. No Instruments Manufacturer 

1. Glide Schrodinger 

2. Biosafety working hood Esco  

3. CO2 incubator Thermo scientific 

4. ELISA reader Multiskan Go – Thermo scientific 

5. Autoclave sterilizer Everflow autoclave 

6. Refrigerated centrifuge Thermo scientific  

7. Deep freezer Thermo scientific 

8. Inverted fluorescence microscope Nikon 

9. Arthik thermal cycler Thermo scientific 

10. Micropipettes Eppendorf 

11. Gel doc image analyser Syngene 

12. Microcentrifuge Eppendorf 

 

4.2. Methods 

4.2.1.  In-silico screening 

4.2.1.1. Molecular Modelling 

 The cucurbitacin derivatives are downloaded from the PubChem compound 

database and are prepared for docking using LigPrep (Ligprep, Schrödinger). LigPrep 

helps to convert 2D structure to 3D representation. LigPrep can also produce a number 

of structures from each input structure with various ionization states, tautomers, 

stereochemistries, and ring conformations, and eliminate molecules using various 

criteria including molecular weight or specified numbers and types of functional groups 
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present. Subsequently the structures were optimized by means of OPLS-2005 using a 

default setting in LigPrep. 

4.2.1.2. Protein preparation 

 Proteins used in the study are downloaded from the RCSB protein data bank 

(PDB). Protein structures are prepared by using Maestro software (Maestro, 

Schrödinger) and aligned using the protein structure alignment module in Prime (Prime, 

Schrödinger). Bond order and formal charges were added for heterogroups and 

hydrogens were added to all atoms in the system. Protein was inspected visually for 

accuracy in the χ2 dihedral angle of Asn and His residues and the χ3 angle of Gln, and 

rotated by 180˚ when needed to maximize hydrogen bonding. The proper His tautomer 

was also manually selected to maximize hydrogen bonding. All Asp, Gln, Arg and Lys 

residue were left in their charged state. Water molecules for crystallization were 

removed from the complex except in the active site. A brief relaxation was performed 

on structure using the protein preparation module in Maestro with the “Refinement 

only” option. This is a two – part procedure that consists of optimizing hydroxyl and 

thiol torsion in the first stage followed by an all-atom constrained minimization carried 

out with the impact refinement module (Impref) using the OPLS-2005 force field to 

alleviate steric clashes that may exist in the original PDB structures. The minimization 

was terminated when the Root Mean Square Deviation (RMSD) reached a maximum 

cutoff of 0.30 Å. 

4.2.1.3. Grid generation and ligand docking 

 Grids were defined by centering them on the ligand in the crystal structure using 

the default box size setting in Glide. Scaling of van der Waals radii of protein atom's 

partial atomic charge of less than 0.25 in 1.0. Hydrogen bond constraints were not 

applied. The prepared ligands were docked against the target proteins. All docking 
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calculations were performed using the “Extra precision” (XP) mode of Glide program. 

Glide uses a hierarchical series of filter to search for possible locations of the ligand in 

the active site region of the receptor. The initial filters test the spatial fit of the ligand to 

the defined active site and examined the ligand-receptor interactions using a grid-based 

method. Poses that pass these initial screens enter the final stage of the algorithm, 

which involves evaluation and minimization of a grid approximation to the OPLS-AA 

non-bonded ligand-receptor interaction energies. Final scoring is then carried out on the 

energy-minimized poses. The minimized poses are restored using Schrödinger’s 

proprietary Glide score (G score) scoring function. G score is a modified version of 

ChemScore, but includes a steric-clash term and adds buried polar terms devised by 

Schrödinger to penalize electrostatic mismatches.  

G Score = (a x vdW) + (b x Coul) + Lipo + Hbond + Metal + BuryP + RotB + Site 

Where, vdW – van der Waal energy, Coul – Coulomb energy, Lipo – Lipophilic contact 

term, Hbond – Hydrogen bond, Metal – Metal binding term, BuryP – penalty for buried 

polar groups, RotB – penalty for freezing rotatable bonds, Site – polar interaction of the 

active site. 

4.2.1.4. ADMET property Prediction 

 Many drugs often fail to enter the market as a result of poor pharmacokinetic 

profiles. Thus, it has become imperative nowadays to design lead compounds which 

can be easily orally absorbed, easily transported to their desired site of action, not easily 

metabolized into toxic metabolic products before reaching the targeted site of action 

and easily eliminated from the body before accumulating in sufficient amounts that 

may produce adverse side effects. The sum of the above mentioned properties is often 

referred to as ADME (absorption, distribution, metabolism and elimination) properties, 

or better still ADMET, ADME/T or ADMETox (when considerations are given to 
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toxicity issues). The inclusion of pharmacokinetic considerations at earlier stages of 

drug discovery programs using computer-based methods is becoming increasingly 

popular. The rationale behind in silico approaches are the relatively lower cost and the 

time factor involved, when compared to standard experimental approaches for ADMET 

profiling. As an example, it only takes a minute in an in silico model to screen 20,000 

molecules, but takes 20 weeks in the “wet” laboratory to do the same exercise. A set 

of ADMET-related properties (a total of 46 molecular descriptors) were calculated by 

using the QikProp program (Schrödinger) running in normal mode. QikProp generates 

physically relevant descriptors, and uses them to perform ADMET predictions. An 

overall ADME-compliance score – drug-likeness parameter (indicated by #stars), was 

used to assess the pharmacokinetic profiles of the test compounds. The #stars parameter 

indicates the number of property descriptors computed by QikProp that fall outside the 

optimum range of values for 95% of known drugs.(QikProp, Schrodinger). The 

methods implemented were developed by Jorgensen and Duffy  and among the 

calculated descriptors are: the logarithm of predicted binding constant to human serum 

albumin, log KHSA (range for 95% of drugs: -1.5 to 1.2) the logarithm of predicted 

blood/brain barrier partition coefficient, log B/B (range for 95% of drugs: -3.0 to 1.0) 

the predicted apparent Caco-2 cell membrane permeability (BIPcaco − 2) in Boehringer–

Ingelheim scale, in nm s-1 (range for 95% of drugs: < 5 low, > 100 high) the predicted 

apparent Madin-Darby canine kidney (MDCK) cell permeability in nm s-1 (< 25 poor, > 

500 great) calculated from the number of hydrogen bond acceptors (HBA), donors 

(HBD) and the predicted IC50 value for blockage of HERG K+ channels, log HERG 

(concern < −5) the predicted skin permeability, log Kp (−8.0 to −1.0 for 95% of 

drugs) and the number of likely metabolic reactions, #metab (range for 95% of drugs: 

1–8) (Fidele Ntie-Kang, 2013). 
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4.2.2 In-vitro screening  

4.2.2.1. Mammalian cell culture 

 The LNCaP and PC3 cell lines are obtained from NCCS, Pune. LNCaP cells are 

maintained in Roswell Park Memorial Institute (RPMI) medium supplemented with 

10% FBS and penicillin–streptomycin, whereas PC-3 cells were maintained in the 

Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FBS, penicillin–

streptomycin, L-glutamine, pyruvate sodium. Cells were grown at 37°C with 5% CO2. 

PC3 cells are grown in culture flasks with polystyrene surface. The LNCaP cells are 

grown in culture flasks with corning Cell BIND surface. 0.25 % trypsin is used for 

detachment of the cells. (Claudia et al., 2007). 

4.2.2.2. Maintaining and storage of cell lines 

 LNCaP cells show a steady growth rate with a doubling time of 60 hrs whereas 

PC3’s doubling time is 48 hrs. The cells reached confluence in 6 to 7 days and were 

passed to get cells for experiment and also to store liquid nitrogen. Passaging was done 

as follow as. 

 Culture medium was removed from T25 flask by decanting into a clean 

container inside the laminar airflow hood, cells were rinsed with Phosphate Buffer 

Solution (PBS) to remove the traces of serum. 2ml of trypsin was added to the flask 

containing cells and incubate at 37˚C for 2 to 2.5 minutes. As soon as, cells started 

dislodging from the surface, the flask was rinsed with culture medium to arrest 

trypsination. The suspension of cells was collected in a sterile 15ml centrifuge tube 

using serological pipette and the cells were pelleted at 1500rpm for 5 mins. The cell 

pellet was resuspended in PBS and again centrifuged. The resulted pellet is resuspended 

in Culture medium and a part of it was seeded back into a sterile flask. The remaining 

cells were pelleted  and resuspend in cryopreservative medium (10% DMSO in serum) 
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in a cryovial and frozen at -80˚C for short term storage and at liquid nitrogen for long 

time storage. 

4.2.2.3. Drug Preparation 

 Cucurbitacin I was subjected to solubility test with different organic solvents 

and found to be dissolved in DMSO, 50mM concentration was prepared. The desired 

doses such as 0.1, 0.5, 0.10 and 50 mm were prepared from the stock using DMSO. 

4.2.2.4. Anti-proliferative assay  

Approximately 1000 to 3000 cells/well were added in 96 well plate from well 

grown culture, the viability is tested using tryptan blue dye with the help of 

haemocytometer, 95% viability should be confirmed. The anti-proliferative activity is 

measured by adding standard and test compounds (0.1 nM to 500 nM). The 

proliferative activity of the standard and test compound was evaluated without 1nM 

DHT. After 24 hours, fresh medium containing the drug replaces the old medium and 

incubated for another 24 hour. At the end of 48th hr 10µl of  3-[4, 5-dimethyl thiazol-2-

yl] 2, 5- diphenyl tetra-zolium bromide (MTT) is added and the plates were incubated 

for an additional 4 hour. The formazon crystals were dissolved in 100µl of DMSO/well. 

The optical density was measured at 570nm. (Sanchez et al., 2006). By plotting dose 

response curve the IC50 value will be calculated. The cell viability can be calculated 

using the formula,  

Cell viability = (O.D of test cells/O.D of control) Χ 100 

 

4.2.2.5. Dose finalization 

 Based on the IC50 value of test compound of different doses in LNCaP and 

PC3, final dose concentration is fixed for further studies on mechanism of apoptosis.   
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4.2.3. Elucidation of apoptotic mechanism 

4.2.3.1. Gene expression study 

RNA isolation  

Homogenize cell samples in TRIZOL reagent.  Lyse the cells directly in the 

culture dish. Use 1 ml of the TRIZOL reagent per 10 cm2 of glass culture plate surface 

area. After addition of the reagent, the cell lysate was passed several times through a 

pipette to form a homogenous lysate. Isolate cells by centrifugation and then lyse in 

TRI reagent by repeated pipeting. To ensure complete dissociation of nucleoprotein 

complexes, allow samples to stand for 5 minutes at room temperature. Add 0.2 ml of 

chloroform per ml of TRI reagent used. The sample was shaken vigorously for 15 

seconds, and allowed to stand for 2–15 minutes at room temperature. Centrifuged the 

resulting mixture at 12,000 × g for 15 minutes at 2–8 °C. Centrifugation separates the 

mixture into 3 phases: a red organic phase (containing protein), an inter phase 

(containing DNA), and a colorless upper aqueous phase (containing RNA). The 

aqueous phase was transferred to a fresh tube and add 0.5 ml of 2-propanol per ml of 

TRI reagent used in sample preparation. Allow the sample to stand for 5– 10 minutes at 

room temperature. Centrifuged the sample at 12,000 × g for 10 minutes at 2–8 °C. The 

RNA precipitate will form a pellet on the side and bottom of the tube. Remove the 

supernatant and wash the RNA pellet by adding a minimum of 1 ml of 75% ethanol per 

1 ml of TRI reagent used in sample preparation. The sample was vortexed and then 

centrifuged at 7,500 × g for 5 minutes at 2–8 °C. Briefly dry the RNA pellet for 5–10 

minutes by air-drying. The RNA pellet should not be dried completely, as this will 

greatly decrease its solubility. Appropriate volume of DEPC water was added to the 

RNA pellet. To facilitate dissolution, mix by repeated pipeting with a micropipette at 

55–60 °C for 10–15 minutes.  
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Preparation of cDNA from RNA 

 The cDNA was converted from 1µg of the total RNA using high capacity 

cDNA conversion kit. The synthesis of DNA from an RNA template, via reverse 

transcription, produces complementary DNA (cDNA). Reverse transcriptases (RTs) use 

an RNA template and a short primer complementary to the 3' end of the RNA to direct 

the synthesis of the first strand cDNA, which can be used directly as a template for the 

Polymerase Chain Reaction (PCR). This combination of reverse transcription and PCR 

allows the detection of low abundance RNAs in a sample, and production of the 

corresponding cDNA, thereby facilitating the cloning of low copy genes. After initial 

denaturation for 10 min at 95 °C, further denaturation done for 30 sec at 95 °C followed 

by annealing at 60 °C for 45sec and extension at 72 °C for 15sec thirty five 

amplification cycles were performed for PSA, Bax and Bcl2. 

   Table 7: Primers for gene expression 

Gene Primer NCBI 

BAX F: 5’-GGGGACGAACTGGACAGTAA-3’  

R: 5’-CAGTTGAAGTTGCCGTCAGA-3’ 

NM_001291428 

Bcl2 F: 5’- CAGGATAACGGAGGCTGGGATG-3’  

R: 5-GACTTCACTTGTGGCCCAGAT-3’ 

NM_000633.2 

PSA F: 5'-CCGGAAGTGGATCAAGGACA-3',  

R: 5'- GGCCTGGTCATTTCCAAGGT-3', 

NM_001648.2 

  

4.2.3.2. Caspase assay 

 Caspase 3, 8, 9 enzyme activity will be assayed by using a calorimetric caspase 

assay kit. LNCaP cells were treated with 25nM of Cu I and concurrently incubated a 

control culture without induction. Count cells and pellet 1-5 × 106 cells. Resuspend 
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cells in 50 µl of chilled cell lysis buffer and incubate cells on ice for 10 minutes. 

Centrifuge for 1 min in a microcentrifuge (10,000 × g). Transfer supernatant to a fresh 

tube and put on ice for immediate assay or aliquot and stored at -80°C. Assay protein 

concentration. Dilute 50-200 µg protein to 50 µl cell lysis buffer for each assay. Add 50 

µl of 2X reaction buffer that contains 10 mM DTT to each sample. Add 5 µl of 4 mM 

DEVD-pNA (caspase 3), IETD-pNA (caspase 8), LEHD-pNA (caspase 9) substrate and 

incubate at 37°C for 1-2 hour. Read samples at 400 or 405 nm in a microtiter plate 

reader. Fold increase in caspase activity can be determined by comparing these results 

with the level of the un-induced control.      

4.2.3.3. Acridine orange and ethidium bromide staining  

 Incubate 25µl of cell suspension (0.5× 106 to 2.0 × 106 cells/ml) with 1 µl of 

AO/EB solution. Mix gently. Each sample should be mixed just prior to microscopy 

quantification. The sample must be evaluated immediately. Place the plate onto a 

microscopic stage of Fluorescence microscope with fluorescence filter and 10X 

objective. Acridine orange is a vital dye and will stain both live and dead cells. 

Ethidium bromide will stain only cells that have lost membrane integrity. Live cells 

will appear uniformly green. Early apoptotic cells will stain green and contain bright 

green dots in the nuclei as a consequence of chromatin condensation and nuclear 

fragmentation. Late apoptotic cells will also incorporate ethidium bromide and 

therefore stain orange, but, in contrast to necrotic cells, the late apoptotic cells will 

show condensed and often fragmented nuclei. Necrotic cells stain orange, but have a 

nuclear morphology resembling that of viable cells, with no condensed chromatin.   
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     5. RESULTS 

5.1. In-silico screening results 

 Cucurbitacin derivatives were evaluated for their binding affinity with AR, 

ERβ, Bcl2, PI3Kα and AKT proteins. Cucurbitacins had binding affinity with AR, Bcl2 

and AKT and not with PI3Kα and ERβ protein. Among the proteins studied, 

cucurbitacin exhibited better binding affinity with androgen receptors (Table 8). In 

androgen receptor, cucurbitacins had similar and more binding affinity as of 

bicaluatmide (G score -9.177) (Table 8). The standard bicalutamide forms H-Bond 

interactions with amino acids Gln711, Arg752, HOH108 and Asn705 (Table - 9, Fig 4). 

Among the cucurbitacins, cucurbitacin I had number of H-Bond interactions with 

androgen receptors. Cucurbitacin I forms H-Bond interaction with Gln711, Arg752, 

Asn705, HOH108, Met749, HOH109, Val746, Met745 and Trp741 (Table 9, Fig 5). 

 Cucurbitacin G, H, K, L, D and I which had a better binding affinity than 

bicalutamide were further evaluated for their ADME and toxicity properties using 

QikProp 4.0, Schrodinger software. Except for molecular weight, the test compounds 

were within the prescribed range of selected properties (Table 10 & 11). Among the 

cucurbitacins, cucurbitacin I have low molecular weight (514 Dalton). Based on the H-

bond interactions and predicted ADME properties, we have selected cucurbitacin I as a 

lead compound and used that for in-vitro studies. 

5.2. In-Vitro results 

5.2.1. Growth optimization 

LNCaP cells were cultured in RPMI medium supplemented with 10% fetal 

bovine serum at 37˚C with 5% CO2. PC3 cells were cultured in DMEM medium 

supplemented with 10% fetal bovine serum at 37˚C with 5% CO2. The doubling time of 
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LNCaP cells and PC3 cells was observed at 60 hour and 34 hours respectively. The 

fully grown LNCaP cell was in spindle shape and PC3 was in spheroid shape. 

5.2.2. MTT assay result 

 The test and standard compounds were evaluated in LNCaP (AR +) and PC3 

(AR-) cell lines. The test and standard compounds were initially evaluated for their 

cytotoxicity from 1µM to 100µM. Cucurbitacin I exhibits 100% cytotoxic effect in the 

lowest tested dose (0.1µM) on LNCaP and PC3 cell lines. Hence the cucurbitacin I was 

evaluated between 1nM to 100nM in LNCaP and PC3 cell lines. Cucurbitacin I 

inhibited the proliferation of LNCaP cells in a dose dependent manner, whereas in PC3 

the inhibition is less. The IC50 value of Cucurbitacin I in androgen receptor positive cell 

line (LNCaP) was found to be 25 nM whereas in androgen receptor negative cell line 

(PC3) was found to be 791 nM (Table 12) (Fig 6). The Cucurbitacin I was 31.4 times 

selective towards the AR positive cell line than the AR negative cell line (Table 14). 

The IC50 of bicalutamide in LNCaP cell line was found to be 45.5 µM whereas in PC3 

cell line it was 66.6µM (Table 13) (Fig 7). Inhibition in PC3 cell lines by bicalutamide 

was dose independent, whereas in LNCaP it was dose dependent. The bicalutamide was 

1.48 times selective towards the AR positive cell line than the AR negative cell line.  

The results indicate that the cucurbitacin I was more selective towards the LNCaP cell 

line than the bicalutamide. Also, the cucurbitacin I was more cytotoxic in LNCaP cell 

line than bicalutamide. This is because the cucurbitacin I was 1796 times more potent 

than bicalutamide in LNCaP cell line. 

5.2.3. Acridine orange/Ethidium bromide staining result 

Acridine orange/Ethidium bromide staining was done in LNCaP cell line treated 

with 25nM cucurbitacin I and solvent DMSO for 48hr. Cells were counted manually for 

total cells, live cells and apoptotic cells. Cells with greenish color indicate live cells and 
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cells with dark red denote necrotic cells. Late apoptotic cells are in reddish orange color 

with condensed chromatin and early apoptotic cells have green condensed chromatin. 

(Fig: 8a, 8b). LNCaP cells treated with 25 nM of Cucurbitacin I had 49.8 % apoptotic 

cells. (Table: 15). Significant increase in apoptosis of Cucurbitacin I treated cell was 

observed in comparison with solvent control. The report of acridine orange and 

ethidium bromide assay confirms the result of MTT assay. 

5.2.4.Caspase assay 

The Caspase 3, 8, 9 assay was done in LNCaP cell line treated with 25 nMCucurbitacin 

I and solvent DMSO for 48hr. The protein concentration assay was done by Bradford’s 

method. Fold increase in caspase 3, 8, 9 was determined by comparing the absorbance 

of Cucurbitacin I treated cells with the control. Fold increase of caspase 3, 8, 9 

activities in LNCaP cells was found to be 2.3, 2.8 and 2.6 respectively. The caspase 

activity was found to be increased (P<0.001) in Cucurbitacin I treated cells in 

comparison to DMSO treated cells. (Table: 16) 

5.3. Gene expression study 

LNCaP cells were treated with standard bicalutamide, Cucurbitacin I and 

DMSO was taken as solvent control.Bax, Bcl2 and GAPDH gene expression pattern of 

control, bicalutamide and cucurbitacin I treated cells are shown in Fig 9a, 9b, 9c. PSA 

and GAPDH gene expression pattern control, DHT, bicalutamide and cucurbitacin I 

treated cells are shown in Fig. 9d and9e. Cells were treated with 10 NM of DHT, which 

serve as a negative control, for the Prostate Specific Antigen gene expression study.  

5.3.1. PSA Gene expression 

 A significant increase in PSA gene expression was observed in DHT treated 

cells (~2.1 fold) in comparison with control (P<0.001). Cucurbitacin I significantly 
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decreased the expression of PSA gene (~0.56 fold) followed by bicalutamide (~0.73 

fold) (P<0.01) (fig 10).  

5.3.2. Bax-Bcl2 gene expression 

Expression of Bcl2 was low (P<0.01) in Cucurbitacin I (~0.56 fold) treated cells 

in comparison to solvent control and standard drug bicalutamide (~0.87 fold) (fig 11). 

Cells treated with Cucurbitacin I (~1.20 fold) showed upstream Bax expression as like 

standard (~1.29 fold). (Fig.12). Cucurbitacin I inhibited the expression of anti-apoptotic 

protein Bcl2 (~0.56 fold) and stimulated the expression of pro-apoptotic protein Bax 

(~1.20 fold).  The ratio between Bax and Bcl2 of bicalutamide and Cucurbitacin I was 

found to be 1.48 and 2.14 respectively. Significant increase in Bax/Bcl2 ratio was 

observed for Cucurbitacin I in comparison with bicalutamide and solvent control. 

(Table: 17) 
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Table 8: Docking of cucurbitacin derivatives with prostate cancer targets 

S. No Cucurbitacin 

derivatives 

AR 

(PDB Id : 

2OZ7) 

ERβ 

(PDB Id : 

4ZI1 ) 

PI3Kα 

(PDB Id : 

4YKN) 

Bcl2 

(PDB Id : 

2W3L) 

AKT 

(PDB Id: 

2KEL) 

1 Cu A � � � � -3.302 

2 Cu B � � � � -3.274 

3 Cu C -5.733 � � -4.919 -1.507 

4 Cu D -9.201 � � -4.026 -3.473 

5 Cu E -7.857 � � � -5.168 

6 Cu F -5.977 � � -.4.256 -5.043 

7 Cu G -10.886 � � � -8.047 

8 Cu H -11.075 � � � -4.364 

9 Cu I -9.043 � � -4.011 -3.378 

10 Cu J -8.621 � � -4.912 -5.027 

11 Cu K -9.634 � � -4.268 -6.232 

12 Cu L -9.338 � � � -3.646 

13 Cu  O -4.906 � � -4.555 -6.164 

14 Cu P � � � -5.390 -4.859 

15 Cu Q � � � -4.576 -4.260 

16 Cu R � � � � -3.664 

17 Cu S � � � � -2.357 

18 Standard -9.177 -8.628 -9.733 -9.895 -11.107 
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Table 9: Interaction of cucurbitacin derivatives with AR 

S.No Cucurbitacinderivative H bond π – π 

bond 

Ionic 

bond 

Hydrophobic 

1 Cu C Asn 705, Ala 877 � � � 

2 Cu D Asn 705 � � � 

3 Cu E Gln 711, Met 745, 

Asn 705 

� � � 

4 Cu F Leu 704, Asn 705 � � � 

5 Cu G Asn 705, Arg 752, 

Gln 711, Leu 873, 

Gln 709 

� � � 

6 Cu H Gln 711, HOH, 

Leu873, Asn 705, 

Ala 877 

� � � 

7 Cu I Gln 711, Arg 752,  

Met 749, Asn 705, 

Trp 741, Met 745, 

Val 746 

� � 

 

 

� 

8 Cu J Glu 709 � � � 

9 Cu K Asn 705, Gln 711 � � � 

10 Cu L Asn 705 � � � 

11 Cu  O Asn 705 � � � 

12 Standard Gln 711, Arg 752, 

HOH, Asn 705 

Phe 

764 

� � 
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Table 10: ADME property prediction 

Drug CNS QPLog 

HERG 

QPPCaCO BB QPMD

CK 

QPLogkhs

a 

Metabolism 

Cu 

G 

-2 -3.671 98.6 -1.8 40.4 0.23 9 

Cu 

H 

-2 -3.671 55.0 -2.5 21.5 0.16 9 

Cu L -2 -3.684 76.6 -1.8 48.2 0.31 9 

Cu 

D 

-2 -3.696 85.00 -1.9 30.7 0.39 8 

Cu 

K 

-2 -3.855 116.1 -1.8 34.4 0.28 7 

Cu I -2 -3.647 80.4 -1.8 32.4 0.42 7 

Bic -2 -3.306 163.6 -1.3 562.3 -0.04 2 

TST -2 -5.806 1125.9 -0.2 487.6 0.50 3 

• CNS - is predicted central nervous system activity on a -2 (inactive) to +2 

(active) scale. 

• QPlogKhsa - is predicted binding to human serum albumin, which should in 

the range of 1.5 to 1.5 
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• QPPCaco - is predicted apparent Caco-2 cell permeability in nm/sec. Caco 2 

cells are a model for the gut-blood barrier,  recommended value is <25 poor, 

>500 great. 

• QPlogBB - is predicted blood/brain partition coefficient, which should be in 

the range of -3.0 to 1.2. 

• QPMDCK - predicted apparent MDCK cell permeability in nm/Sec. It’s a 

good mimic for blood brain barrier, recommended value is <25 poor, >500 

great. 

• QPlog HERG - is predicted IC50 for blockage of HERG K
+
 channels, which 

should be under -5. 

• Metabolism is number of likely metabolic reactions, the range is 1 to 8. 

 

 

 

Table 11: Lipinski Rule of five 

Drug Mol. Wt<500 

daltons 

Donor HB( <5 

) 

Acceptor HB 

(>10) 

Log P (< 5 

) 

Cu G 534.6 4 11.6 2.5 

Cu H 534.6 4 11.6 2.2 

Cu L 532.6 4 10.6 2.8 

Cu D 516.6 4 9.9 2.7 

Cu K 516.6 4 10.9 2.4 

Cucurbitacin 

I 

514.6 4 9.9 2.7 
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Bicalutamide 430.3 1 7.7 2.9 

Testosterone 288.4 1 3.7 3.3 

 

 

 

 

Table 12: % Inhibition of Cucurbitacin I in LNCaP and PC3 cells 

S.No Cucurbitacin I (nM) % Inhibition 

LNCaP PC3 

1 1 0.15±0.02 0.125±0.00 

2 5 2.15±0.09 0.425±0.17 

3 10 7.04±6.3 0.83±7.4 

4 15 21.44±5.2 4.80±3.9 

5 20 49.37±6.6 11.09±3.4 

6 25 58.84±8.2 16.98±5.1 

7 30 85.21±7.4 22.24±4.6 

8 50 92.58±5.7 39.24±5.7 

9 100 100.10±3.1 45.24±3 

10 500 103±6.6 47.24±3.1 

 

  

 

 

 

 



RESULTS 

 

Department of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOP    Page 52    
 

 

 

 

 

 

 

Table 13: % inhibition of Bicalutamide in LNCaP and PC3 cells 

S.No Bicalutamide 

(µM) 

% Inhibition 

LNCaP PC3 

1 0.1 0.47±0.1 0.16±0.1 

2 0.5 1.82±1.5 0.22±0.2 

3 1 3.03±2.6 0.30±0.3 

4 5 15.14±2.5 0.66±0.1 

5 10 19.57±2.6 0.68±0.1 

6 50 40.91±3.4 1.30±0.7 

7 100 60.04±6.6 12.24±3.4 

8 500 100.58±4.8 92.65±2.32 

 

 

 

Table 14: IC50 value and selectivity of cucurbitacin I and bicalutamide 

S.No Drug IC50 (nmol/L) Selectivity 

(PC3/LNCaP) PC3 LNCaP 

1 Cucurbitacin 

I 

790.99 ± 107.30 25.18±7.09 31.41 
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2 Bicalutamide 66963.33±2453.38 45239±2586.24 1.48 

 

 

 

 

Table 15: % Apoptosis incucurbitacin I treatedLNCaP cells 

Treatment Total no. of 

cells 

No. of Live 

cells 

No. of Apoptotic 

cells 

% 

apoptosis 

CONTROL 121 117 4 3.30 

Cucurbitacin I 

(25nM) 

129.5 65 64.5 49.80*** 

All the values are expressed in mean ± S.D. One way ANOV followed by Post hoc 
analysis Turkey’s multiple comparison test. *** denotes statistical significance of 
treatment group compared to control group at P<0.001. 
 

Table 16: Caspaseactivity of Cucurbitacin I in LNCaP cells 

S. 

No 

Cucurbitacin I in 

LNCaP 

Control (abs 

405nm) 

Cucurbitacin I treated 

(25nM) (abs 405nm) 

Fold Increase in 

Caspase activity 

1 Caspase 3 0.06±0.00 0.14±0.02 2.33*** 

2 Caspase 8 0.06±0.00 0.17±0.011 2.83*** 

3 Caspase 9 0.06±0.00 0.16±0.010 2.66*** 

All the values are expressed in mean ± S.D. One way ANOVA followed by Post hoc 
analysis Turkey’s multiple comparison test. *** denotes statistical significance of 
treatment group compared to Control group at P<0.001. 
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Table 17: Bax- Bcl2 ratio 

S.No Group Bax mRNA 

expression 

Bcl2 mRNA 

expression 

Bax/Bcl2 

ratio 

1 Control 1 1 1 

2 Bicalutamide 1.29 0.87 1.48*** 

3 Cucurbitacin 

I 

1.20 0.56 2.14*** 

All the values are expressed in mean ± S.D. One way ANOVA followed by Post hoc 
analysis Turkey’s multiple comparison test. *** denotes statistical significance of 
treatment group compared to control group at P<0.001. 
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Fig 4: 

 

 

Fig 5: 
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Fig 4: Interaction of bicalutamide with AR 

 

5: Interaction of Cucurbitacin I with AR 
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All the values are expressed in mean ± S.D. IC

regression curve. 
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Fig 6: Inhibition of cucurbitacin I  

 

All the values are expressed in mean ± S.D. IC50 value was calculated by non
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value was calculated by non-linear 
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Fig 7: % Inhibition of bicalutamide 

 

All the values are expressed in mean ± S.D. IC50 value was calculated by non-linear 

regression curve. 

 

 

 

Fig 8a:LNCaP cells treated with solvent DMSO 

 

Fig 8b:LNCaP cells treated with Cucurbitacin I 
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Fig 9: Gene expression 

9a. BAX gene expression in LNCaP cells    

 

   Con     Bic       Cu I  

9b. Bcl2 gene expression in LNCaP cells 

 

   Con           BicCu I 

9c GAPDH gene expression in LNCaP cells 

 

    Con        BicCu I  

9d. PSA gene expression in LNCaP cells 



RESULTS 

 

Department of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOPDepartment of Pharmacology, PSGCOP    Page 59    
 

 

Con         DHT       Bic       Cu I 

9e. GAPDH  gene expression in LNCaP cells 

 

    Con            DHT   Bic       Cu I 

 

 

 

 

 

 

Fig 10: PSA gene expression 

 

All the values are expressed in mean ± S.D. one way ANOVA followed by Post hoc 

analysis Turkey’s multiple comparison test. ## denotes statistical significance of PSA 
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compared to control at P<0.01. ** denotes statistical significance of treatment group 

compared to DHT group at P<0.01. 

Fig 11: Bax gene expression 

 

All the values are expressed in mean ± S.D. One way ANOVA followed by Post hoc 

analysis Turkey’s multiple comparison test.  

Fig 12: Bcl2 gene expression 

. 

All the values are expressed in mean ± S.D. One way ANOVA followed by Post hoc 

analysis Turkey’s multiple comparison test. *, ** denotes statistical significance of 

treatment group compared to control group at P<0.05 and P<0.01 respectively. 
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6. DISCUSSION 

 The present study shows that cucurbitacins are having specific binding affinity 

for the androgen receptor. This was proved by docking studies where cucurbitacins had 

a better G score for androgen receptor rather than other target of prostate cancer. 

Further examination of cucurbitacins for ADME and toxicity properties, we had 

identified cucurbitacin I was the lead molecule among the cucurbitacins A-U. The 

androgen receptors are nuclear receptor which is having a great binding affinity for 

steroidal hormones particularly Dihydrotestosterone. Cucurbitacins are triterpenoids 

which are the precursor of steroids (David, 1998). This may be the reason for the 

androgen selectivity. Additionally the presence of numerous keto-, hydroxyl and 

acetoxy groups are functioning as H-Bond donor/acceptor. These functional groups had 

formed the essential H-Bond interactions with the androgen receptor. 

 The ligand binding pocket of androgen receptor was made of 12α helix and 2β 

sheets which folds together to form a hydrophobic ligand binding pocket. The ligand-

protein interaction was majorly hydrophobic , however hydrogen bond interaction also 

plays a major role in specificity. Docking studies and crystallographic studies revealed 

that ligands which are able to form H-bond interactions with amino acids Asn705, 

Gln711 and Arg752 andwill have strong affinity towards AR (Karine et al., 2006). 

Cucurbitacin I forms H-bond interaction at Gln711, Arg 752, Met 749, Asn 705, HOH 

108, Trp 741, Met 745, HOH  Val 746. Bicalutamide forms H-bond interaction with 

Gln 711, Arg 752, HOH 108, Asn 705. Recent studies revealed that a full antagonist to 

AR (ligands which function as an antagonist to wild type and mutated ARs) forms H-

bond interactions with Gln711 and Arg752 (Chuangxing et al., 2012). The H-bond 

interaction with Arg 752, Gln 711 was essential for antagonist activity. The 

bicalutamide and cucurbitacin I had formed H-bond interaction with those amino acids. 
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 The cucurbitacin I and bicalutamide were screened for its cytotoxicity effect in 

prostate cancer cell lines LNCaP (AR +ve) and PC3 (AR ˗ve). This method of 

screening in LNCaP and PC3 cells could be used to identify the AR selectivity. 

Expression of dihyrotestosterone stimulated prostate specific antigen was significantly 

reduced by cucurbitacin I, this reduction of PSA level (~0.56 fold) was due to anti-

androgenic effect of Cucurbitacin I. The PSA is the Prostate cancer marker and AR 

response element. The cucurbitacin I was found to be 31.4 times selective towards AR 

positive LNCaP cell line and the standard bicalutamide was 1.48 times selective 

towards AR positive LNCaP cells. The potency of Cucurbitacin I in LNCaP was found 

to be 1796 times than bicalutamide. The tremendous potency of cucurbitacin I in 

LNCaP cells could be due to the synergetic effect of AR antagonism and JAK/STAT 

inhibition (Alghasham., 2013). Cucurbitacin I is a novel compound that could be 

further developed to evaluate its in-vivo efficacy.  

 Apoptosis of the Cucurbitacin I treated cells were confirmed by measuring the 

caspase 3, 8, 9 cleavage activity, Bax/Bcl2 gene expression ratio and Ethidium 

bromide/Acridine orange staining. Growth factor withdrawal and intracellular stress 

can induce apoptosis through the intrinsic cell death pathway, while extrinsic apoptosis 

is initiated through transmembrane death receptors. Initiation and execution of these 

processes are regulated by the BCL-2 and caspase families of proteins. Activation of 

the BCL-2 family members Bax and Bak results in mitochondrial outer membrane 

permeabilization (MOMP) and the release of pro-apoptotic proteins, including 

cytochrome c, from the inter-membrane space into the cytosol (Matthew et al.,2013). 

Cytochrome c can then bind apoptotic protease activating factor 1 (Apaf-1) forming the 

apoptosome and activating caspase-9. Once active, caspase-9 can directly cleave and 

activate caspase-3.  
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 The death receptor-mediated pathway is activated upon ligand binding of cell 

surface death receptors such as tumor necrosis factor-α (TNF-α), initiating ligand-

induced receptor trimerization and the formation of death-inducing signaling complex 

(DISC). Once caspase-8, the initiator caspase, is recruited in zymogen form to the 

DISC, it is autocatalytically processed and released from the complex to the cytosol as 

active tetramer to transactivate a number of downstream executioner caspases including 

the dominant executioner caspase, caspase-3 (Lee et al. 2003). The significant increase 

in Caspase 3, 8 and 9 activity of Cucurbitacin I treated cells indicates that apoptosis 

triggers by both extrinsic and intrinsic pathways. Bcl2 is an anti-apoptotic protein that 

was found to be increased in Prostate cancer. The anti-apoptotic protein Bcl2, has been 

associated with the development of androgen-independent prostate cancer due to its 

high levels of expression in androgen-independent tumors in advanced stages of the 

pathology (Catz et al., 2003). Reduction of Bcl2 level is essential for apoptosis in 

prostate cancer cells. The level of Bcl2 mRNA level was significantly reduced in 

Cucurbitacin I (~0.56 folds) treated LNCaP cells, in comparison with bicalutamide 

(~0.87 fold) and solvent control (~ 1 fold).  

 The balance between pro- and anti-apoptotic members of this family can 

determine the cellular fate. Bax and Bcl-2 are the major members of the Bcl-2 family 

which has potential roles in tumor progression and prognosis of different human 

malignancies. Bax promotes cell death through permeabilization of mitochondrial outer 

membrane in response to different cellular stresses. In contrast, Bcl-2 prevents 

apoptosis by inhibiting the activity of Bax. (Mohan et al., 2012) (Hector et al., 2009). 

The Bax/Bcl-2 ratio can act as a rheostat which determines cell susceptibility to 

apoptosis (Raisova et al., 2001). Lower levels of this ratio may lead to resistance of 

human cancer cells to apoptosis. Thus, the Bax/Bcl-2 ratio can affect tumor progression 
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and aggressiveness. (Hemminki et al., 2010). The Bax/Bcl2 ratio of bicalutamide and 

Cucurbitacin I was found to be 1.48 and 2.14 respectively, significant increase in 

Bax/Bcl2 ratio of Cucurbitacin I treated cells in comparison with bicalutamide and 

solvent control was observed.  
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7. SUMMARY AND CONCLUSION 

 The present study identified that the cucurbitacin I had a better binding affinity 

towards androgen receptor and its H-bond interaction with AR protein was similar as of 

standard bicalutamide. Cucurbitacin I satisfies the ADME and toxicity parameter 

studies. Further evaluation of cytotoxity of cucurbitacin I in prostate cancer cell lines 

LNCaP (AR +ve) and PC3 (AR -ve) reveals that cucurbitacin I is more selective toward 

AR positive cell line LNCaP than PC3 cells. Moreover the cytotoxic potency of 

cucurbitacin I in LNCaP cells is 1796 times greater than standard bicalutamide. 

Reduction of prostate specific antigen in cucurbitacin I treated LNCaP than 

dihydrotestosterone treated LNCaP cells shows the anti-androgenic property of 

cucurbitacin I. Apoptosis was confirmed by ethidium bromide/acridine orange staining. 

Upregulation of caspase 3, 8, 9 in cucurbitacin I treated cells was observed. The 

mechanism behind the cytotoxicity could be the activation of both external and internal 

apoptosis pathways. Increased level of Bax/Bcl2 ratio was noted in Cucurbitacin I 

treated LNCaP cells. The higher levels of this ratio may lead the cancer cells to 

apoptosis. We conclude that Cucurbitacin I is an effective and potent anti-androgen 

agent, which cause apoptosis by the activation of external and internal apoptosis 

pathways and by inhibition of anti-apoptotic protein Bcl2 gene expression. 

Cucurbitacin I is a novel agent for androgen dependent prostate cancer. 
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