A STUDY OF ANALYSIS OF VARIOUS CLINICAL FEATURES, RADIOLOGICAL CORRELATION, SURGICAL OPTIONS AND OUTCOME IN THE MANAGEMENT OF CHIARI MALFORMATION TYPE I

Dissertation Submitted for

M.ch. DEGREE EXAMINATION BRANCH II – NEUROSURGERY (5 YEARS COURSE)

STANLEY MEDICAL COLLEGE

and

GOVERNMENT STANLEY HOSPITAL CHENNAI – 600001

THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY CHENNAI

AUGUST – 2014

CERTIFICATE

This is to certify that the dissertation entitled - "A STUDY **OFANALYSIS** OF VARIOUS CLINICAL FEATURES, **RADIOLOGICAL CORRELATION, SURGICAL OPTIONS AND OUTCOME** IN THE MANAGEMENT OF **CHIARI** MALFORMATION TYPE I' is the bonafide original work of **Dr.S.RAJKUMAR** in partial fulfillment of the requirements for M.ch. Branch II NEUROSURGERY (5 YEARS COURSE) examination of THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY to be held on August 2014. The period of post graduate study and training was from May 2009 to July 2014.

Prof. Dr. G. LAKSHMIPATHY M.ch, GUIDE PROFESSOR & HOD OF NEUROSURGERY, STANLEY MEDICAL COLLEGE & HOSPITAL, CHENNAI - 600001 Prof. Dr. Y.P.JACOB GRAND M.ch, PROFESSOR OF NEUROSURGERY, STANLEY MEDICAL COLLEGE & HOSPITAL, CHENNAI – 600001.

Dr. A.L.MEENAKSHI SUNDARAM, MD., DA, DEAN, STANLEY MEDICAL COLLEGE & HOSPITAL, CHENNAI - 600001

DECLARATION

I Dr. S.RAJ KUMAR, solemnly declare that this dissertation entitled - "A STUDY OF ANALYSIS OF VARIOUS CLINICAL FEATURES, RADIOLOGICAL CORRELATION, SURGICAL **OPTIONS AND OUTCOME IN THE MANAGEMENT OF CHIARI** MALFORMATION TYPE I" is the bonafide original work done by me at the Department of Neurosurgery, Stanley Medical College and Government Stanley Hospital during the period 2010-2014 under the guidance and supervision of the Professor and Head of Department of Neurosurgery of Stanley Medical College and Government Stanley Hospital, Prof. Dr. G.LAKSHMIPATHY M.ch . This dissertation is submitted THE TAMILNADU DR.M.G.R. **MEDICAL** to UNIVERSITY, towards partial fulfillment of requirement for the award of M.ch Degree (Branch - II) in neurosurgery.

Dr. S.RAJ KUMAR

Place : Date :

ACKNOWLEDGEMENT

I wish to express my respect and sincere gratitude to my beloved teacher **Prof. Dr. G.LAKSHMIPATHY, M.ch.,** Professor and Head of Department of Neurosurgery for his valuable guidance and encouragement throughout the study.

I also wish to convey my respect and earnest gratitude to **Prof.Dr.Y.P.JACOB GRAND.,** Professor of Neurosurgery for his valuable guidance and encouragement.

I thank my teachers **Prof. S. Sundaram, Prof. S.D. Subbiah, Prof. C. Sekar , Prof. Ranganathan Jothi** former professors in the department of neurosurgery who were of immense help in the formative days of my post-graduation and to this study.

My sincere thanks and gratitude to all my assistant professors of neurosurgery or their patience and guidance throughout this study.

I wish to thank my family members for their untiring support.

Beyond all I would like to thank all the patients and their relatives for participating in this study.

TABLE OF CONTENTS

Sl. No	Торіс	Page No
1.	INTRODUCTION	1
2.	AIM OF THE STUDY	7
3.	MATERIALS AND METHODS	9
4.	REVIEW OF LITERATURE	17
5.	OUTCOME AND ANALYSIS	28
6.	RESULTS AND DISCUSSION	61
7.	CONCLUSION	69
8.	BIBLIOGRAPHY	
9.	 ANNEXURES Institutional ethical committee clearance Anti Plagiarism Certificate Proforma Patient consent form Key to master chart Abbreviations Master chart 	

INTRODUCTION

INTRODUCTION

Generally types I-IV Chiari malformations are congenital hindbrain abnormalities affecting the structural relationships between the bony cranial base and the brainstem, cerebellum and the upper cervical cord.

Cleland described the first case of Chiari malformation in 1883, the disorder is named after Hans Chiari, an Austrian pathologist, who classified Chiari malformations into types I through III in 1891. Hans Chiari (1851-1916) was an Austrian professor of pathology at German University in Prague, Czechosolovakia. He analyzed data collected from more than 40 postmortum examinations of patients with hindbrain malformations and published a report in 1891. Chiari's colleague, 1894, Julius A. Arnold(Professor of Pathology at Heidelberg, Germany)described a single myelodysplastic patient with associated hindbrain herniation .Julius Arnold, made additional contributions to the definition of Chiari II malformation. In his honour, students of Dr. Arnold, Schwalbe & Gerdig later named the type II malformation as Arnold-Chiari malformation. Other investigators later added the type IV malformation and recently these abnormalities were coined as chiari malformation.

Chiari types & features:

I - Tonsillar herniation >5 mm inferior to the plane of the foramen magnum (basionopisthion line)

No associated brainstem herniation or supratentorial anomalies

Hydrocephalus uncommon

Syringomyelia common

II - Herniation of the cerebellar vermis, brainstem, and fourth ventricle through the foramen magnum

Associated with myelomeningocele and multiple brain anomalies

Hydrocephalus and syringomyelia very common

III - High cervical or occipital encephalocele containing herniated cerebellar and brainstem tissue

IV - Hypoplasia or aplasia of the cerebellum and tentorium cerebelli

Chiari type 1.5

Tonsillar herniation as seen in Chiari I with addition of an elongated brainstem and fourth ventricle.

(Iskandar B,1999)

Chiari type 0

syringomyelia with no evidence of hindbrain herniation.

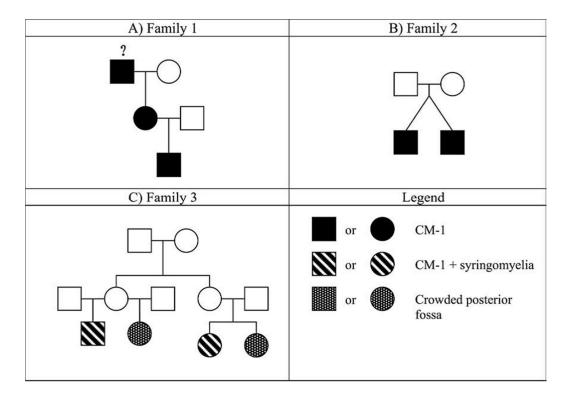
Chiari malformation I consists of herniation of the cerebellar tonsils through foramen magnum into the cervical spinal canal without descent of the brainstem . Association of syringomyelia with Chiari type-1 malformation is around 50-70% which will slowly lead to chronic and sometimes irreversible myelopathy . Surgery is the only way to cure this malformation. There are still controversies in current surgical techniques although much operative progress has been made in the last few decades and the expansion of posterior fossa volume has been widely accepted as the surgical goal .

Aiming to explore the surgical effect of foramen magnum decompression and duraplasty together to reduce the risks and postoperative complications of this disorder, we have performed these surgeries in patients with CM I since 2010. A total of 32 CM I cases underwent these procedures at our department from 2010 to 2014. The postoperative complications and surgical efficacy regarding the clinical symptoms and resolution of syrinx in CM I patients were prospectively evaluated overall by follow-up and analyzed in this study.

Genetics of Chiari malformation :

A more recent twin study examined 6 additional sets of twins and reported a higher concordance between identical twins when compared with fraternal twins (Speer *et al*, 2003).

Many of the known genetic disorders that co-segregate with chiari malformation I affect mesodermally derived cartilage and/or bone such as achondroplasia, Klippel Feil sequence, Hadju-Cheney syndrome, Albright Hereditary Osteodystrophy (pseudohypoparathyroidism), familial hypophosphatemia rickets, and spondylo-epiphyseal dyplasia tarda.


Boyles and colleagues1 also conducted a genome screen in twentythree families with multiple individuals affected with CMI. They found

4

significant evidence for a gene associated with CMI on chromosomes 9 and 15.

Pattern of inheritance :

Autosomal dominant with reduced penetrance

Pedigree of families.

(A) mother and son with Chiari malformation

(B) monozygotic twins

(C) half-brother and sister as well as their two female first cousins

affected.

(Milhort et al. Neurosurgery.44:1005-1017,1999)

Acquired Chiari Malformation

The acquired Chiari malformation and syringomyelia following spinal CSF drainage, the coperitoneal shunt.

(Johnston I et al. Acta Neurochir (Wien). 140(5):417,1998)

AIM OF THE STUDY

AIMS AND OBJECTIVES

1. Inspite of the progress in the understanding the causes and pathophysiology of Chiari malformation Type I (CM-I), the role of surgical treatment remains unresolved. Different surgical techniques have been evolved over years, but there is no general consensus on the most appropriate surgical tecnique for this condition. This study analyses various clinical features, radiological correlations, surgical treatment and outcome in 32 patients with CM-I.

2. To evaluate prospectively the efficacy of foramen magnum decompression (FMD) with lax duraplasty in patients having type I Chiari malformation with and without syringomyelia.

3.To establish normal cerebrospinal fuid (CSF) circulation at the foramen magnum,

4. To relieve the compression exerted by the cerebellar tonsils on the brain stem. Although single effective therapeutic treatment in achieving actual cure of the disease is still under debate, foramen magnum decompression (FMD) has been widely recognized as an acceptable method in achieving these goals. Additional procedures such as dissection of arachnoid adhesions, plugging of the obex, shunting of the fourth ventricle and resection of tonsils depends on the surgeon's personal understanding of the pathophysiology of the disease.

5. To prospectively review the surgical outcome in improvement of clinical symptoms and resolution of syrinx in 32 patients treated for Chiari I malformation in our institution. All patients in this study underwent Foramen magnum decompression with lax duraplasty as basic procedure either alone or combined with additional manipulations.

6. To assess the pre operative and post operative pain score (WONG – BAKER pain score).

- 7. To assess the resolution of syinx in the post op MRI.
- 8. To assess the improvement in spasticity using Ashworth scale.
- 9. To assess the pre operative and post operative Nurick's score.

MATERIALS AND METHODS

MATERIALS AND METHODS

SOURCE OF DATA

This is a prospective study of 32 patients of CHIARI TYPE I malformation with and without syringomyelia of age between 14 – 54 years which was carried out in the department of neurosurgery during the year 2010 – 2014 at GOVT STANLEY MEDICAL COLLEGE, CHENNAI.

METHODS OF COLLECTION

A standardized protocol is followed for assessment of patients after an informed consent.

Clinically patient had occipital headache and neck pain as their predominant complaint. Complete neurological examination to ascertain the motor/sensory loss and loss/brisk reflexes and any signs of myelopathy are routinely done.

There is some amount of neck movement restriction as the pain progresses because of the neck muscle spasm. Majority of the patients had dissociated sensory loss and hand muscle atrophy. In most of the patients occipitocervical pain is aggravated by coughing, sneezing, laughing and lifting heavy weights. Careful history and examination is done to rule out shoulder pathology, angina and intraspinal tumors.

All patients clinically suspected to be suffering from chiari malformation are subjected to radiological imaging. Digital Xray skull ,cervical spine is taken to rule out any associated bony abnormalities.

X-RAY SKULL:

Underdevelopment of supraocciput and exocciput

Shortening of supraocciput

Shorter clivus

Smaller and shallow posterior fossa

Empty sella

Platybasia

Basilar impression

Midline occipital keel

Accessory occipital condyle

Spine :

Klippel-Feil deformity

Atlantoaxial assimilation

Retroflexion of odontoid process

Thickening of ligamentum flavum

Scoliosis

MRI C SPINE with myelogram with screening of brain and whole spine is done for all patints with chiari malformations. MRI is done to assess the level of cerebellar tonsil descent, presence of syringomyelia, brainstem compression, presence of hydrocephalus and any associated brain anomalies.

Ventricle and cistern :

Hydrocephalus (3-10%)

Elongated 4th ventricle

Retrocerebellar CSF space obliterated or diminished

Meninges :

Elevated slope of tentorium

Thickening of arachnoid at foramen magnum

Constricting dural bands at level of foramen magnum and posterior arch of atlas

Veils of arachnoid that obstruct fourth ventricular outlet

Spinal cord :

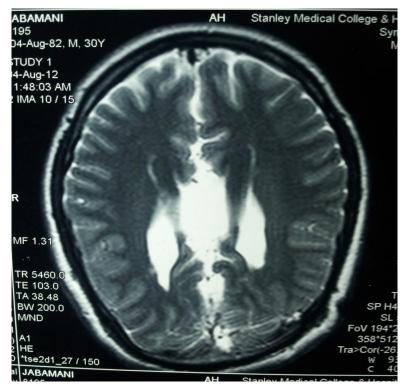
Syrinx (50-75%)

Brain :

Elongated midbrain, pons and medulla

Medullary kinking or flattening

INCLUSION CRITERIA :


1.All age groups

2. Sex: male& female

CHIARI MALFORMATION WITH CORPUS CALLOSAL AGENESIS

CHIARI MALFORMATION WITH INTRHEMISPHERIC CYST

CHIARI MALFORMATION PRESENTED WITH CHARCOTS JOINT

3. All patients with occipito cervical pain with MRI findings of tonsillar descent

4. Only Chiari Malformation Type I

5. All Chiari Malformation Type I with Syringomyelia.

EXCLUSION CRITERIA

1. Patients with medical illness contraindicating surgical management.

2. Patients not willing for surgical management.

3. Tonsillar herniation with posterior fossa lesions.

4. Syringomyelia associated with spinal tumours.

5. Syringomyelia without tonsillar descent.

TREATMENT OF CASES IN THIS STUDY

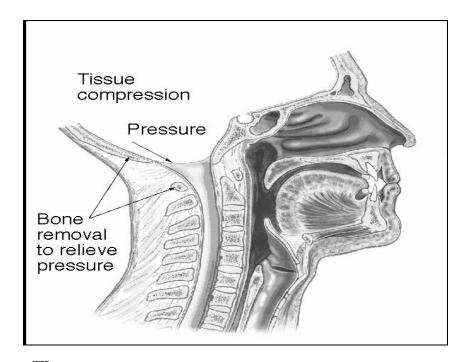
Though the treatment of CM I is essentially surgical, the following factors are to be considered before planning for surgery:

• The severity and nature of the symptoms;

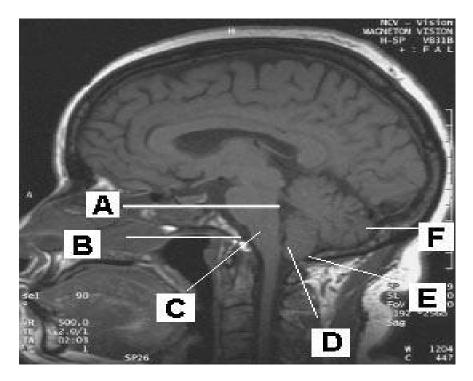
• The alteration in the patient's quality of life secondary to these symptoms;

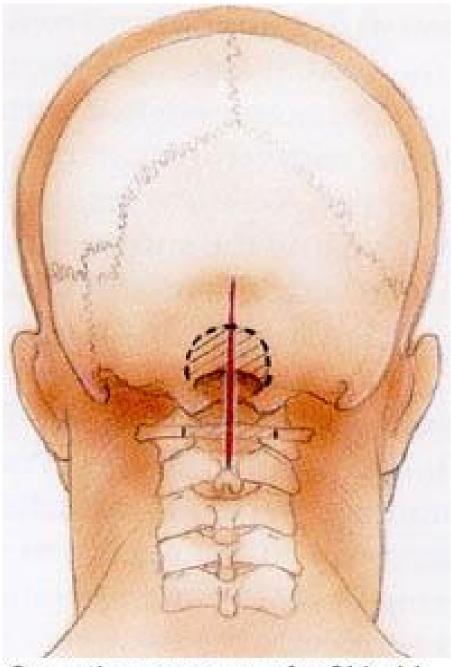
• The likelihood that these symptoms are related to the tonsillar descent, taking into consideration the clinical presentation, associated medical conditions, and the radiological findings;

• The presence of symptomatic syringomyelia;


• The surgical complication rate;

• The long-term results for surgical treatment of the particular symptom that is being addressed.

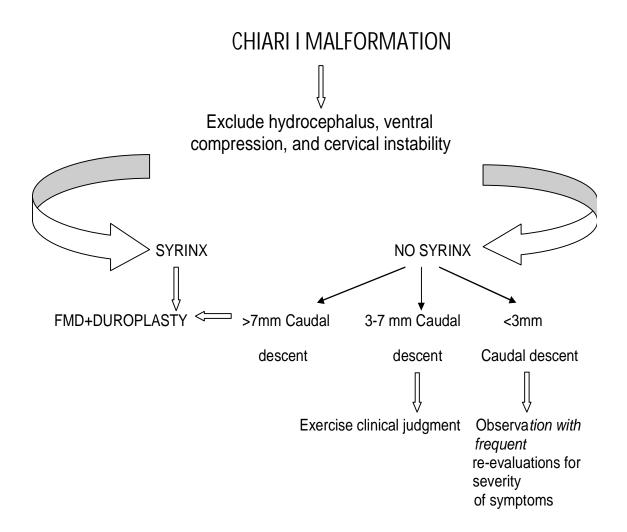

OPERATIVE TRETMENT


Surgical technique

Under general anesthesia with the patient in prone position with head fixed in three pin Mayfield head rest, vertical midline skin incision from external occipital protuberance down to the level of the C-3 spinous process was made. Then paravertebral cervical muscles were dissected in the midline and retracted laterally and sub occipital craniectomy approximately 3cm/3cm (1.5cm from midline on either side) was performed to decompress the foramen magnum. C-1 laminectomy was then performed to visualise the lower limit of tonsils. Constricting dural bands are looked for and divided. C-2 laminectomy was done in

A-4TH VENTRICLE, B-BASION, C-MEDULLA, D-TONSIL, E-OPISTHION, F-CEREBELLUM

Operative exposure of a Chiari I malformation.

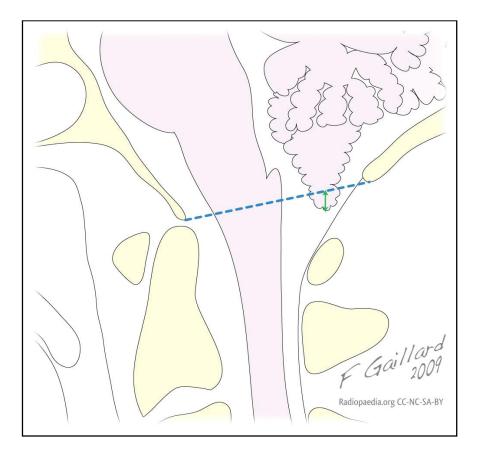

cases based on radiological level of tonsillar descent and intraoperative findings.

After C11aminectomy the dura was opened in midline using the microscope and after opening the dura arachnoid adhesions if found should be dissected and removed . In our study tonsillar coagulation or obex plugging was not done . Then lax duraplasty was done with fascia lata graft harvested from the patient and sutured in Y shaped manner and the wound closed in layers after securing perfect hemostasis. In none of the patients artificial dura was used for duraplasty.

Follow up of cases in our study:

The follow-up regimen is determined by preoperative pathology and the postoperative clinical course. Our clinical paradigm includes seeing patients without a syrinx and symptomatic improvement at 1, 6, and 12 months with repeat imaging at the 6th month.Patients with a preoperative syrinx receive a follow-up MRI in 6 to 12 months. No further imaging is obtained if symptoms improve or the syrinx decreases in size significantly.

MANAGEMENT PROTOCOL



REVIEW OF LITERATURE

REVIEW OF LITERATURE

Chiari malformation -Otherwise called congenital tonsillar ectopia .

The radiological diagnosis of tonsillar ectopia is based on the degree of tonsilar descent for the age at the time of diagnosis.

AGE	DECREE OF DESCENT
1 ST DECADE	6mm
2 ND and 3 rd DECADE	5mm
$4^{\text{TH}} - 8^{\text{TH}} \text{DECADE}$	4mm
9 TH DECADE	3mm

Chiari malformations and syringomyelia are strongly associated. .The association of syrinx in chiari I is about 30-50% and in type II chiari it is about 45-90%. The usual location of syrinx is in cervical or cervicothoracic region.

Etiology :

Chiari malformation usually occurs due to craniocephalic disproportion which leads to tonsillar descent. The main event is a mismatch between the bony skull base and the brainstem, cerebellar vermis , fourth ventricle and the tonsils.

Pathophysiology :

Several mechanisms produce the varied clinical features in chiari malformations. The clinical features are mainly due to the herniated tonsils which compresses the nervous tissue or produces valve effect in the foramen magnum . The partial valve-and-piston effect leads to intermittent obstruction to the flow of cerebrospinal fluid (CSF) between the cranial and spinal compartments which causes intracranial hypertension and syringomyelia . With every systole, the cerebral blood volume increases, leading to brain engorgement. The perispinal cord pressure increases, pushing the CSF into the perivascular Virchow-Robin spaces of the spinal cord which leads to the formation of syrinx in the spinal cord.

Oldfields study based on MRI and realtime ultrasonogram suggested that the origin, maintenance and propagation of syringomyelia might result from downward migration of the tonsils with each systolic pulse, producing a systolic pressure-wave in the spinal CSF compartment that acts on the external surface of the spinal cord . This ``piston-like'' mechanism might explain syrinx progression by propelling fluid longitudinally within the cavity with each systolic pulse .

Based on the theories of Gardner, Williams and Oldfield's which concludes that the main event is impaired CSF circulation around the foramen magnum and that foramen magnum decompression should be considered as appropriate management in these cases.

PATHOGENESIS OF CHIARI MALFORMATION and SYRINGOMYELIA

Any single acceptable theory of pathogenesis of Chiari malformation should be able to explain the associated brain and spinal cord anomalies. Multiple theories need to be applied and may not be mutually exclusive. Knowledge essential to direct therapeutic strategies

Hydrocephalus theory (Chiari, 1891)

Attributed the congenital hindbrain herniation to ' chronic hydrocephalus of the cerebrum' with 'pushing out ' of the cerebellum and the brainstem through the foramen magnum.

Hydrocephalus not universal and children with hydrocephalus and no dysraphism do not have herniation. Upward herniation through tentorial notch along with caudal displacement of hindbrain in Chiari II with hydrocephalus

Cerebral Dysgenesis theory (Cleland, 1883)

Dysplastic changes in brainstem, cerebellum, corpus callosum based on chick embryo studies.

Caudal Traction theory (Penfield, Coburn, Lichtenstein et al.)

Tethering of the cord by the myelomeningocele with 'pulling down' of the posterior fossa contents Reverse herniation seen in CIIM Abnormal relation of the nerve roots to cord normal in thoracic segments Tension within the caudal segments dissipated over four segments (Goldstein & Kepes,1966) Cervicomedullary kink and other anomalies not explained by this theory.

Cerebral overgrowth theory (Barry, Patten, Stewart - 1957)

Attributed excessive volume of cerebral cortex with downward displacement of tentorium and hindbrain in an abnormal small posterior fossa.

Developmental Arrest (Daniel, Strich - 1958)

The primary dysgenesis of brainstem impairs the formation of pontine flexure resulting elongated and herniated brainstem into upper cervical canal.

Hydrodynamic theory (Gardner & Goodall, 1965)

Failure of the rhombic roof to perforate resulting in the gentle undampened 'waterhammer ' effect of the arterial pulsation of the choroid plexus dissipated through a patent obex into the central canal resulting in progressive spinal cord cavitation.

Pros:

Animal studies to support the same by occlusion of the fourth ventricular outlet. Compensated hydrocephalus with communicating syringomyelia in 14/15 patients of myelodysplasia in whom VP shunt resulted in neurological improvement with resolution of the syrinx . (Hall et al.)

Cons:

Hydrocephalus present in some.

Fourth ventricular obstruction not present in all.

Obex rarely communicates with syrinx.

Craniospinal Pressure Dissociation theory (William, 1969)

Attributed venous pressure changes rather than arterial pulsations as the driving force for hydromyelia. Increase in the subarachnoid fluid pressures resulted from increase in venous pressure during coughing and Valsalva 's maneuver due to distended epidural venous plexus resulting in the cranial flow of CSF with dissipation of pressure difference. Hindbrain herniation prevents this caudal flow of CSF due to ball valve effect of the tonsils which impact at the foramen magnum 'cork in a bottle' phenomenon results in cranio spinal pressure differences over 100 mm Hg which 'sucks ' the fluid into the syrinx cavity from the fourth ventricle through the patent obex (eventually sealed off by the impacted hindbrain) later through normal brain tissue. Venous dilatation creates a fluid wave exerting pressure on the cavitated cord thus propagating the syrinx by a ' sloshing action'

Clinical features :

The clinical features in chiari malformations are mainly due to

1.increased ICP

2.compression of the cranial nerves

3.compression of brainstem

4.changes in the spinal cord

5.cerebellar signs

Size of craniectomy in foramen magnum decompression :

There are various consensus about the size of craniectomy by some series, but in our study a small –sized craniectomy 3cm/3cm (1.5cm from the midline on either side) was done and extensive removal of bone was not done considering the post operative instability and kyphosis.

Arachnoid dissection :

In our study dissection of arachnoid adhesion (in selected patients based on intra-op findings) without tonsillar resection was performed.

In our study opening of arachnoid and dissection of arachnoid adhesions around the herniated tonsils was routinely done. CSF leak occured in one patient and the csf leak subsided after reexploration and suturing of dural rent.

Resection of tonsils and obex plugging :

Regarding resection of tonsils, the complications associated with the resection like posterior inferior cerebellar artery injury as mentioned in literature, the resection of tonsils doesnt give significant results compared to foramen magnum decompression with lax duraplasty.

Obex plugging to occlude the csf flow into the central canal was largely abandoned due to manipulation related risk and high rate of complications. Hence in our study we had not done resection of tonsils or obex plugging.

Lax duraplasty :

In our study, lax duraplasty was done in 32 patients using the fascia lata (autograft) harvested from the patient . Some series reports use of artificial dural graft or pericranium for duraplasty. In our study CSF leak was observed in 1 patient and the csf leak subsided after re-exploration and suturing of dural rent.

Shunting of syrinx :

Shunting can be done from a syrinx to subarachnoid space, fourth ventricle, peritoneum, and pleura to establish CSF flow during external cord compression, which occurs during cardiac systole .In the past two decades only shunting of syrinx cavity was used for the management of syrinx. Due to long term failure rate and associated complications like shunt obstruction, shunt migration, and clinical deterioration we had not done shunting in any of the patients in this study. Recently Goel and Desai published that foramen magnum decompression combined with syringo- subarachnoid shunt is superior when compared to placing shunt alone.

Foramen magnum decompression without duraplasty :

Sinduo et al. reviewed literature and concluded that foramen magnum decompression alone was not useful as the outcome of results was only 71%.

Literature on surgical outcome :

SPASTICITY : ASHWORTH SCALE

0 No increase in tone

1 Slight increase in muscle tone, manifested by a catch and release or minimal resistance at the end of the ROM when the affected part(s) is moved in flexion or extension

1+ Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM

2 More marked increase in muscle tone through most of the ROM, but affected part(s) easily moved

3 Considerable increase in muscle tone, passive movement difficult

4 Affected part(s) rigid in flexion or extension

NURICK'S GRADING :

Grade 0 : No evidence of spinal cord disease

Grade 1 : signs of spinal cord disease but no difficulty in walking

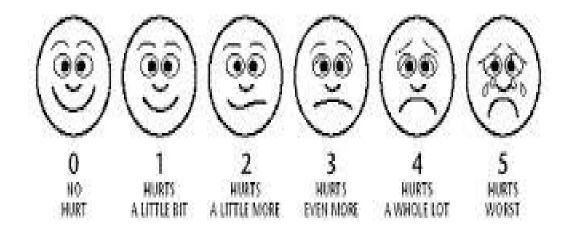
Grade 2 : slight difficulty in walking which does not prevent full-time

employment

Grade 3 : difficulty in walking which prevented full time employment

Or the ability to do all housework, but which was not so severe

as to require someone else's help to walk

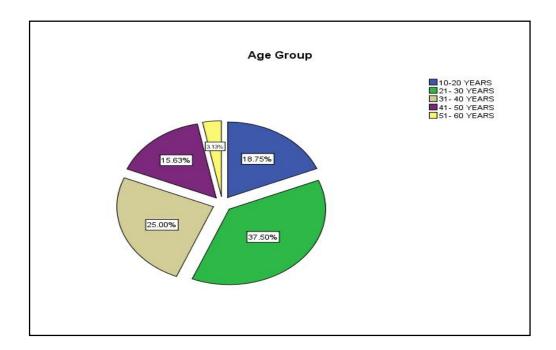

Grade 4: able to walk only with someone else's help or with the aid of a

frame

Grade 5: chair bound or bedridden .

WONG – BAKER PAIN SCORE :

Pain (occipito cervical) is one of the major complaint in patients with chiari malformation. There are many scales to assess the pre op and post op severity of pain in a patient. In our study WONG – BAKER pain scale was used to assess the pre op and post op severity of pain.

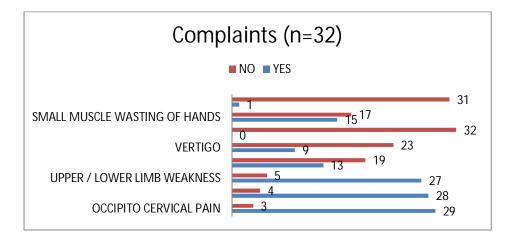

OUTCOME AND ANALYSIS

Frequency Table

AGE GROUP

	Frequency	Percent
1	6	18.8
2	12	37.5
3	8	25.0
4	5	15.6
5	1	3.1
Total	32	100.0

The incidence of chiari malformation is more in age group 2-37.5%


Sex			
		Frequency	Percent
	Female	14	43.8
	Male	18	56.3
	Total	32	100.0

Scoliosis			
		Frequency	Percent
Valid	NO	30	93.8
	YES	2	6.3
	Total	32	100.0

Height Neck Ratio					
	Frequency Percent				
Valid	LESS THEN 13	17	53.1		
	MORE THEN 13	15	46.9		
	Total	32	100.0		

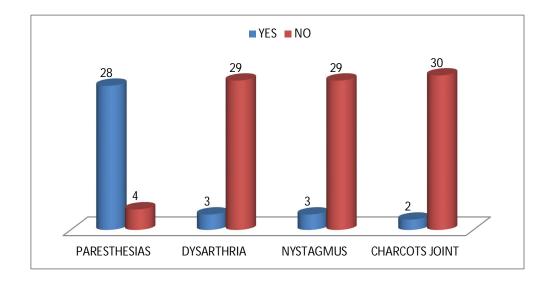
Occipito Cervical Pain

		Frequency	Percent
Valid	NO	3	9.4
	YES	29	90.6
	Total	32	100.0

Tightness Of Limbs

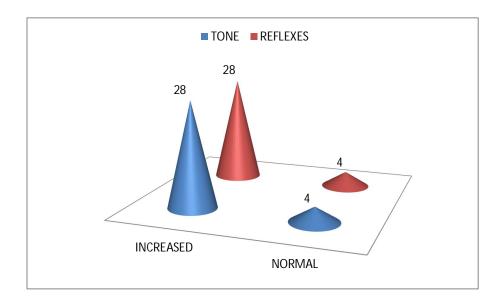
-	Frequency	Percent
Valid NO	4	12.5
YES	28	87.5
Total	32	100.0

Upper Lower Limb Weakness

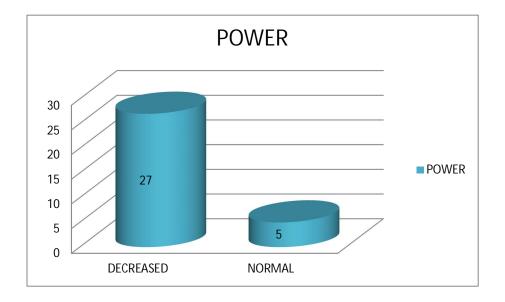

		Frequency	Percent
Valid	NO	5	15.6
	YES	27	84.4
	Total	32	100.0

paresthesias

	Frequency	Percent
Valid NO	19	59.4
YES	13	40.6
Total	32	100.0


Small Muscle Wasting Of Hands

	Frequency	Percent
Valid NO	17	53.1
YES	15	46.9
Total	32	100.0

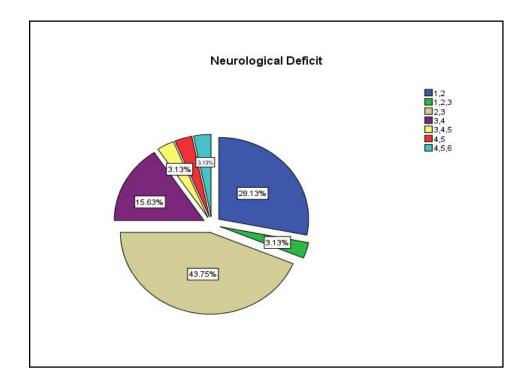


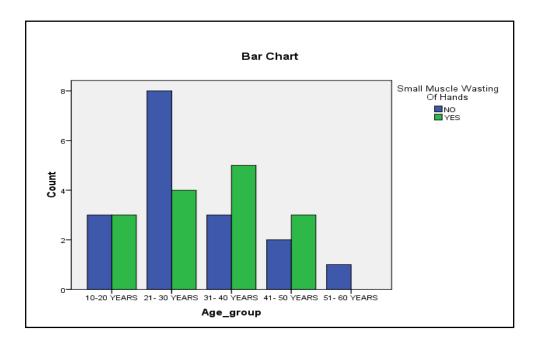
TONE

	Frequency	Percent
Valid INCREASED	28	87.5
NORMAL	4	12.5
Total	32	100.0

	Frequency	Percent
Valid DECREASED	27	84.4
NORMAL	5	15.6
Total	32	100.0

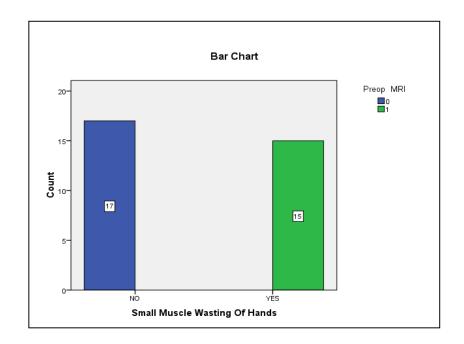
REFLEXES

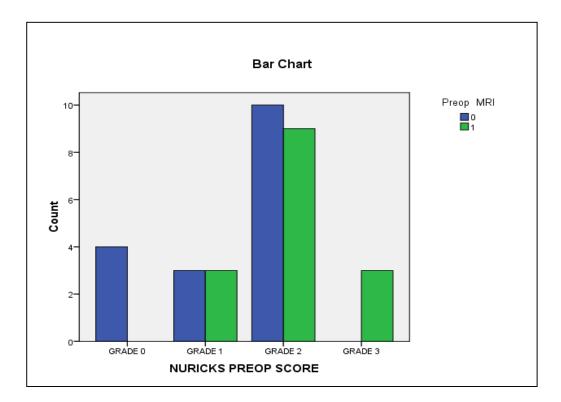

		Frequency	Percent
Valid	INCREASED	28	87.5
	NORMAL	4	12.5
	Total	32	100.0


MYELOPATHY

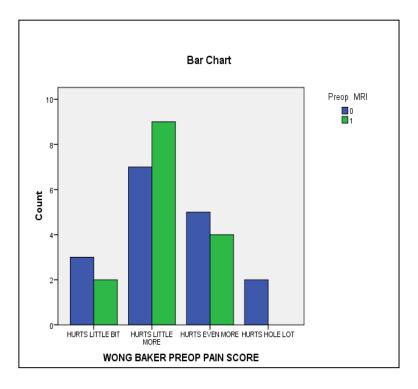
	Frequenc	
	У	Percent
Valid NO	4	12.5
YES	28	87.5
Total	32	100.0

SENSORY SYSTEM

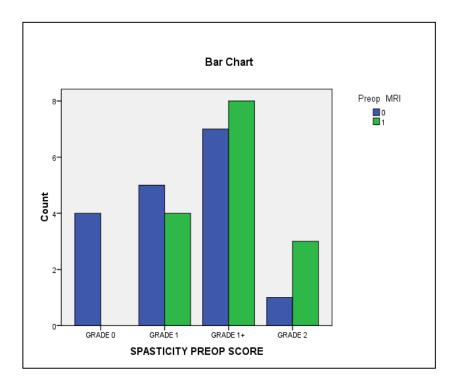

	Frequency	Percent
Valid DECREASED	17	53.1
DISSOCIATED SENSORY LOSS	15	46.9
Total	32	100.0


Chi-Square Tests

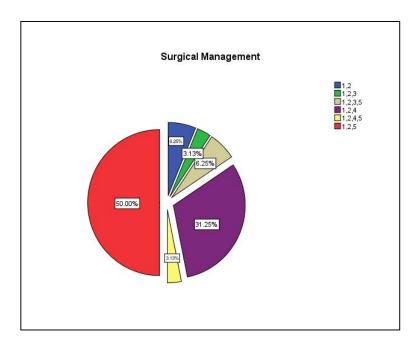
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi- Square	2.920 ^a	4	.571
Likelihood Ratio	3.327	4	.505
N of Valid Cases	32		


		Preop MRI		
		0	1	Total
GRADE 0	Count	4	0	4
	% within NUDICKS	100.0%	00/	100.0%
		100.070	.070	100.0%
	TREOF SCORE			
GRADE 1	Count	3	3	6
	% within NURICKS	50.0%	50.0%	100.0%
		50.070	50.070	100.070
GRADE 2	Count	10	9	19
	% within NURICKS	52.6%	47.4%	100.0%
	PREOP SCORE			
GRADE 3	Count	0	3	3
	% within NURICKS	.0%	100.0%	100.0%
	PREOP SCORE			
Total	Count	17	15	32
				-
	% within NURICKS	53.1%	46.9%	100.0%
	PREOP SCORE			
	GRADE 1	% within NURICKS PREOP SCOREGRADE 1Count% within NURICKS PREOP SCOREGRADE 2Count% within NURICKS PREOP SCOREGRADE 3Count% within NURICKS PREOP SCOREGRADE 3Count% within NURICKS PREOP SCORETotalCount% within NURICKS% within NURICKS	GRADE 0Count% within NURICKS PREOP SCORE100.0% 100.0% PREOP SCOREGRADE 1Count% within NURICKS PREOP SCORE50.0% 100GRADE 2Count% within NURICKS PREOP SCORE52.6% 100GRADE 3CountGRADE 4% within NURICKS PREOP SCORETotalCount% within NURICKS PREOP SCORE10% within NURICKS53.1%	GRADE 0Count40% within NURICKS100.0%.0%PREOP SCORE100.0%.0%GRADE 1Count3% within NURICKS50.0%50.0%PREOP SCORE50.0%50.0%GRADE 2Count10GRADE 3Count10% within NURICKS52.6%47.4%PREOP SCORE100.0%3GRADE 3Count10M within NURICKS.0%100.0%PREOP SCORE100.0%100.0%TotalCount17% within NURICKS53.1%46.9%

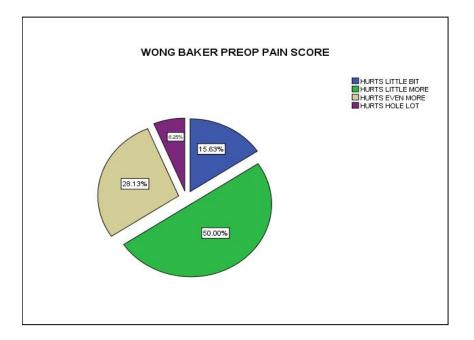
NURICKS PREOP SCORE * Preop MRI Crosstabulation


Chi-Square Tests

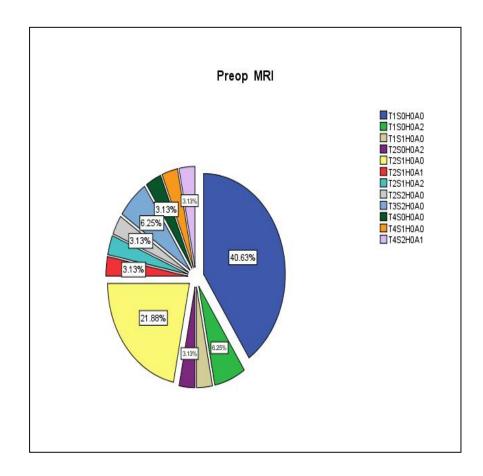
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.955 ^a	3	.073
Likelihood Ratio	9.632	3	.022
Linear-by-Linear Association		1	.027
N of Valid Cases	32		

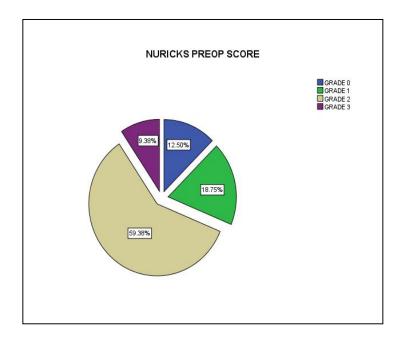

Chi-Square Tests

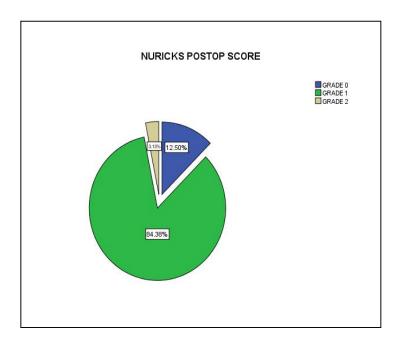
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.446 ^a	3	.485
Likelihood Ratio	3.211	3	.360
Linear-by-Linear Association		1	.440
N of Valid Cases	32		



Chi-Square Tests


	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.073 ^a	3	.167
Likelihood Ratio	6.645	3	.084
Linear-by-Linear Association		1	.039
N of Valid Cases	32		


The analysis shows in 50% of cases arachnoid dissection was done along with foramen magnum decompression.



The analysis shows 50% of cases had Wong-Baker pain score of 2.

The analysis showed 40.63% of patients had purely type I chiari Malformation with tonsillar descent of 7mm.

The statistical analysis shows 84.38% to grade 1 post operatively

				Std.	Std. Error
		Mean	Ν	Deviation	Mean
Pair 1	NURICKS PREOP SCORE	1.6563	32	.82733	.14625
	NURICKS POSTOP SCORE	.9063	32	.39015	.06897
Pair 2	SPASTICITY PREOP SCORE	1.5938	32	.87471	.15463
	SPASTICITY POSTOP SCORE	.1250	32	.33601	.05940
Pair 3	WONG BAKER PREOP PAIN	2.2500	32	.80322	.14199
	SCORE WONG BAKER POSTOP PAIN	.1875	32	.39656	.07010
	SCORE				

Paired Samples Statistics

Paired Samples Correlations

		Correlatio	
	Ν	n	Sig.
Pair 1 NURICKS PREOP SCORE	32	.796	.000
& NURICKS POSTOP			
SCORE			
Pair 2 SPASTICITY PREOP	32	.508	.003
SCORE & SPASTICITY			
POSTOP SCORE			
Pair 3 WONG BAKER PREOP	32	.658	.000
PAIN SCORE & WONG			
BAKER POSTOP PAIN			
SCORE			

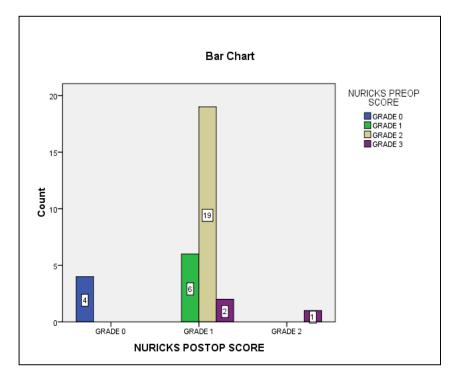
Paired Samples Test

-	Paired Differences			
		Std.	Std. Error	
	Mean	Deviation	Mean	
Pair 1 NURICKS PREOP SCORE	.75000	.56796	.10040	
- NURICKS POSTOP				
SCORE				
Pair 2 SPASTICITY PREOP	1.46875	.76134	.13459	
SCORE - SPASTICITY				
POSTOP SCORE				
Pair 3 WONG BAKER PREOP	2.06250	.61892	.10941	
PAIN SCORE - WONG				
BAKER POSTOP PAIN				
SCORE				

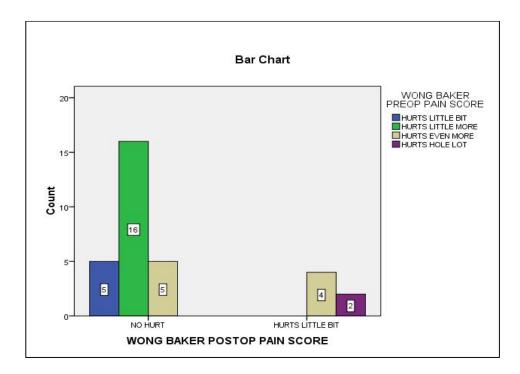
	Paired Di	ifferences
	95% Confide	ence Interval
	of the D	ifference
	Lower	Upper
Pair 1 NURICKS PREOP SCORE -	.54523	.95477
NURICKS POSTOP SCORE		
Pair 2 SPASTICITY PREOP SCORE -	1.19426	1.74324
SPASTICITY POSTOP SCORE		
Pair 3 WONG BAKER PREOP PAIN	1.83935	2.28565
SCORE - WONG BAKER		
POSTOP PAIN SCORE		

NURICKS POSTOP SCORE * NURICKS PREOP SCORE

Crosstab


	-	-	NURICK	S PREOI	P SCORE
			GRADE	GRADE	GRADE
			0	1	2
NURICKS	GRADE	Count	4	0	0
POSTOP	0	% within NURICKS	100.0%	.0%	.0%
SCORE		POSTOP SCORE			
	GRADE	Count	0	6	19
	1	% within NURICKS	.0%	22.2%	70.4%
		POSTOP SCORE			
	GRADE	Count	0	0	0
	2	% within NURICKS	.0%	.0%	.0%
		POSTOP SCORE			
	Total	Count	4	6	19

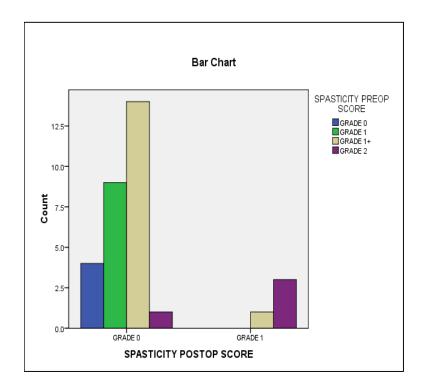
Crosstab


			NURICK	S PREOF	P SCORE
			GRADE	GRADE	GRADE
			0	1	2
NURICKS	GRADE	Count	4	0	0
POSTOP	0	% within NURICKS	100.0%	.0%	.0%
SCORE		POSTOP SCORE			
	GRADE	Count	0	6	19
	1	% within NURICKS	.0%	22.2%	70.4%
		POSTOP SCORE			
	GRADE	Count	0	0	0
	2	% within NURICKS	.0%	.0%	.0%
		POSTOP SCORE			
	Total	Count	4	6	19
		% within NURICKS	12.5%	18.8%	59.4%
		POSTOP SCORE			

Chi-Square Tests

			Asymp. Sig.
	Value	df	(2-sided)
Pearson Chi-Square	41.877 ^a	6	.000
Likelihood Ratio	28.922	6	.000
Linear-by-Linear	19.661	1	.000
Association			
N of Valid Cases	32		

NURICKS POSTOP SCORE * NURICKS PREOP SCORE


Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
	v alue	u1	(2-51000)
Pearson Chi-Square	17.413 ^a	3	.001
Likelihood Ratio	18.520	3	.000
Linear-by-Linear	13.433	1	.000
Association			
N of Valid Cases	32		

SPASTICITY POSTOP SCORE * SPASTICITY PREOP SCORE

	-		SPAST	FICITY F SCORE	PREOP
			GRADE 0	GRADE 1	GRADE 1+
SPASTICITY	GRADE	Count	4	9	14
POSTOP SCORE	0	% within SPASTICITY POSTOP SCORE	14.3%	32.1%	50.0%
	GRADE	Count	0	0	1
	1	% within SPASTICITY POSTOP SCORE	.0%	.0%	25.0%
	Total	Count % within SPASTICITY POSTOP SCORE	4	9 28.1%	15 46.9%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Paarson Chi Squara	16.610 ^a	3	.001
Pearson Chi-Square			
Likelihood Ratio	12.267	3	.007
Linear-by-Linear Association	7.988	1	.005
	20		
N of Valid Cases	32		

Postop MRI * Preop MRI

			Preop MRI				
			T2S1H0 A0	T2S1H0 A1	T2S1H0 A2	T2S2H0 A0	
Postop	T1	Count	1	0	0	0	
MRI		% within Postop MRI	5.6%	.0%	.0%	.0%	
	T1S1	Count	1	0	0	1	
		% within Postop MRI	20.0%	.0%	.0%	20.0%	
	T1S2	Count	5	1	1	0	
		% within Postop MRI	55.6%	11.1%	11.1%	.0%	
	Total	Count	7	1	1	1	
		% within Postop MRI	21.9%	3.1%	3.1%	3.1%	

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi- Square	51.911 ^a	22	.000
Likelihood Ratio	50.961	22	.000
N of Valid Cases	32		

Postop MRI * Preop MRI

			Preop MRI		
			T3S2H0	T4S0H0	T4S1H0
			A0	A0	A0
Postop	T1	Count	0	0	0
MRI		% within Postop MRI	.0%	.0%	.0%
	T1S1	Count	2	0	0
		% within Postop MRI	40.0%	.0%	.0%
	T1S2	Count	0	0	1
		% within Postop MRI	.0%	.0%	11.1%
	Total	Count	2	1	1
		% within Postop MRI	6.3%	3.1%	3.1%

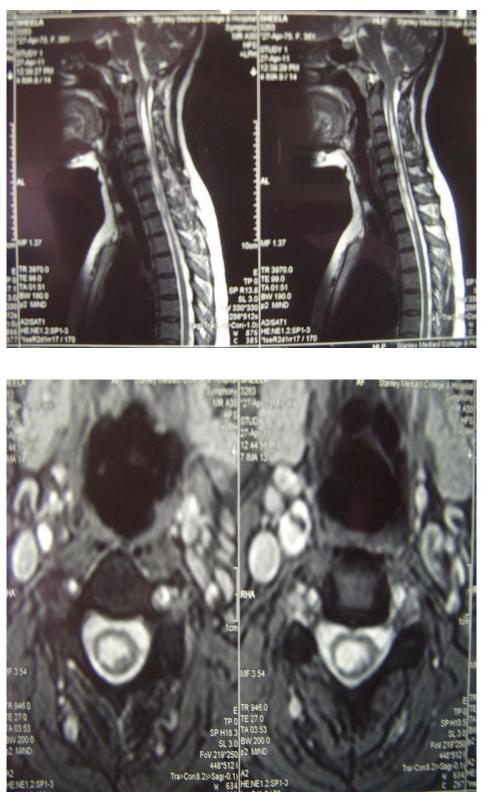
Cross tab

DESCRIPTIVE OF PAIRED SAMPLE GROUPS

	Mean	Std. Deviation
WONG BAKER PREOP PAIN SCORE	2.2500	.80322
WONG BAKER POSTOP PAIN SCORE	.1875	.39656
PREOP MRI SCORE	.47	.507
POSTOP MRI SCORE	.16	.369
NURICKS PREOP SCORE	1.6563	.82733
NURICKS POSTOP SCORE	.9063	.39015
SPASTICITY PREOP SCORE	1.5938	.87471
SPASTICITY POSTOP SCORE	.1250	.33601

PAIRED SAMPLES TEST

	Paired Differences				
			95% Confidence Interval of the Difference		
	Mean	Std. Deviation	Lower	Upper	P - VALUE
WONG BAKER PREOP PAIN SCORE - WONG BAKER POSTOP PAIN SCORE	2.06250	.61892	1.83935	2.28565	>0.001
PREOP MRI SCORE - POSTOP MRI SCORE	.313	.471	.143	.482	0.001
NURICKS PREOP SCORE - NURICKS POSTOP SCORE	.75000	.56796	.54523	.95477	>0.001
SPASTICITY PREOP SCORE - SPASTICITY POSTOP SCORE	1.46875	.76134	1.19426	1.74324	>0.001

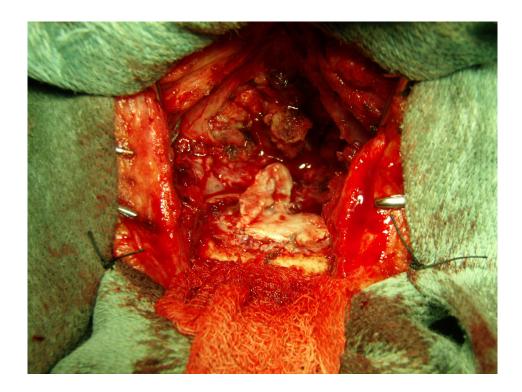

PRE-OPERATIVE SYMPTOMS AND SIGNS AND THEIR POST-OPERATIVE STATUS

	At	Follow-up (6months)					
SYMPTOMS/SIGNS	presentation	Mild improvement	Significant improvement	Disappeared			
Head/neck pain	27	-	8	19			
Vertigo	8	2	2	4			
Upper extremity	16	2	12	2			
wks/hyperreflexia							
Ataxia	8	1	5	2			
Lower extremity	16	2	12	2			
wks/hyperreflexia							

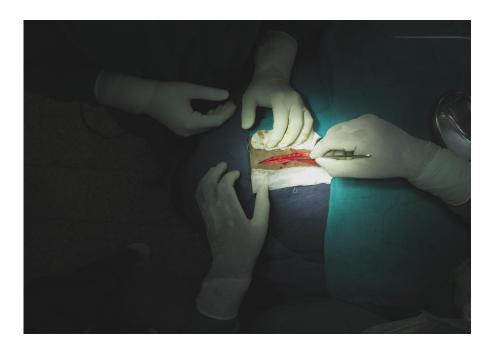
Paresthesia	8	2	4	2
Nystagmus	3	1	2	-
Scoliosis	2	2	-	-
Charcot joint	2	2	-	-
Romberg sign	2	-	-	2
Dysarthria	3	1	2	-
Trigeminal neuralgia	1	_	-	1

RESULTS AND DISCUSSION

T2 SAGITTAL / AXIAL IMAGES SHOWING TONSILLAR DESCENT WITH SYRINX

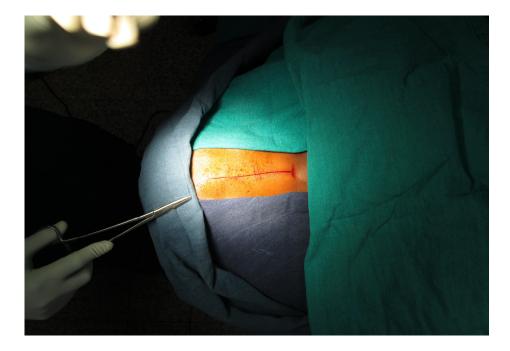


POSITIONING FOR FORAMEN MAGNUM DECOMPRESSION

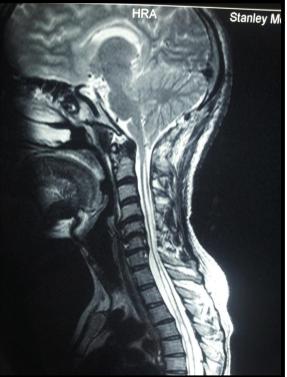




LAX DURAPLASTY WITH FASCIA LATA GRAFT


LOWER LIMIT OF TONSILS VISUALISED AFTER FORAMEN MAGNUM DECOMPRESSION

SKIN MARKING (EOP TO C3) AND DRAPPING



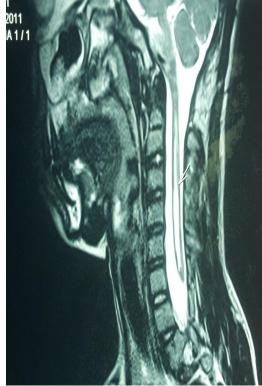
T2 SAGITTAL MRI SHOWING PRE OP AND POST OP WITH ASCEND OF TONSILS WITH RESTORING NORMAL CSF FLOW ACROSS CRANIOCERVICAL JUNCTION WITH RESOLVING SYRINX.

PRE OP

POST OP

SAGITTAL MRI SHOWING PRE OP AND POST OP WITH RESOLVING SYRINX WITH ESTABLISHING CSF FLOW ACROSS FORAMEN MAGNUM AT 6 MONTH FOLLOW UP

PRE OP



POST OP

T2 SAG ITTAL MRI SHOWING PRE OP AND POST OP WITH RESOLVING SYRINX WITH RE-ESTABLISHED CSF FLOW ACROSS CRANIO CERVICAL JUNCTION

PRE OP

POST OP

RESULTS AND DISCUSSION

1. From the statistical analysis 90.6% presented with occipitocervical pain as their principal complaint present in all age groups.

2. Of the 32cases 15 cases 46.9% had syringomyelia in MRI and they had small muscle wasting of hands on clinical examination.

3. The WONG BAKER POSTOP PAIN SCORE with mean 0.1875 (pre-op 2.2500) with p value <0.001 is statistically significant which indirectly reflects efficacy of surgical procedure.

4. The NURICKS POSTOP SCORE with mean 0.9063 (pre-op 1.6563) with p value <0.001 is statistically significant which indirectly reflects efficacy of surgical procedure.

5. The POSTOP MRI SCORE with mean 0.16 (pre-op 0.47) with p value <0.001 is statistically significant which indirectly reflects efficacy of surgical procedure.

6. The SPASTICITY POSTOP SCORE with mean 0.1250 (pre-op 1.5938) with p value <0.001 is statistically significant which indirectly reflects efficacy of surgical procedure.

7. Two cases presented with charcots joint 6.2% with chiari malformation I with syrinx.

8. The incidence of myelopathy in our study was 87.5% and they were assessed based on Nuricks grading pre and post operatively.

9. The incidence of upper and lower limb weakness in our study was 84.4%.

10. From the statistical analysis the incidence of chiari malformation in our study was seen predominantly in males with 56.3%.

11. The incidence of dissociated sensory loss in our study was46.9%

12. The symptoms like vertigo, nystagmus and dysarthria showed significant improvement after surgical procedure.

13. Inspite of persistent syrinx on MR image in one patient, no further surgical procedure was advised to avoid even the minimal rate of complications associated with shunting of syinx.

14. One patient who presented with trigeminal neuralgic pain in this study showed complete recovery of pain after surgery.

15. Improvement in clinical symptoms with with resolution of the syrinx is noted in 93.3% of the cases.

COMPARISION WITH LITERATURE SYNOPSIS

Authors&year	Study period	No. Of	Ages	No.of	Operative	Туре	Morbidity	Results
		Patients	(yrs)	syrinx	technique	of shunt		
Paul et al.,1983	1943-1981	71	15-66	?	SC(71),C1-C3 LM+fascial	4 th VSS (17)	respiratory depression	82% improved, subsequent
					Graft(69),re-op (1)for		(10),hematoma(1),	deterioration 21% after 3yrs
					pseudomeningocele		pseudomeningocele(1)	FU 6months – 9yrs
							death(1)	
Dyste & Meneze	s 1975-1985	11	1-19	11	PFC+LM+Arachnoid	4 th VSS(1)	None	37.5% asymptomatic
					Dissection+duraplasty	VPS(2)		50% improved
					(11), odontoidectomy(2)	SSS(3)		12.5% stable. FU 2-12YRS
Pillay et al.,	3yrs	35	18-57	20	PFD+Plugging of obex(31)	sss(3)	None	63% improved, 31% stable
1991					PFD+SSS(1),			6% worse
					Odontiodectomy(2),			FU-3-4yrs
					Re-op (3)			

Milhorat et al.,	1986-1991	6	20-48	6	PFD (3)	Syringocisternostomy	None	PFD 66% improved
1992					RE-OP (1)	(3)		1 re-op SC 100%
								FU-1-4-5yrs
lsu et al.,		7	23-54	7	SC_C1C2 LM	(5) None	None	86% improved
1993					SC+C1LM(2)			16% unchanged
					Removal of o	outer		
					Dural layer(7)		
Raftopoulos	1990-1991	8	18-66	8	SC+LM+arac	hnoid None	None	100% improved
1993					dissection+d	luraplasty		FU-14-43 months
					(8)			
Old field et al.,		7	11-36	7	SC+C1C2LM-	+Dural None	None	71.4% improved
1994					graft (7)			28.65 stabilized
								FU-6wks-20 months
Badie et al.,	1986-1993	20	21-84	16	SC+C1C2LN	l in SPS(2)	None	85% improved
1995					selected cas	ses		15% unchanged
					DP+ tonsilla	r Resection(20)		FU 0.2-5yrs

Bindal et al.,	1986-1991	22	18-66	12	SC+C1C2LM+dural	SSS(7)	Medical	Dramatically improved
1995					graft(10),pos.brain	SPS(1)	complication(1)	not specified. FU 2-6yrs
					Stem decomp(12)			
					Plugging of obex(7)			
					Re-op odontoidectomy-	ł		
					Pos fusion(1)			
Hida et al.,	1982-1993	70	3-59	70	PFD+LM(33),DP(21)	SSS(37)	Meningitis(2)	PFD 82% improved
1995					removal of outer dural	Reop(7)	Kyphosis(1)	18% unchanged
					layer(12), Reop (3)			SSS 97% improved
								3% unchanged
								FU 0.6-12.5yrs
Park et al.,	1988-1996	68	<16	40	SC+LM+DP(68)	4 th VSS(32	2) None	93% improved
1997					tonsil resection(40)			FU 6-70 months
					Plugging of obex(23)			

Cinalli et al.,	1993-1996	4	<1	0	Occipital vault	VPS(1)	None	100% stable
1998					remodelling+SC			FU 1-18 months
					Without dural opening]		
					(3)			
Grabb etal.,		34	1.3-27	22	PFD+Occipito cervical	None	brainstem comp (1)	Not specified
1999					fusion(4),SC+LM+DP(3	0)		FU 18-24 months
					Odontoidectomy(2)			
Genitori et al.,	1994-1998	53	0.3-26	10	SC+LM+fibrous band	None	wound infection (2)	97.2% improved
2000					removal(26),reop(2)			2.8% unchanged FU
60								
								Months
Munshi et al.,	1988-1998	32	4-62	19	SC+LM(34)	None	CSF leak (2)	81.2% improved
2000					Dural band excision(1	1)	aseptic meningitis (1)	18.2% unchanged
					DP(23)		sub-galeal csf collection	FU 1-6 months
					Reop –DP(2)		(4),wound infection(4)	

Tubbs et al.,	23yrs	130	0.2-20	75	SC+LM (129)	4 th VSS(26)	brain stem comp-1	83% improved
2003					C2 LM (1)	SPS(1)	odontoidectomy(1)	17% unchanged
					DP(129)		Extra axial subdural collection	FU 3mos-15yrs
					Arachnoid dissection(1	0)	(2)- external temporary drain	age
					Tonsil resection(22)			
					Reop (9)			
Our study	2010-2014	32		15	FMD+c1LM+DP (32)	None	CSF leak (1)- re-exploration+	93.3% IMPROVED
					C2 LM (2)		dural rent repair done	6.7% improving
					Arachnoid dissection(2	20)		

COMPARITIVE STUDY :

With comparing Pillay et al., (who perfomed posterior fossa decompression+obex plugging+syringosubarachnoid shunt) 63% improved,31% stable ,in our study without obex plugging or syrinx shunting the results were 93.3% improved and 6.7% static.

With comparing Milhorat et al., who performed posterior fossa decompression +Syringocisternostomy of which 66% improved which again shows our study is valid with results 93.3% improved.

Regarding resection of tonsils Badie et al., study showed 85% improvement, Tubbs et al., 83% improvement, Park et al., 93% improvement (tonsillar resection+obex plugging) in contrast to our study which showed 93.3% improvement without tonsillar resection.

In comparing with other studies mentioned in the literature our study foramen magnum decompression with lax duraplasty seems to be valid surgical option for chiari malformation I patients with and without syringomyelia.

CONCLUSION

CONCLUSION

The low morbidity rate associated with the simplified approach contrasts with a significant incidence of postoperative complications reported in the literature in the case of "traditional" treatment.

From our study it is evident that foramen magnum decompression along with lax duraplasty can produce opening up of sub-arachnoid spaces which will restore csf circulation along the foramen magnum and remove the compression at the craniocervical junction along with reduction in the size of syrinx as shown by postoperative imaging.

From the statistical analysis of our study foramen magnum decompression with C-1 laminectomy + lax duraplasty in chiari malformation I with and without syringomyelia can achieve comparable results with those obtained with more invasive surgical methods. Also in our series the percentage of results is similar to that reported in the literature where more aggressive surgical procedures were used. From our study it is evident that moderate or no change in postoperative neuroimages may be regarded as a good outcome when accompanied by clinical improvement or complete recovery

Although there are various conflicts regarding surgical options in the management of chiari malformation I with and without syringomyelia, from our study it is evident that foramen magnum decompression with duraplasty seems to be a valid surgical option.

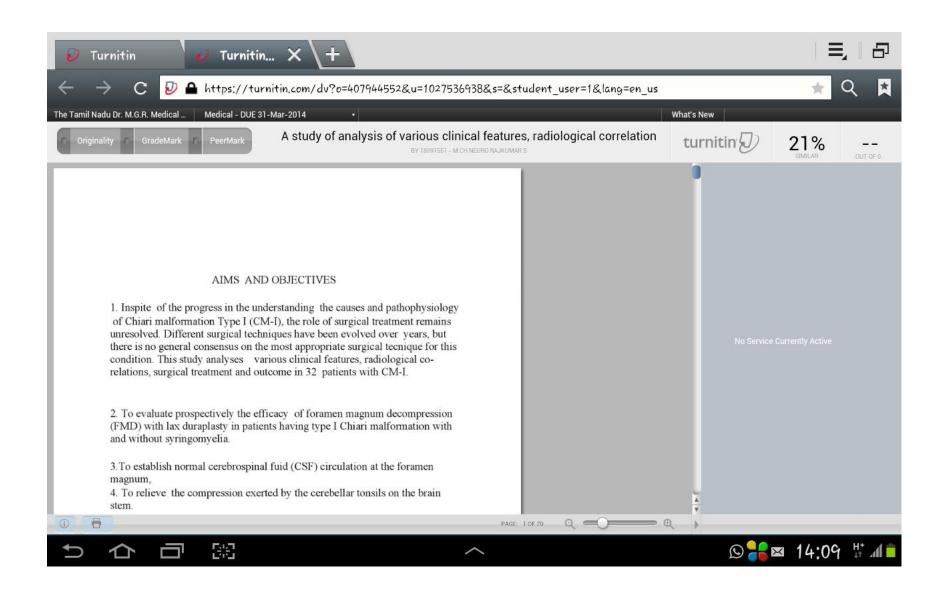
BIBLIOGRAPHY

BIBLIOGRAPHY

- Badie B, Mendoza D, Batzdorf U: Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery 37:214–218, 1995
- Bindal AK, Dunsker SB, Tew JM Jr: Chiari I malformation: classification and management. Neurosurgery 37:1069–1074, 1995
- Bondurant CP, Oro JJ: Spinal cord injury without radiographic abnormality and Chiari malformation. J Neurosurg 79:833– 838,1993
- Caldarelli M, Di Rocco C: Diagnosis of Chiari I malformation and related syringomyelia: radiological and neurophysiological studies.
 Childs Nerv Syst 20:332–335, 2004
- Cinalli G, Chumas P, Arnaud E, Sainte-Rose C, Renier D: Occipital remodelling and suboccipital decompression in severe craniosynostosis associated with tonsillar herniation. Neurosurgery 42:66–73, 1998

- Dyste GN, Menezes AH: Presentation and management of pediatric Chiari malformations without myelodysplasia. Neurosurgery 23:589–597, 1988
- Elster AD, Chen MY: Chiari I malformations: clinical and radiologic reappraisal. Radiology 183:347–353, 1992
- Genitori L, Peretta P, Nurisso C, Macinante L, Mussa F: Chiari type I anomalies in children and adolescents: minimally invasive management in a series of 53 cases. Childs Nerv System 16:707– 718, 2000
- Grabb PA, Mapstone TB, Oakes WJ: Ventral brain stem compression in pediatric and young adult patients with Chiari I malformations. Neurosurgery 44:520–528, 1999
- Haines SJ, Berger M: Current treatment of Chiari malformations types I and II: a survey of the Pediatric Section of the American Association of Neurological Surgeons. Neurosurgery 28:353–357, 1991
- 11. Hida K, Iwasaki Y, Koyanagi I, Sawamura Y, Abe H: Surgical indication and results of foramen magnum decompression versus

syringosubarachnoid shunting for syringomyelia associated with Chiari I malformation. **Neurosurgery 37:**673–679, 1995


- Isu T, Sasaki H, Takamura H, Kobayashi N: Foramen magnum decompression with removal of the outer layer of the dura as treatment for syringomyelia occurring with Chiari I malformation. Neurosurgery 33:845–850, 1993
- Jacob RP, Rhoton AL Jr: The Chiari I malformation, in Benzel EC, Awad IA Anson JA (eds): Syringomyelia and the Chiari Malformation. Park Ridge, IL: American Association of Neurological Surgeons, 1997, pp 57–67
- Limonadi FM, Selden NR: Dura-splitting decompression of the craniocervical junction: reduced operative time, hospital stay, and cost with equivalent early outcome. J Neurosurg 101 (2Suppl Pediatrics):184–188, 2004
- Milhorat TH, Bolognese PA: Tailored operative technique for Chiari type I malformation using intraoperative color Doppler ultrasonography. Neurosurgery 53:899–906, 2003

- Milhorat TH, Johnson WD, Miller JI, Bergland RM, Hollenberg-Sher J: Surgical treatment of syringomyelia based on magnetic resonance imaging criteria. Neurosurgery 31:231–245,1992
- Munshi I, Frim D, Stine-Reyes R, Weir BKA, Hekmatpanah J, Brown F: Effects of posterior fossa decompression with and without duraplasty on Chiari malformation-associated hydromyelia. Neurosurgery 46:1384–1390, 2000
- Navarro R, Olavarria G, Seshadri R, Gonzales-Portillo G, Mc-Lone DG, Tomita T: Surgical results of posterior fossa decompression for patients with Chiari I malformation. Childs Nerv Syst 20:349–356, 2004
- Oldfield EH, Muraszko K, Shawker TH, Patronas NJ: Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg 80:3–15, 1994
- Panigrahi M, Reddy BP, Reddy AK, Reddy JJM: CSF flow study in Chiari I malformation. Childs Nerv Syst 20:336–340,2004

- Park JK, Gleason PL, Madsen JR, Goumnerova LC, Scott RM: Presentation and management of Chiari I malformation in children.**Pediatr Neurosurg 26:**190–196, 1997
- 22. Paul KS, Lye RH, Strang FA, Dutton J: Arnold-Chiari malformation.Review of 71 cases. **J Neurosurg 58:**183–187, 1983
- Pillay PK, Awad IA, Little JR, Hahn JF: Symptomatic Chiari malformation in adults: a new classification based on magnetic resonance imaging with clinical and prognostic significance. Neurosurgery 28:639–645, 1991M. Caldarelli et al.
- 24. Pollack IF, Pang D, Kocoshis S, Putnam P: Neurogenic dysphagia resulting from Chiari malformations. Neurosurgery 30:709–719, 1992
- 25. Raftopoulos C, Sanchez A, Matos C, Baleriaux D, Bank WO, Brotchi J: Hydrosyringomyelia-Chiari I complex. Prospective evaluation of a modified foramen magnum decompression procedure:preliminary results. Surg Neurol 39:163–169, 1993
- Sacco D, Scott RM: Reoperation for Chiari malformations.
 PediatrNeurosurg 39:171–178, 2003

27. Sahuquillo J, Rubio E, Poca MA, Rovira A, Rodriguez-Baeza A, Cervera C: Posterior fossa reconstruction: a surgical techniquefor the treatment of Chiari I malformation and Chiari I/syringomyelia complex.

ANNEXURES

turnitin

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author:	18091551 - M.ch Neuro Rajkumar S
Assignment title:	Medical
Submission title:	A study of analysis of various clinical features, radiological correlation ,surgical options and outcome in the management of Chiari malformation type I.
File name:	final_part.doc
File size:	585.14K
Page count:	70
Word count:	6,105
Character count:	33,023
Submission date:	23-Mar-2014 08:10PM
Submission ID:	407944552

AIMS AND OBJECTIVES

 Inspite of the progress in the understanding the causes and pathophysiology of Chian malformation Type I (CM-I), the role of surgical treatment remains unresolved. Different surgical techniques have been evolved over years, but there is no general consensus on the most appropriate surgical tecnique for this condition. This study analyses various clinical features, radiological corelations, surgical treatment and outcome in 32 patients with CM-I.

 To evaluate prospectively the efficacy of foramen magnum decompression (FMD) with lax duraplasty in patients having type I Chiari malformation with and without syringomyelia.

3. To establish normal cerebrospinal fuid (CSF) circulation at the foramen magnum, 4. To relieve the compression exerted by the cerebellar tonsils on the brain stem.

Although single effective therapeutic treatment in achieving actual cure of the disease is still under debate, foramen magnum decompression (FMD) has been widely recognized as an acceptable method in achieving these goals. Additional procedures such as dissection of arachnoid adhesions, plugging of the obex, shunting of the fourth ventriced and resection of tonsils depends on the surgeon's personal understanding of the pathophysiology of the disease.

5. To prospectively review the surgical outcome in improvement of clinical symptoms and resolution of syrinx in 32 patients treated for Chiari 1 malformation in our institution. All patients in this study underwent Foramen magnum decompression with lax duraplasty as basic procedure either alone or combined with additional manipulations.

6. To assess the pre operative and post operative pain score (WONG – BAKER pain score).

7. To assess the resolution of syinx in the post op MRI.

Copyright 2014 Turnitin. All rights reserved.

ABBREVIATIONS

- CM Chiari malformation
- FMD Foramen magnum decompression
- LP Lumbar puncture
- SSS Syringo sub-arachnoid shunt
- VP Ventriculo peritoneal
- SC Suboccipital craniectomy
- LM Laminectomy
- PFD Posterior fossa decompression
- DP Duraplasty
- CSF Cerebrospinal fluid
- OP Operative
- ROM Range of movement
- EOP External occipital protuberance
- FU Follow up
- DOA Date of admission
- DOS Date of surgery
- DOD Date of discharge

PROFORMA

PATIENT DETAILS:

Name	:			
Age	:			
Sex	: Male/ Female			
IP NO	:			
DOA	:			
DOS	:			
DOD	:			
Address	:			
Occupation :				
Socioeconomic Status:				

Place : 1. Urban

2.Rural

1.Upper

2. Middle

3.Lower

COMPLAINTS

Headache :

Onset:

Duration:

Progression: Static/Progressive

Area of distribution:

Referred Pain:

Neck pain:

Onset:

Duration:

Progression: Static/Progressive

Referred Pain:

Sensory disturbance :

Onset :

Duration :

Progression:

Type :

Dermatomal distribution:

Opthalmologic symptoms :

Blurred vision

Diplopia

Visual field defects

Otologic symptoms :

Tinnitus

Hearing loss

Vertigo

Symptoms related to cerebellar / brainstem /lower cranial nerve compromise :

Ataxia

Incordination

Dizziness

Dysphagia

Dysarthria

Hiccoughs

Glossal atrophy

Trigeminal / Glossopharyngeal neuralgia

Bladder, bowel disturbances :

Gait :

1.Steady

2.Unsteady

Family History : yes/no

Past History	: DM / SH1	T / Asthma / TB	/ CAD
Personal history	:		
Risk factors	:		
General Examination	:		
Build :	Height :	Neck :	Ratio :
Weight:			
CVS :			
RS : Single breath co Chest expansion			
Neurocutaneous mark	ers :		
Examination of Cent Higher mental funct		:	
Cranial nerves Right	t Left		
Cranial nerves Right I	t Left		
I II VA	t Left		
Ι	t Left		
I II VA VF	t Left		

VII VIII IX, X XI XII Spinomotor system Rt Lt Upper limb Bulk Tone Power S Е W Reflexes BJ TJ SJ Hand grip Lower limb Bulk Tone Power H Κ A

Reflexes

KJ

AJ

Plantar

Superficial reflexes :

Sensory system :

Cerebellar signs :

Gait :

Spine & Cranium :

Investigations Hb

110	•			
TC	:			
DC	: P	\mathbf{L}	\mathbf{E}	Μ
ESR	:			
Blood Sugar	:			
Blood Urea	:			
Serum creatinine	:			
Serum electrolytes	:			

X- ray cervical spine :

MRI cervical spine with brain and whole spine screening :

•

Date of surgery :

Procedure done :

Intra op findings :

Post op period :

Follow up :

Consent Form

I agree to participate in the study titled - "A STUDY OF ANALYSIS OF VARIOUS CLINICAL FEATURES, RADIOLOGICAL CORRELATION, SURGICAL OPTIONS AND OUTCOME IN THE MANAGEMENT OF CHIARI MALFORMATION TYPE I"

I confirm that I have been told about this study in my mother tongue and have had the opportunity to ask question.

I understand that my participation is voluntary and I may refuse to participate at any time without giving any reason and without affecting my benefits.

I agree not to restrict the use of any data or results that arise from the study.

I agree to undergo the necessary investigation which is part of the study.

Name of the participant: Signature / thumb impression: Investigator:

<u>நோயாளிகளுக்கான ஆலோசனை</u>

A STUDY OF ANALYSIS OF VARIOUS CLINICAL FEATURES, RADIOLOGICAL CORRELATION, SURGICAL OPTIONS AND OUTCOME IN THE MANAGEMENT OF CHIARI MALFORMATION TYPE I பற்றி நான் ஒரு ஆய்வு மேற்கொண்டு உள்ளேன்.

இந்த கண்காணிக்கப்பட்ட மருத்துவ ஆய்விற்கு தாங்களும் பதிவு செய்து

தங்களது முழு ஒத்துழைப்பை நல்குமாறு தங்களை அன்புடன்

கேட்டுகொள்கிறேன்

<u>நோயாளிகள் ஒப்புதல்</u>

இந்த இருதய உட்புகுத்து பரிசோதனை மற்றும் மீளொலி பரிசோதனை பற்றி விளக்கப்பட்டது. அதனுடன் இதனால் ஏற்படகூடிய பக்க விளைவுகள் பற்றி மருத்துவரின் மூலம் தெரிந்துகொண்டேன்.

பரிசோதனை மற்றும் நடத்தப்படும் ஆய்வை பற்றி முழுமையாக மருத்துவர் விளக்கினார். நான் இந்த ஆய்வில் பங்கெடுக்க முழு மனதுடன் சம்மதம் தெரிவிகின்றேன்

நோயாளியின் கையொப்பம்

ஒப்புதல் படிவம்

A STUDY OF ANALYSIS OF VARIOUS CLINICAL FEATURES, RADIOLOGICAL CORRELATION, SURGICAL OPTIONS AND OUTCOME IN THE MANAGEMENT OF CHIARI MALFORMATION TYPE I

நோயாளியின் ஒப்புதல் படிவம்

ஆராய்ச்சி நிலையம் : அரசு ஸ்டான்லி மருத்துவமனை, சென்னை 600001 பங்கு பெறுபவரின் பெயர் : பங்கு பெறுபவரின் கையொப்பம் : பங்கு பெறுபவர் இதனை () குறிக்கவும்

மேலே குறிப்பிட்டுள்ள மருத்துவ ஆய்வின் விவரங்கள் எனக்கு விளக்கப்பட்டது. என்னுடைய சந்தேகங்களை கேட்கவும், அதற்கான தகுந்த விளக்கங்களை பெறவும் வாய்ப்பளிக்கப்பட்டது.

நான் இந்த ஆய்வில் தன்னிச்சையாகத்தான் பங்குபெருகிரேன் .எந்த காரணத்தினாலோ எந்த சட்டசிக்கல்களுக்கும் உட்படாமல் நான் இந்த ஆய்வில் இருந்து விலகிக்கொள்ளலாம் என்று அறிந்து கொண்டேன்.

இந்த ஆய்வு சம்பந்தமாகவோ, இதை சார்ந்த மேலும் ஆய்வு மேற் கொள்ளும் போதும் இந்த ஆய்வில் பங்குபெறும் மருத்துவர் என்னுடைய மருத்துவ அறிக்கைகளை பார்ப்பதற்கு என் அனுமதி தேவையில்லை என அறிந்துகொள்கிறேன்.நான் ஆய்வில் இருந்து விலகிக்கிகொண்டாலும் இது பொருந்தும் என அறிந்தேன்.

இந்த ஆய்வின் மூலம் கிடைக்கும் தகவல்களையும் , பரிசோதனை முடிவுகளையும், மற்றும் சிகிச்சை தொடர்பான தகவல்களையும் மருத்துவர் மேற்கொள்ளும் ஆய்வில் பயன்படுத்திக்கொள்ளவும் அதை பிரசுரிக்கவும் என் முழு மனதுடன் சம்மதிக்கிறேன்.

இந்த ஆய்வில் பங்கு கொள்ள ஒப்புக்கொள்கிறேன். எனக்கு கொடுக்கப்பட அறிவுரைகளின் படி நடந்து கொள்வதுடன் இந்த ஆய்வை மேற்கொள்ளும் மருத்துவ அணிக்கு உண்மையுடன் இருப்பேன் என்றும் உறுதி அளிகின்றேன். என் உடல் நலம் பாதிக்கப்பட்டாலோ அல்லது எதிர்பாராத, வழக்திர்க்குமாறன நோய்க்குறி தென்பட்டாலோ உடனே அதை மருத்துவ அணிக்கு தெருவிப்பேன் என உறுதி அளிக்கிறேன்.

இந்த ஆய்வில் எனக்கு ரத்தம், சிறுநீர், எக்ஸ்ரே, ஸ்கேன், உட்பட அனைத்து பரிசோதனைகளையும் செய்து கொள்ள நான் முழு மனதுடன் சம்மதிக்கிறேன்.

பங்கேற்பவரின் கையொப்பம்	 இடம்	தேதி
சட்டைவிரல் ரேகை		~~
பங்கேற்பவரின் பெயர் மற்றும் விலாசம்		
ஆய்வாளரின் கையொப்பம் தேதி	 இடம்	
ஆய்வாளரின் பெயர்		

KEY TO MASTER CHART

AGE:

- 10-20 YEARS : 1
- 21-30 YEARS : 2
- 31-40 YEARS : 3
- 41-50 YEARS : 4
- 51-60 YEARS : 5
- 61-70 YEARS : 6

SEX :

MALE / FEMALE

OCCUPATION :

UNEMPLOYED (OLDAGE, HOME MAKERS, STUDENTS) : 1

LABOURER (DAILY WAGES)	:2
FARMERS	:3
SELF EMPLOYED	:4

BOBY MASS INDEX :

- 1:<20
- 2:20.5-23
- 3:23.5-25
- 4:25.5-27
- 5:27.5-30
- 6: > 30

NEUROLOGICAL DEFICIT :

X : NO NEUROLOGICAL DEFICIT

- 1 : C4
- 2 : C5
- 3 : C6
- 4 : C7
- 5 : C8
- 6 : T1

SPASTICITY : ASHWORTH SCALE

0 No increase in tone

1 Slight increase in muscle tone, manifested by a catch and release or minimal resistance at the end of the ROM when the affected part(s) is moved in flexion or extension

1+ Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM

2 More marked increase in muscle tone through most of the ROM, but affected part(s) easily moved

3 Considerable increase in muscle tone, passive movement difficult

4 Affected part(s) rigid in flexion or extension

HEIGHT NECK RATIO : 1(<13)

2(>13)

MRI BRAIN WITH WHOLE SPINE SCREENING :

TONSILLAR DESCENT: 1(7mm)

2(8mm)

3 (9mm)

4 (10mm)

SYRINX : 0 (N0)

1(CERVICAL)

2(CERVICOTHORACIC)

HYDROCEPHALUS : 0 (NO)

1 (YES)

ASSOCIATED ANOMALIES : 0(NO)

1 (INTERHEMISPHERIC CYST) 2(CORPUS CALLOSAL AGENESIS)

NURICK'S GRADING :

Grade 0 : No evidence of spinal cord disease

Grade 1 : signs of spinal cord disease but no difficulty in walking

Grade 2 : slight difficulty in walking which does not prevent full-time employment

Grade 3 : difficulty in walking which prevented full time employment

Or the ability to do all housework, but which was not so severe as to

Require someone else's help to walk

Grade 4: able to walk only with someone else's help or with the aid of a frame

Grade 5: chair bound or bedridden .

SURGICAL PROCEDURE :

1 : FORAMEN MAGNUM DECOMPRESSION + LAX DURAPLASTY

- 2 : C1 ARCH REMOVAL
- 3 : C2 LAMINECTOMY
- 4 : DURAL BAND REMOVAL
- 5 : ARACHNOID DISSECTION

POST OP MRI :

TONSILLAR DESCENT : TO (STATIC)

T1 (DECREASED)

SYRINX

: S0 (STATIC) S1 (RESOLVING) S2 (RESOLVED)

MASTER CHART

		dno		ation	Marital status		ctors		sis	Height/neck ratio				SN:		occipito	
S no	Name	Age group	Sex	Occupation	Marita	IP NO	Risk factors	Bmi	Scoliosis	Height	DOA	DOS	DOD	SE Status	Place	cervical pain	tightness of limbs
1	Chinnathambi	3	Male	2	married	24156	0	2	0	2	16.7.2010	21.7.2010	1.8.2010	Lower	Rural	YES	YES
2	Sheela	3	Female	4	married	54721	0	1	0	1	24.4.2011	29.4.2011	10.5.2011	Lower	Urban	YES	YES
3	Naseera	1	Female	1	unmarried	72066	0	5	0	1	14.6.2011	20.6.2011	02.7.2011	Lower	Rural	YES	NO
4	Shankar	4	Male	3	married	17567	0	2	0	2	16.6.2011	24.6.2011	05.7.2011	Upper	Rural	YES	YES
5	Vinoth kumar	1	Male	2	unmarried	21682	0	1	0	2	28.6.2011	1.7.2011	11.7.2011	Lower	Urban	YES	YES
6	Vinothini	2	Female	4	unmarried	25137	0	4	0	1	21.7.2011	29.7.2011	9.8.2011	Upper	Rural	YES	YES
7	Devendran	3	Male	2	married	30684	0	4	1	1	1.9.2011	9.9.2011	20.9.2011	Lower	Urban	YES	YES
8	Sivabagiyam	4	Female	2	married	32239	0	2	0	2	8.9.2011	16.9.2011	27.9.2011	Middle	Urban	NO	YES
9	Mageshwaran	1	Male	1	unmarried	31094	0	1	0	2	10.9.2011	17.9.2011	29.9.2011	Middle	Rural	YES	NO
10	Ajith	1	Male	1	unmarried	74423	0	2	0	1	22.9.2011	30.9.2011	11.9.2011	Lower	Urban	YES	NO
11	ponnusamy	4	Male	4	married	81172	0	3	0	2	06.9.2011	12.10.2011	24.9.2011	Lower	Rural	NO	YES
12	Santhana raj	2	Male	2	married	43359	0	2	0	1	10.12.2011	14.12.2011	26.12.2011	Lower	Rural	YES	YES
13	Shanthi	2	Female	4	unmarried	17209	0	4	0	1	17.4.2012	20.4.2012	1.5.2012	Middle	Rural	YES	NO
14	Anushree	3	Female	2	married	17076	0	1	0	2	19.4.2012	23.4.2012	3.5.2012	Middle	Urban	YES	YES
15	Ashok	1	Male	1	unmarried	17820	0	1	0	2	26.4.2012	30.4.2012	21.5.2012	Lower	Rural	YES	YES
16	Brathiksha	2	Female	4	unmarried	21522	0	2	0	2	28.4.2012	03.5.2012	14.5.2012	Lower	Rural	YES	YES
17	Srinivasan	2	Male	2	married	21247	0	1	0	1	19.5.2012	25.5.2012	5.6.2012	Middle	Urban	YES	YES
18	Jeevanandham	3	Male	2	married	22833	0	3	0	1	31.5.2012	2.6.2012	14.6.2012	Lower	Rural	NO	YES
19	Senthil	2	Male	2	married	80961	0	3	0	2	30.6.2012	7.7.2012	17.7.2012	Lower	Rural	YES	YES

20	Kumaran	3	Male	2	unmarried	89964	0	2	0	2	14.7.2012	18.7.2012	30.7.2012	Middle	Rural	YES	YES
21	Radhakrishnan	4	Male	3	married	31204	0	4	0	1	19.7.2012	21.7.2012	2.8.2012	Lower	Rural	YES	YES
22	Mahalakshmi	2	Female	4	unmarried	28580	0	4	0	1	24.7.2012	28.7.2012	7.8.2012	Lower	Urban	YES	YES
23	Kavya	2	Female	4	unmarried	32167	0	3	0	1	26.7.2012	30.7.2012	9.8.2012	Lower	Urban	YES	YES
24	Jebamani	3	Male	2	married	33177	0	5	1	2	09.8.2012	13.8.20`12	27.8.2012	Middle	Rural	YES	YES
25	Surendar	1	Male	2	unmarried	44524	0	3	0	1	25.10.2012	31.10.2012	10.11.2012	Lower	Urban	YES	YES
26	Thangammal	4	Female	1	married	43438	0	2	0	2	30.10.2012	3.11.2012	13.10.2012	Middle	Rural	YES	YES
27	Revathi	2	Female	4	married	51951	0	1	0	1	17.11.2012	23.11.2012	3.12.2012	Lower	Urban	YES	YES
28	Marriappan	3	Male	2	married	85041	0	2	0	2	10.12.2012	14.12.2012	24.12.2012	Middle	Rural	YES	YES
29	Subramani	2	Male	2	unmarried	90023	0	3	0	1	18.12.2012	21.12.2012	31.12.2012	Lower	Rural	YES	YES
30	Sumathi	2	Female	4	unmarried	1118	0	2	0	1	17.1.2013	21.1.2013	1.2.2013	Lower	Urban	YES	YES
31	Nathiya	2	Female	4	married	5026	0	1	0	2	21.2.2013	25.2.2013	7.3.2013	Lower	Urban	YES	YES
32	Ganthimathi	5	Female	1	married	16461	0	4	0	1	23.5.2013	27.5.2013	6.3.2013	Lower	Rural	YES	YES

	Complaints									
upper/lower limb weakness	paresthesia s	vertigo	bladder/b owel disturban ces	small muscle wasting of hands	trigeminal neuralgia	Duration	Preop pain	SMALL MUSCLE WASTING OF HANDS	TONE	POWER
YES	YES	NO	NO	YES	NO	2 years	2	YES	INCREASED	DECREASED
YES	YES	NO	NO	YES	NO	6 years	2	YES	INCREASED	DECREASED
NO	NO	YES	NO	NO	NO	6months	3	NO	NORMAL	NORMAL
YES	NO	NO	NO	YES	NO	9months	2	YES	INCREASED	DECREASED
YES	YES	NO	NO	YES	NO	2 years	1	YES	INCREASED	DECREASED
YES	NO	NO	NO	NO	NO	12months	2	NO	INCREASED	DECREASED
YES	NO	YES	NO	YES	NO	3years	3	YES	INCREASED	DECREASED
YES	YES	NO	NO	YES	NO	2years	3	YES	INCREASED	DECREASED
NO	NO	YES	NO	NO	NO	6months	2	NO	NORMAL	NORMAL
NO	NO	YES	NO	NO	YES	6months	1	NO	NORMAL	NORMAL
YES	YES	NO	NO	YES	NO	3years	3	YES	INCREASED	DECREASED
YES	NO	NO	NO	NO	NO	12months	3	NO	INCREASED	DECREASED
YES	NO	YES	NO	NO	NO	3months	4	NO	NORMAL	DECREASED
YES	YES	NO	NO	NO	NO	2years	1	NO	INCREASED	DECREASED
YES	YES	NO	NO	YES	NO	10months	2	YES	INCREASED	DECREASED
YES	NO	YES	NO	YES	NO	2years	3	YES	INCREASED	DECREASED
YES	NO	NO	NO	NO	NO	6months	2	NO	INCREASED	DECREASED
YES	YES	NO	NO	NO	NO	12months	3	NO	INCREASED	DECREASED
YES	NO	YES	NO	YES	NO	3years	2	YES	INCREASED	DECREASED

YES	NO	NO	NO	NO	NO	10months	4	NO	INCREASED	DECREASED
YES	YES	NO	NO	NO	NO	12months	3	NO	INCREASED	DECREASED
YES	NO	NO	NO	NO	NO	7months	2	NO	INCREASED	DECREASED
NO	YES	NO	NO	NO	NO	6months	2	NO	INCREASED	NORMAL
YES	NO	NO	NO	YES	NO	6years	2	YES	INCREASED	DECREASED
YES	NO	YES	NO	YES	NO	3 years	2	YES	INCREASED	DECREASED
YES	YES	NO	NO	NO	NO	5years	2	NO	INCREASED	DECREASED
NO	YES	NO	NO	NO	NO	7months	1	NO	INCREASED	NORMAL
YES	NO	NO	NO	YES	NO	2years	2	YES	INCREASED	DECREASED
YES	NO	NO	NO	YES	NO	3 years	1	YES	INCREASED	DECREASED
YES	NO	YES	NO	YES	NO	4years	2	YES	INCREASED	DECREASED
YES	YES	NO	NO	NO	NO	12months	2	NO	INCREASED	DECREASED
YES	NO	NO	NO	NO	NO	3years	3	NO	INCREASED	DECREASED

	Clinical Findir						al deficit		nagement	do á	st op	re op	ost op	c	_
REFLEXES	MYELOPAT HY	Dysarthria	NYST AGM US	CHARCOTS JOINT	SENSORY SYSTEM	GAIT	Neurological deficit	Pre-op MRI	Surgical management	Nurick's pre	Nurick's post op	Spasticity pre	Spasticity post	Post op pain	Post op MRI
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	2,3	T2S2H0A0	1,2,4,5	2	1	2	0	0	T1S1
INCREASED	YES	NO	NO	YES	DISSOCIATED SENSORY LOSS	STEADY	1,2	T4S1H0A0	1,2,3,5	1	1	1	0	0	T1S2
NORMAL	NO	NO	NO	NO	DECREASED	UNSTEADY	2,3	T1S0H0A0	1,2,4	NA	NA	0	0	1	T1
INCREASED	YES	YES	YES	NO	DISSOCIATED SENSORY LOSS	UNSTEADY	1,2,3	T2S1H0A0	1,2,5	1	1	1	0	0	T1S2
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	2,3	T3S2H0A0	1,2,5	2	1	2	0	0	T1S1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	3,4,5	T1S0H0A0	1,2,4	2	1	2	0	0	T1
INCREASED	YES	YES	YES	NO	DISSOCIATED SENSORY LOSS	UNSTEADY	4,5,6	T2S1H0A0	1,2,5	2	1	2	0	1	T1S2
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	UNSTEADY	2,3	T2S1H0A2	1,2,5	2	1	2	0	0	T1S2
NORMAL	NO	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,4	NA	NA	0	0	0	T1
NORMAL	NO	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A0	1,2	NA	NA	0	0	0	T1
INCREASED	YES	NO	NO	NO	DISSOCIATED SEN SORYLOSS	STEADY	3,4	T2S1H0A0	1,2,5	2	1	2	0	0	T1S2
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A2	1,2,5	2	1	2	0	0	T1
NORMAL	NO	NO	NO	NO	DECREASED	UNSTEADY	3,4	T1S0H0A0	1,2,4	NA	NA	0	0	1	T1
INCREASED	YES	YES	YES	NO	DECREASED	STEADY	2,3	T2S0H0A2	1,2	2	1	2	0	0	T1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	1,2	T3S2H0A0	1,2,5	2	1	2	0	0	T1S1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	UNSTEADY	4,5	T2S1H0A0	1,2,5	3	1	3	1	1	T1S2
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,4	2	1	2	1	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,5	2	1	2	0	0	T1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	UNSTEADY	3,4	T2S1H0A0	1,2,5	3	1	3	1	0	T1S2

INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A0	1,2,4	1	1	1	0	1	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A2	1,2,5	2	1	1	0	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T4S0H0A0	1,2,3	2	1	3	1	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,4	1	1	1	0	0	T1
INCREASED	YES	NO	NO	YES	DISSOCIATED SENSORY LOSS	UNSTEADY	2,3	T4S2H0A1	1,2,3,5	3	2	3	0	0	T1S1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	3,4	T1S1H0A0	1,2,5	2	1	1	0	0	T1S2
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,4	2	1	2	0	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A0	1,2,4	2	1	1	0	0	T1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	2,3	T2S1H0A0	1,2,5	2	1	2	0	0	T1S1
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	2,3	T2S1H0A1	1,2,5	1	1	1	0	0	T1S2
INCREASED	YES	NO	NO	NO	DISSOCIATED SENSORY LOSS	STEADY	3,4	T2S1H0A0	1,2,5	2	1	2	0	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	1,2	T1S0H0A0	1,2,4	1	1	1	0	0	T1
INCREASED	YES	NO	NO	NO	DECREASED	STEADY	2,3	T1S0H0A0	1,2,5	2	1	2	0	1	T1