"ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC INTRACRANIAL MASS LESIONS"

Submitted to

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI - 600032

In partial fulfilment of the Regulations
for the Award of the Degree of
M.D. BRANCH - VIII

RADIODIAGNOSIS

STANLEY MEDICAL COLLEGE CHENNAI - 600001

APRIL 2016

CERTIFICATE BY THE INSTITUTION

This is to certify that Dr. M. PRIYA, Post - Graduate Student (May 2013 to April 2016) in the Department of Radiodiagnosis, STANLEY MEDICAL COLLEGE, Chennai- 600 001, has done this dissertation on "ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC INTRACRANIAL MASS LESIONS" under my guidance and supervision in partial fulfilment of the regulations laid down by the Tamilnadu Dr. M. G. R. Medical University, Chennai, for M.D. (Radiodiagnosis) Degree Examination to be held in April 2016.

Dr. C.Amarnath, M.D.R.D, F.R.C.R., Dr. Isaac Christian Moses,M.D., FICP, FACP
Professor and HOD
Department of Radiodiagnosis, Dean
Govt. Stanley Medical College \& Hospital, Govt. Stanley Medical College \& Hospital, Chennai - 600001.

CERTIFICATE BY THE GUIDE

This is to certify that Dr. M. PRIYA, Post - Graduate Student (May 2013 To April 2016) in the Department of Radiodiagnosis STANLEY MEDICAL COLLEGE, Chennai- 600 001, has done this dissertation on "ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC INTRACRANIAL MASS LESIONS" under my guidance and supervision in partial fulfilment of the regulations laid down by the Tamilnadu Dr. M.G.R. Medical University, Chennai, for M.D. (Radiodiagnosis), Degree Examination to be held in April 2016.

Dr. C. AMARNATH, M.D.R.D., F.R.C.R., Professor and HOD, Department of Radiodiagnosis, Govt. Stanley Medical College \& Hospital, Chennai - 600001

DECLARATION

Abstract

I Dr. M. PRIYA, declare that I carried out this work on "ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC INTRACRANIAL MASS LESIONS" at the department of Radiodiagnosis, Government Stanley Hospital. I also declare that this bonafide work or a part of this work was not submitted by me or any other for any award, degree, or diploma to any other university, board either in India or abroad.

This is submitted to The Tamilnadu Dr. M.G.R. Medical University, Chennai in partial fulfilment of the rules and regulation for the M. D. Degree examination in Radiodiagnosis April 2016.

ACKNOWLEDGEMENT

At the outset I thank our Dean Dr.ISAAC CHRISTIAN MOSES M.D., FICP., FACP, for permitting me to carry out this study in our hospital.

I express my profound thanks to my esteemed Professor and Teacher Dr.C.AMARNATH, M.D., F.R.C.R., HOD of Radiodiagnosis, Stanley Medical College Hospital, for encouraging and extending invaluable guidance to perform and complete this dissertation.

I immensely thank my chiefs Dr.G.SATHYAN, M.D., and Dr.B.SUHASINI, M.D, F.R.C.R Associate Professors of Radiodiagnosis, for their constant encouragement and guidance throughout the study.

I wish to thank Dr.K.SHIVASHANKAR, D.M.R.D, DNB, Dr.R.GANGADEVI, M.D. F.R.C.R., Dr.V.SUDHAKAR, M.D.R.D, Dr.K.SIVAKUMAR, M.D.R.D, Dr.BALAJI, M.D.R.D., and Dr.S.KOMALAVALLI M.D.R.D Assistant Professors Department of Radiodiagnosis, Stanley Medical College Hospital for their valuable suggestions, encouragement and advice.

I sincerely thank the members of Institutional Ethical Committee, Stanley Medical College for approving my dissertation topic.

I thank all my colleagues and other para medical workers for their support.

Last but not the least, I sincerely thank all those patients who participated in this study, for their co-operation.

TABLE OF CONTENTS

Sl. No.	TITLE	Page No.
1.	INTRODUCTION	1
2.	AIM	3
3.	REVIEW OF LITERATURE	4
4.	MATERIALS AND METHODS	7
5.	RESULTS AND ANALYSIS	14
6.	DISCUSSION	78
7.	CONCLUSION	83
8.	IMPACT OF STUDY	84
9	BIBLIOGRAPHY	
10.	ANNEXURES ABBREVIATIONS PROFORMA MASTER CHART KEY TO MASTER CHART CONSENT FORM ETHICAL COMMITTEE APPROVAL ORDER TURNITIN - PLAGIARISM SCREEN SHOT DIGITAL RECEIPT	

INTRODUCTION

Diffusion weighted imaging depicts the restriction of random movement of water and thereby gives us the information about the nature of the tissue in which the water molecules are moving[1]. Brown,[2] was first to describe this in 1827 and later quantified by Einstein,[3] in 1905. Pathological processes may directly or indirectly alter the diffusion characteristics of the underlying tissue and can therefore be detected using diffusion weighted imaging techniques[4]. DTI (Diffusion Tensor Imaging) is a non invasive imaging technique that can measure directional variation of water diffusivity for a given voxel by using metrics that quantify diffusion anisotropy, tensor orientation, or tensor shapes.

In brain tissue, water cannot move freely in all the directions as surrounding tissue structures limits its movement, and hence shows preferential movement along certain directions. Likewise it is easier for water to diffuse along the course of a white matter fibre rather than perpendicular to it as the axonal membranes and myelin sheaths act as barriers to the movement of water molecules. This property of preferential movement is known as diffusion anisotropy. It is physically linked to the anisotropy of the tissue structure. Many disease processes affect this diffusion in different ways. Fractional anisotropy (FA) and mean diffusion (MD),[5] are two important Diffusion tensor metrics parameters used to measure and characterize this altered diffusivity in different tissues. Mean diffusion/ADC maps reveal the tendency of the water molecules to
diffuse within a voxel. While other DTI metrics also measure the directional variation and interactions between these directions provides important information about tissue connectivity[6]. The role of DTI to characterise white matter changes in various diseases has already been established.

Cysts and cystic appearing intracranial masses are common findings at MR imaging. The differential diagnosis varies from simple arachnoid cysts to high grade tumours with cystic component, in which case the management grossly differs from cysts which require no treatment to surgery. This differentiation cannot be obtained by conventional MR imaging alone[7-9]. We hypothesize that DTI and the derived indices, fractional anisotrophy FA, mean diffusion MD, geometric tensor metrics, linear anisometry- Cl , planar anisomerty- Cp, spherical anisometry- Cs , is successful in better characterisation of these cysts by reflecting the histological composition of these tissues.

AIMS AND OBJECTIVES

To study use of diffusion weighted MR in detecting lesion-specific patterns that may assist imaging in better tissue characterization of intra cranial cystic lesions by identifying the cellular component and molecular motion.

REVIEW OF LITERATURE

Tadeusz W. Stadnika noted that solid gliomas, meningioma, and metastases had same range of ADC values. Lowest ADC values and highest contrast on diffusion-weighted images were observed in association with inflammatory granuloma and abscess.

Kunii N, showed Rathke's cleft cysts are hypointense compared to the normal brain in DWI-SSFSE with a mean ADC of $2.12 \times 10(-3) \mathrm{mm}(2) / \mathrm{sec}$. There was a significantly increased ADC, relative ADC with a P value <0.05 of the Rathke's cleft cysts compared to haemorrhagic components of pituitary adenomas and cystic components of craniopharyngiomas. He proved that there was not a statistically significant ($\mathrm{P}<0.05$)difference between cystic components of pituitary adenomas and Rathke's cleft cysts.

Reddy JS, noted that 93 lesions were hyperintense on DWI out of 97 brain abscess. These lesions show a statistically significantly low ($\mathrm{P}=.0001$) ADC value ($0.87+/-0.05 \times 10(-3) \mathrm{mm}(2) / \mathrm{s})$ (mean +/- SEM), compared with 48 nonabscess lesions (2.89 +/- $0.05 \mathrm{x} 10(-3) \mathrm{mm}(2) / \mathrm{s})$. There was a statistically significant mean ADC of $2.9+/-0.05 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}$ when comparing tumor cysts with neurocysticercosis and benign cysts the.

Mishra AM, analysed Fifty-two patients (tumor cysts [n = 20], abscesses [$n=29$], and benign cysts $[\mathrm{n}=3]$). An ADC value of less than $0.9+/-1.3 \times 10$ mm / s was used as a criteria for the diagnosis of abscess. An ADC values of 1.7-
$3.8 \times 10 \mathrm{~mm} / \mathrm{s}$ was used as a criteria for nonabscess cyst. Following which patients were categorized into abscess $(\mathrm{n}=29)$ and nonabscess $(\mathrm{n}=23)$ groups.

Shuda Chen observed mean ADC of epidermoid tumors was $1.197 \times$ $10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$, significantly lower than that of CSF but higher than that of brain tissues.

Santhosh K_{2} noted that highly organised white matter tracts or tissue showed high fractional anisotropy (FA)

Rakesh K. Gupta etal performed diffusion tensor imaging (DTI) in 12 patients with cystic intracranial lesions (pyogenic abscess, $n=5$; cysticercus cysts, $n=2$; and low-grade astrocytoma, $n=5$). Mean $\mathrm{FA}, \mathrm{D}_{\mathrm{av}}$ from the lesion core, perifocal edema, and corresponding contralateral normal-appearing regions were measured and compared for relative changes in these parameters. In the abscess cases, we placed regions of interest on areas with FA >0.2 and FA <0.2 to get FA and D_{av} values.

There were two patterns of FA values in the abscess cavity in all five patients. Part of the abscess showed mean $\mathrm{FA}=0.440 \pm 0.135$, with $\mathrm{D}_{\mathrm{av}}=(0.993$ $\pm 0.185) \times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$, whereas other parts had $\mathrm{FA}=0.131 \pm 0.039$ with $\mathrm{D}_{\mathrm{av}}=$ $(0.824 \pm 0.183) \times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$. The cystic tumors and neurocysticercosis showed very high $\mathrm{D}_{\mathrm{av}}=(2.806 \pm 0.25,2.654 \pm 0.35) \times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$, with low $\mathrm{FA}=(0.108$ $\pm 0.037,0.08 \pm 0.01$), respectively.

Reiche W,etal noted that abscess is hyperintense on DWI with low MD, high FA and low ADC. Whereas metastatic cysts and glioblastoma cysts were
hypointense on DWI. On DWI 2 out of 10 glioblastoma were similar to abscesses.
C.H. Toh etal observed Abscess was significantly different from glioblastoma for all tensor metrics measured in the cystic cavity and immediate zone of edema and for all except Cl in the enhancing rim. Abscess was significantly different from metastasis for all tensor metrics measured in the cystic cavity and enhancing rim and for $\mathrm{FA}, \mathrm{ADC}$, and Cl in immediate zone of edema. The incidence of a hyperintense FA rim was significantly higher in glioblastoma and metastasis compared with abscess. The 3 tensor metrics with the highest performance in differentiating abscess from glioblastoma and metastasis were FA, $C l$, and $C s$ of the cystic cavity.

MATERIALS AND METHODS

The study was approved by the ethical committee and clearance obtained before commencing the study.

Study design :

The prospective study was conducted in radiology department at Stanley Medical College Chennai. The study was conducted between August 2013 and July 2015.

Study population:

The study group includes a sample size of 62 intra cranial cystic mass lesions, who have come to the department of radiology for MRI. Maximum number of sample size pertaining to a particular diagnosis was restricted to 10 .

Inclusion criteria:

Patients with intra cranial cystic lesions - who have come to the department of radiology for MRI

Exclusion criteria:

Patients with surgical clips and contraindications for MR imaging, were excluded from the study.

Sample size:

The study group consisted of 62 patients with intra cranial cystic lesions who have come to the department of radiology for MRI. Of which there were 10 patients with arachanoid cysts, 2 patients with giant cistern magna, 6 patients with choroidal fissure cyst, 2 patients with ependymal cyst, 3 patients with neuroglial cyst, 2 patients with choroidal plexus cyst, 7 patients with neurocysticercosis, 5 patients with epidermoid cysts 5 patients with abscess, 2 patients with astrocytoma, 1patient with ganglioglioma, 2 patients with cystic metastasis, 2 patients with glioma, 1 patient with astroblastoma, 3 patients with DNET, 2 patients with post operative non tumoral cysts, 1 patient with cystic enchehalomalacia and 1 patients with radiation necrosis- glioblastoma.

Reference standard:

The diagnosis of brain abscess and epidermoid cyst were confirmed on surgery in all patients. Histologic diagnosis was obtained in all patients with tumors and metastases by surgical resection. The diagnosis of benign non surgical cyst was confirmed by neuro radiology techniques with consequent follow up and lastly infective cysts by post treatment follow up.

Consent:

Informed consent was taken from all the patients enrolled in the study as per the guidance of the ethical committee.

Patient Evaluation:

A complete prospective evaluation of all patients was carried out as per the proforma attached.

Imaging Methods and Analysis:

Clinical data was collected from all patients and all of them underwent MRI imaging with DTI and MR spectroscopy.

MR image acquisition:

MR image acquisition:

Imaging was performed on the Siemens MAGNETOM Symphony (Germany)
1.5 T using a head coil (40 element), Gradient strength of $30 \mathrm{mT} / \mathrm{m}(52 \mathrm{mT} / \mathrm{m}$ effective) and slew rate of $125 \mathrm{~T} / \mathrm{m} / \mathrm{s}$ ($216 \mathrm{~T} / \mathrm{m} / \mathrm{s}$ effective). The MRI protocol consisted of axial, sagittal T1 weighted sequence (T1W) and axial T2 weighted sequence (T2W). DTI was performed in the axial plane by using single-shot echo-planar imaging with the following parameters: TR/TE, $3500 / 83 \mathrm{~ms}$; diffusion-gradient encoding in 20 directions ;b0, $1000 \mathrm{~s} / \mathrm{mm}^{2}$; FOV of 230 X 100 mm; matrix size, 128 X 128; 5 mm section thickness, band width- 1500, EPI factor- 128 average -3 . Standard DWI acquires data in three orthogonal planes (typically X, Y, and Z axis). The complex mathematical equation used to model 3D anisotropy is called tensor. By sampling a minimum of 6 or more diffusion directions and eddy current correction, then establishing a relationship between the acquired data and applied diffusion gradients in the pulse sequence, the
directional variation in the tendency of water molecules to diffuse within a voxel can be imaged. Post processing was done SIEMENS MMWP (Multi Modality Workplace) Neuro 3D software.

DATA ANALYSIS

DT-MR Imaging: Further analysis was done in the workstation after transferring the acquired data. It involves three main steps,[11],

1. Data Preprocessing.
2. Derivation of tensor metrics.
3. Mapping ROIs.

During data preprocessing, raw images were cropped and stripped using a semi automated procedure to remove the scalp for isolating the brain. The DW imaging data were spatially filtered and then distortion-corrected by using the DT-MR imaging toolbox, which calls the 2D perspective models in the automated image and registration package.

For the derivation of tensor metrics, the corrected data were then interpolated to attain isotropic voxels and decoded to obtain the tensor field for each voxel[12]. The DWIs were co-registered to the non-DWIs ($b=0$) to minimize the artefacts induced by eddy current and subject motion. The diffusion tensor was diagonalized to yield the major,[5] $\lambda 1$), intermediate ($\lambda 2$), and minor (λ 3) eigenvalues. FA- fractional anisotropy,[5] , geometric tensor metrics,[13] (linear
anisometry- Cl , planar anisometry- Cp , and spherical anisometry- Cs), ADCapparent diffusion coefficient, RA- relative anisometry, GA- Geodesic anisometry were calculated by using the following standard algorithms. DTI provides a very rich dataset that requires some form of data reduction for a more interpretable presentation. It is important that any scalar metric formed from the eigenvalues of the diffusion tensor be rotationally invariant. To facilitate region-of-interest placement for quantitative analysis, the DTI-derived maps were displayed and overlaid on images with different contrasts in the three orthogonal planes for a visual inspection. DTI metric values were obtained by placing the regions of interest on the cavity of cystic lesions on all sections that contained the lesions. Size of the regions of interest was guided by the lesion size, and it was always more than two third of cystic component.

DTI provides a very rich dataset that requires some form of data reduction for a more interpretation. It is important that any scalar metric formed from the eigenvalues of the diffusion tensor be "rotationally invariant," i.e., the scalar metric is independent of the orientation of the gradient axis direction and the eigenvalue sorting order. Isotropic diffusion is well characterized by the trace of the diffusion tensor

$$
\operatorname{Tr}(\mathrm{D})=\lambda_{1}+\lambda_{2}+\lambda_{3}
$$

The trace, or one-third of the trace (i.e., the mean of the eigenvalues), is also an important scalar metric for anisotropic media, since it represents the average diffusivity of the media. Typically, this quantity is
referred to as the ADC. Since the trace is scalar invariant, one need not determine the full tensor to measure ADC ; the sum of the diffusion coefficients measured along any three orthogonal directions is sufficient to measure the trace or the ADC. However, more importantly for the clinical application of the investigation of white-matter integrity, metrics of diffusion anisotropy are more appropriate. Two very useful metrics are FA, which is a measure of the portion of the magnitude of the diffusion tensor due to anisotropy,

$$
\mathrm{FA}=\quad \sqrt{ } 1 / 2 \quad \frac{\sqrt{ }\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{3}-\lambda_{1}\right)^{2}}{\sqrt{ }\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)^{2}}
$$

and relative anisotropy (RA), derived from a ratio of the anisotropic portion of the diffusion tensor to the isotropic portion,

$$
\operatorname{RA}=\sqrt{ } \frac{\left(\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{3}-\lambda_{1}\right)^{2}\right.}{\text { TRACE }}
$$

Both anisotropy indices, which are dimensionless but quantitative, acquire a value of 0.0 for a purely isotropic medium. For a highly anisotropic, cylindrically symmetric medium ($\lambda_{1}>\lambda_{2}=\lambda_{3}$) FA tends towards 1 , while RA tends towards $\sqrt{ }$ 2. Both FA and RA maps can be presented as gray scale images for evaluation. Another form of data presentation is the combination of the eigenvalue information into a colour image. By choosing the eigenvector (1) associated with the largest eigenvalue, the principal diffusion direction of the underlying brain structure can be encoded with colour and the magnitude of the anisotropy, such as FA, can be further used as an illumination factor of the
calculation of a directionally encoded colour image. This results in a calculation of the colour components $(\mathrm{R}, \mathrm{G}$, and B$)$ of a pixel given by:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{FA}\left|\varepsilon_{x}^{1}\right|, \mathrm{G}=\mathrm{FA}\left|\varepsilon_{y}^{1}\right|, \mathrm{B}=\mathrm{FA}\left|\varepsilon_{z}^{1}\right| \\
\mathrm{C}_{\mathrm{L}}= & \frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} \\
\mathrm{C}_{\mathrm{P}}= & \frac{2\left(\lambda_{2}-\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}+\lambda_{3}} \\
\mathrm{C}_{\mathrm{P}}= & \frac{3 \lambda_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} \\
\mathrm{GA}= & \sqrt{\operatorname{Trace}(\log \mathrm{S}-<\log \mathrm{S}>I)^{2}} \quad<\log \mathrm{S}>=\frac{\text { Trace }(\log \mathrm{S})}{3}
\end{aligned}
$$

The trace, or one-third of the trace (i.e., the mean of the eigenvalues), is also an important scalar metric for anisotropic media, since it represents the average diffusivity of the media. Typically, this quantity is referred to as the ADC. Since the trace is scalar invariant, one need not determine the full tensor to measure ADC; the sum of the diffusion coefficients measured along any three orthogonal directions is sufficient to measure the trace or the ADC.

Image analysis:

MR imaging features were assessed by qualified radiologists with experience of nine years. From the DTI data several other diffusion maps or indices can be calculated.

STATISTICAL ANALYSIS

All the data were entered into the excel sheet. The final diagnoses were based on histopathology or presumptive diagnoses were made based on imaging finding and post treatment clinical response or by serial imaging. Diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of DTI for the differentiation of intra cranial cystic lesions were calculated. Kruskal-Wallis \& Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison was done to compare between the groups. Comparison of all the non normally distributed continuous variables were being tested by mann-whitney U test. Cut off values for FA, MD, RA, VR, TRACE, $\mathrm{B} 0, \mathrm{GA}, \mathrm{Cl}, \mathrm{Cp}$, and Cs for distinguishing various groups of cysts were determined by ROC curve analysis. The ROC curve was further used to calculate the AUC value, which is an index of overall discriminative ability of a DTI metric to discriminate between intracranial cysts. A commercially available statistical software package (Statistical Package for the Social Sciences, Version17; SPSS, Chicago, Illinois) was used for analysis, and P values < . 05 were considered statistically significant.

RESULTS

A total of 62 patients with intracranial cysts were analyzed. Intracranial cysts were classified according to its etiology and also based on kind of the management.

Hence the cysts were classified into 7 groups for statistical comparison as follows:

GPOUP 1: maldevelopmental cysts	$\mathbf{(2 5)}$
Arachanoid cyst	$\mathbf{1 0}$
Giant cistern magna -	$\mathbf{2}$
Choroidal fissure cyst-	$\mathbf{6}$
Choroid plexus cyst-	$\mathbf{2}$
Ependymal cyst	$\mathbf{2}$
Neuroglial cyst	$\mathbf{3}$
GROUP 2:acquired porencephalic cyst	$\mathbf{5})$
Post op non tumoral cyst	$\mathbf{2}$
Cystic encphealomalacia	$\mathbf{1}$
Radiation necrosis	$\mathbf{7}$
GROUP 3: Neurocysticercosis	$\mathbf{(1 0)}$
GROUP 4:low grade neoplastic cyst	$\mathbf{2}$
Ganglioglioma	$\mathbf{3}$
Cow gradeAstrocytoma	$\mathbf{2}$
Graniophrangioma	$\mathbf{1}$
Cystic schwannoma	$\mathbf{1}$

Cystic metastasis	2
GROUP 6: Abscess	5
GROUP 7: Epidermoid cyst	5
Total	62

Of these, Group 1 cysts were 25 patients (40\%), Group 2 in 5 patients (8\%), Group 3 in 7 patients (11\%), Group 4 in 10 patients (16\%), Group 5 in 5 patients(8\%), Group 6 in 5 patients(8\%) and Group 7 in 5 patients (8\%).

Cyst Group	Frequency	Percent
1	25	40.3
2	5	8.1
3	7	11.3
4	10	16.1
5	5	8.1
6	5	8.1
7	62	8.1
Total		100.0

Frequency

Distribution of male \& females in various groups

Group	Male	Female
1	17	8
2	4	1
3	5	2
4	7	3
5	3	1
6	4	1
7	44	18
TOTAL		

Distribution of male \& females in each group

Gender-wise distribution of the study subjects

S. No	Gender	No of subjects (62)	percentage
1	Male	44	71%
2	Female	18	29%

Note - Datas are the number of studies and percentages

There existed a male preponderance in the study population with 71% males and 29\% female subjects.

Table : Age distribution of the study objects

Group	Age Group			
	<12 Years	$12-30$ years	$30-50$ years	>50 years
1	13	6	3	3
2	1	0	3	1
3	2	1	3	1
4	4	4	0	2
5	1	0	2	2
6	2	2	1	0
7	0	3	1	1
TOTAL	23	16	13	10

The Commonest age group involved was less than 12 years, accounting for 37% of the cases. The age group ranged from 6 months to 87 years.

Size of intracranial cystic lesions:

Mean size: 27.5 mm , Minimum size : 5.5 mm , Maximum size : 60.6 mm

$<10 \mathrm{~mm}$	$10-20 \mathrm{~mm}$	$20-30 \mathrm{~mm}$	$>30 \mathrm{~mm}$	Total
12	11	10	29	62

Table: Mean of the DTI parameters in 7 groups

G	FA	MD	RA	VR	GA	CL	CP	CS	B0	TRACE
1	.098	2.838	75.05	983.40	138.21	36.68	55.100	908.17	598.25	35.040
2	.056	2.524	41.50	996.66	102.84	17.64	31.000	951.30	748.32	79.060
3	.276	2.405	57.37	963.18	95.34	36.78	63.029	900.04	769.74	50.957
4	.084	2.691	64.05	990.09	108.77	28.02	38.360	933.74	672.92	57.440
5	.060	2.498	49.40	995.86	85.60	20.82	37.600	941.50	713.68	68.040
6	.078	.777	56.84	988.88	78.76	17.64	37.440	944.94	651.00	239.94
7	.509	.866	477.2	686.20	920.00	218.5	332.92	448.62	859.34	413.60

Kruskal-Wallis Test - Statistical comparison between groups for each of the DTI parameter

Variables	Cyst Group	N	Mean Rank	P -Value
FA	Group-1	25	31.74	<0.001
	Group-2	5	9.20	
	Group-3	7	51.57	
	Group-4	10	27.85	
	Group-5	5	12.50	
	Group-6	5	23.30	
	Group-7	5	59.00	
	Total	62		
MD	Group-1	25	41.94	<0.001
	Group-2	5	35.50	
	Group-3	7	25.93	
	Group-4	10	34.15	
	Group-5	5	28.80	
	Group-6	5	4.80	
	Group-7	5	7.20	
	Total	62		
RA	Group-1	25	36.00	<0.001
	Group-2	5	6.80	
	Group-3	7	27.43	
	Group-4	10	30.55	
	Group-5	5	16.50	
	Group-6	5	27.80	

	Group-7	5	60.00	
	Total	62		
VR	Group-1	25	30.66	
	Group-2	5	54.20	
	Group-3	7	18.71	<0.001
	Group-4	10	33.75	
	Group-5	5	50.10	
	Group-6	5	36.30	
	Group-7	5	3.00	
	Total	62		

Variables	Cyst Group	N	Mean Rank	P-Value
GA	Group-1	25	40.44	<0.001
	Group-2	5	20.20	
	Group-3	7	22.57	
	Group-4	10	25.60	
	Group-5	5	14.20	
	Group-6	5	11.20	
	Group-7	5	60.00	
	Total	62		
CL	Group-1	25	36.88	<0.001
	Group-2	5	11.60	
	Group-3	7	32.93	

	Group-4	10	28.40	
	Group-5	5	17.70	
	Group-6	5	14.00	
	Group-7	5	60.00	
	Total	62		
	Group-1	25	37.18	
	Group-2	5	12.50	
	Group-3	7	32.14	
C	Group-4	10	21.10	<0.001
	Group-5	5	23.50	
	Group-6	5	21.50	
	Group-7	5	60.00	
	Total	62		
	Group-1	25	25.68	
	Group-2	5	51.40	
	Group-3	7	30.71	
CS	Group-4	10	37.90	<0.001
	Group-5	5	41.40	
	Group-6	5	47.60	
	Group-7	5	3.00	
	Total	62		

Variables	Cyst Group	N	Mean Rank	P-Value
BO	Group-1	25	21.12	0.001
	Group-2	5	38.60	
	Group-3	7	44.86	
	Group-4	10	32.00	
	Group-5	5	36.80	
	Group-6	5	27.00	
	Group-7	5	55.80	
	Total	62		
TRACE	Group-1	25	16.84	<0.001
	Group-2	5	33.00	
	Group-3	7	35.43	
	Group-4	10	35.90	
W	Group-5	5	37.60	
	Group-6	5	54.40	
	Group-7	5	60.00	
	Total	62		

Statistical comparison between the groups for each of the DTI metric shows a P value of <0.05, indicating that the difference in each of the parameter is statistically significant there by showing that the group allocation is perfect.

Descriptive Statistics

The diffusion tensor metric values derived from all regions of interest and the statistical results of between-group comparisons are listed in following Tables.

Table 1 FA Values

	FA							
	N	Mean Standard Deviation						
Group-1	25	.098	.039	.012	.074	.092	.119	.178
Group-2	5	.056	.009	.043	.052	.057	.061	.068
Group-3	7	.276	.192	.091	.137	.227	.350	.670
Group-4	10	.084	.013	.053	.081	.084	.092	.103
Group-5	5	.060	.007	.054	.057	.058	.061	.072
Group-6	5	.078	.018	.048	.076	.086	.089	.091
Group-7	5	.509	.077	.428	.453	.512	.525	.626
Total	62	.141	.144	.012	.069	.089	.137	.670

Boxplots of the central region for groups I-VII.

FA -MEAN PLOT

Table 2 MD Values

	N	Mean	Standard Deviation	Min	st Quartile	Median	3rd Quartile	Max
Group-	25	2.838	.430	1.555	2.670	2.982	3.100	3.339
Group-	7	2.405	.410	1.729	2.240	2.316	2.877	2.939
Group-	10	2.691	.315	2.246	2.420	2.766	2.943	3.168
Group-	5	2.498	.656	1.330	2.700	2.788	2.800	2.874
Group-	5	.777	.555	.500	.507	.550	.560	1.770
Group-	5	.866	.140	.771	.782	.822	.846	1.110
Total	62	2.388	.843	.500	2.199	2.787	2.977	3.339

Boxplots of the central region for groups I-VII.
MD -MEAN PLOT

Table 3 RA Values

	N	Mean	Standard Deviation	Min	1st Quartile	Median	3rd Quartile	Max
Group-	5	41.500	4.643	35.600	37.400	44.000	44.900	45.600
Group-	7	57.371	2.065	54.200	55.800	57.100	59.400	60.200
Group-	10	64.050	14.516	43.600	53.600	61.050	76.000	86.800
Group-	5	49.400	5.254	44.300	47.200	47.500	49.900	58.100
Group-	5	56.840	10.375	38.800	58.800	59.200	62.800	64.600
Group-	5	477.200	27.381	446.000	470.000	470.000	479.000	521.000
Total	62	97.471	115.429	35.600	49.700	59.000	82.200	521.000

Boxplots of the central region for groups I-VII.
RA -MEAN PLOT

Table 4 VR Values

	N	Mean	Standard Deviation	Min	1st Quartile	Median	3rd Quartile	Max
Group-	5	996.660	.853	996.000	996.000	996.300	997.000	998.000
Group-	7	963.186	21.983	937.700	951.300	956.000	994.000	994.100
Group-	10	990.090	5.506	978.200	987.600	990.300	993.500	997.000
Group-	5	995.860	.891	994.400	995.700	996.200	996.300	996.700
Group-	5	988.880	10.800	970.000	990.600	993.000	993.800	997.000
Group-	5	686.200	46.397	640.000	660.000	661.000	721.000	749.000
Total	62	960.747	84.975	640.000	978.200	990.650	995.000	999.100

Boxplots of the central region for groups I-VII.
VR -MEAN PLOT

Table 5 GA Values

	N	Mean	Standard Deviation	Min	1 st Quartile	Median	3rd Quartile	Max
Group-	5	102.840	50.474	61.700	76.200	89.800	96.600	189.900
Group-	7	95.343	5.031	89.900	90.200	95.600	99.200	102.900
Group-	10	108.770	28.613	75.200	83.200	106.850	137.400	147.500
Group-	5	85.600	9.157	76.900	81.400	82.400	86.500	100.800
Group-	5	78.760	19.125	61.900	62.500	78.400	82.200	108.800
Group-	5	920.000	42.609	846.000	921.000	942.000	945.000	946.000
Total	62	179.782	224.014	61.700	89.800	111.500	147.500	946.000

Boxplots of the central region for groups I-VII.
GA -MEAN PLOT

Table 6 CL Values

	N	Mean	Standard Deviation	Min	1st Quartile	Median	3rd Quartile	Max
Group-	25	36.680	15.265	14.300	26.200	36.900	45.200	78.700
Group-	7	36.786	27.024	22.600	24.700	27.100	30.100	97.800
Group-	10	28.020	9.575	18.600	20.700	23.500	35.400	47.200
Group-	5	20.820	2.831	18.400	18.700	20.200	21.400	25.400
Group-	5	17.640	10.102	9.700	10.300	11.300	25.500	31.400
Group-	5	218.500	2.082	216.100	217.300	218.300	219.200	221.600
Total	62	45.608	53.909	9.700	20.100	28.100	40.200	221.600

Boxplots of the central region for groups I-VII.
CL -MEAN PLOT

Table 7 CP Values

	N	Mean	Standard Deviation	Min	1 st Quartile	Median	3rd Quartile	Max
Group-	25	55.100	19.995	26.700	42.400	53.400	67.900	104.800
Group-	7	63.029	59.896	34.100	36.100	43.200	47.200	198.400
Group-	10	38.360	13.354	27.300	28.900	33.650	43.800	71.100
Group-	5	37.600	5.540	31.500	32.800	38.800	39.800	45.100
Group-	5	37.440	8.841	29.300	31.000	33.700	43.200	50.000
Group-	5	332.920	5.434	323.800	332.400	334.600	336.600	337.200
Total	62	70.921	82.285	24.400	32.800	43.500	65.300	337.200

Boxplots of the central region for groups I-VII.
CP -MEAN PLOT

Table 8 CS Values

	N	Mean	Standard Deviation	Min	1 st Quartile	Median	3rd Quartile	Max
Group-	25	908.176	32.791	838.000	893.700	905.000	934.700	957.000
Group-	7	951.300	5.839	944.800	946.100	951.600	956.000	958.000
Group-	10	933.740	20.766	892.300	918.700	944.400	949.400	952.600
Group-	5	941.500	7.559	929.500	939.600	942.900	947.100	948.400
Group-	5	944.940	18.331	924.500	925.500	955.000	958.700	961.000
Group-	5	448.620	4.504	443.600	445.200	448.200	451.500	454.600
Total	62	883.450	135.692	443.600	896.300	928.100	948.400	961.000

Boxplots of the central region for groups I-VII.
CS -MEAN PLOT

Table 9 BO Values

	BO							
	N	Mean	Standard Deviation	Min	1st Quartile	Median	3rd Quartile	Max
Group-	25	598.256	122.441	432.200	528.200	603.500	646.300	886.800
Group-	5	748.320	168.003	565.000	680.900	702.700	776.600	1016.400
Group-	7	769.743	114.710	526.000	721.200	827.100	831.600	832.000
Group-	10	672.920	63.005	570.000	656.300	683.700	707.200	776.900
Group-	5	713.680	93.019	592.000	646.000	731.000	791.800	807.600
Group-	5	651.000	132.234	524.200	530.200	626.500	758.300	815.800
Group-	5	859.340	43.722	782.200	870.200	873.200	883.100	888.000
Total	62	676.379	135.303	432.200	570.900	669.550	782.200	1016.400

Boxplots of the central region for groups I-VII.
B0 -MEAN PLOT

Table 10 Trace Values

	TRACE W							
	N	Mean	Standard Deviation	Min	1st Quartile	Median	3rd Quartile	Max
Group-	5	79.060	86.152	28.800	32.900	46.100	55.500	232.000
Group-	7	50.957	19.466	40.500	41.200	43.100	53.200	94.000
Group-	10	57.440	21.049	30.600	31.700	60.050	78.700	80.200
Group-	5	68.040	51.377	36.600	43.900	49.800	50.500	159.400
Group-	5	239.940	71.858	141.800	184.200	287.700	291.600	294.400
Group-	5	413.600	27.745	387.200	392.200	404.200	432.200	452.200
Total	62	93.715	115.576	18.400	30.600	41.350	79.600	452.200

Boxplots of the central region for groups I-VII.

TRACE W -MEAN PLOT

Group 1(developmental cyst) showed mean FA $=0.098$, with highest MD of $2.838 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}, \mathrm{RA}=75.008, \mathrm{VR}=983.4, \quad \mathrm{GA}=138.21 \&$ lowest TRACE W = 35 .

Group 2(acquired cysts) showed lowest $\mathrm{FA}=0.05$.

Group 3(Neurocysticercosis) showed higher mean FA $=0.276$ next to that of Epidermoid cyst, higher $\mathrm{MD}=2.405 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}, \mathrm{RA}=57.31, \mathrm{VR}=$ 963.186, $\mathrm{GA}=95.343$.

Group 4(low grade tumoral cysts) showed lowest mean FA $=0.084, \mathrm{MD}=2.69$ $x 10(-3) \mathrm{mm}(2) / \mathrm{s}$.

Group 5(high grade tumoral cysts) showed lower mean $\mathrm{FA}=0.06, \mathrm{MD}=2.49 \mathrm{x}$ $10(-3) \mathrm{mm}(2) / \mathrm{s}, \mathrm{RA}=49.4$, lower $\mathrm{GA}=85.6$

Group 6(Abscess) showed lower mean FA $=0.078$, with lowest MD $=0.777 \mathrm{x}$ $10(-3) \mathrm{mm}(2) / \mathrm{s}, \mathrm{RA}=56.840, \mathrm{VR}=988.88$, lowest $\mathrm{GA}=78.760$.

Group 7 (Epidermoid cyst) showed mean highest FA $=0.509$, lower $\mathrm{MD}=$ $0.866 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}$, highest $\mathrm{RA}=477.200$,lowest $\mathrm{VR}=686.200$, highest $G A=920$, grossly different $C L=218.5, C P=332.920, C S=448.62$, highest B 0 $=859.34$ \& highest TRACE $\mathrm{W}=413.6$ compared to all other cysts.

PAIRWISE COMPARISON BETWEEN GROUPS (Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison)

VARIABLE	$\begin{aligned} & 1 \\ & 2 \end{aligned} \text { VERSUS }$	$\begin{aligned} & 1 \\ & 3 \end{aligned} \text { VERSUS }$	$\begin{aligned} & 1 \\ & 4 \end{aligned} \text { VERSUS }$	$\begin{aligned} & 1 \\ & 5 \end{aligned} \quad \text { VERSUS }$	$1 \text { VERSUS }$	$\begin{aligned} & 1 \\ & 7 \end{aligned} \text { VERSUS }$
FA	0.009	0.002	0.342	0.021	0.200	0.001
MD	0.303	0.027	0.159	0.079	0.001	0.000
RA	0.004	0.186	0.235	0.042	0.156	0.001
VR	0.005	0.047	0.547	0.011	0.436	0.001
GA	0.048	0.001	0.013	0.002	0.002	0.001
CL	0.011	0.274	0.121	0.037	0.008	0.001
CP	0.009	0.284	0.019	0.055	0.048	0.001
CS	0.008	0.284	0.045	0.048	0.010	0.001
BO	0.032	0.011	0.019	0.055	0.487	0.002
TRACE W	0.042	0.001	0.003	0.006	0.001	0.001

Yellow colour boxes - indicates P value is statistically significant < . 05

Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison

VARIABLE	2 VERSUS 3	2 VERSUS 4	2 VERSUS 5	2 VERSUS 6	2 VERSUS 7
FA	0.004	0.007	0.402	0.076	0.009
MD	0.255	0.624	0.347	0.016	0.016
RA	0.004	0.007	0.028	0.047	0.009
VR	0.004	0.023	0.293	0.059	0.009
GA	0.291	0.540	0.917	0.602	0.009
CL	0.004	0.012	0.209	0.602	0.009
CP	0.019	0.327	0.076	0.347	0.009
CS	0.004	0.086	0.076	0.917	0.009
BO	0.372	0.462	0.917	0.347	0.117
TRACE W	0.935	0.540	0.754	0.028	0.009

Yellow colour boxes - indicates P value is statistically significant $<.05$

Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison

VARIABLE	3 VERSUS	3 VERSUS	3 VERSUS	3 VERSUS 7
	4	5	6	
FA	0.002	0.004	0.006	0.042
MD	0.143	0.685	0.007	0.004
RA	0.558	0.034	0.291	0.004
VR	0.064	0.004	0.123	0.004
GA	0.845	0.062	0.088	0.004
CL	0.380	0.012	0.123	0.004
CP	0.118	0.255	0.193	0.004
CS	0.283	0.042	0.372	0.004
BO	0.019	0.123	0.062	0.042
TRACE W	0.558	0.465	0.004	0.004

Yellow colour boxes - indicates P value is statistically significant $<.05$

Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison

VARIABLE	4 VERSUS	4 VERSUS	4 VERSUS	5 VERSUS	5 VERSUS	6 VERSUS
	5	6	7	6	7	7
FA	0.014	0.581	0.002	0.117	0.009	0.009
MD	0.624	0.002	0.002	0.016	0.009	0.117
RA	0.050	0.624	0.002	0.117	0.009	0.009
VR	0.066	0.581	0.002	0.117	0.009	0.009
GA	0.178	0.050	0.002	0.347	0.009	0.009
CL	0.142	0.111	0.002	0.602	0.009	0.009
CP	0.624	0.713	0.002	0.754	0.009	0.009
CS	0.999	0.111	0.002	0.602	0.009	0.009
BO	0.327	0.624	0.002	0.465	0.028	0.016
TRACE W	0.903	0.002	0.002	0.016	0.009	0.009

Yellow colour boxes - indicates P value is statistically significant < . 05

PAIRWISE COMPARISON BETWEEN GROUPS:

Comparing group1(developmental cysts) to group 2(acquired cysts)all the DTI parameters except MD show a statistically significant P value of <0.05 implying that the difference between the groups is significant \& not merely by chance. Comparing group1(developmental cysts) to group 3(Neurocysticercosis) 6 of the parameters FA, MD, VR, GA, BO \& TRACE W all show a statistically significant difference. Comparing group1(developmental cysts) to group 4(low grade tumours) GA, CP, CS B0, TRACE W show a statistically significant difference. Comparing group1(developmental cysts) to group 5 (high grade tumours) FA, RA, VR, GA, CL, CS\&TRACE W show a statistically significant difference. Comparing group1(developmental cysts) to group 6(abcesses) all parameters except FA, RA \& VR show a statistically significant difference. Comparing group1(developmental cysts) to group 7(Epidermoid) all the 10 DTI parameters show a statistically significant difference of P value <0.05.

Comparing group2(acquired cysts) to group3(Neurocysticercosis) FA, RA, VR \& all 3 geometric tensors show a statistically significant difference of P value <0.05. Comparing group2(acquired cysts) to group 4(low grade tumours) FA, RA VR, CL \& CS shows a statistically significant difference. Comparing group2(acquired cysts) to group5 (high grade tumours) only RA show a statistically significant difference. Comparing group2(acquired cysts) to group 6(abcesses) only 3 parameters, MD,RA \& TRACE W show a statistically significant difference of P value <0.05. Comparing group2(acquired cysts) to
group 7(Epidermoid) all the DTI parameters except for B0 show a statistically significant difference of P value <0.05.

Comparing group3(Neurocysticercosis) to group 4(low grade tumours) only FA \& BO, \& Comparing to group5 (high grade tumours) FA, RA, VR, CL \& CS B0 show a statistically significant difference of P value < 0.05. Comparing group3(Neurocysticercosis) to group 6(abcesses) only 3 of the parameters FA, MD \& TRACE W shows a statistically significant difference. However comparing to group 7(Epidermoid) all the DTI parameters show a statistically significant difference of P value <0.05.

Comparing group4(low grade tumours) to group5 (high grade tumours) only FA \& RA \& comparing to group 6(abcesses) MD, GA,\& TRACE W were statistically significant. However Comparing group4(low grade tumours) comparing to group 7(Epidermoid) all the DTI parameters show a statistically significant difference of P value <0.05.

Comparing group5(high grade tumours) to group 6(abcesses) only MD \& TRACE W were statistically significant. Comparing group5(high grade tumours) to group 7(Epidermoid) all the DTI parameters show a statistically significant difference of P value < 0.05. Comparing group6(abcesses) to group 7(Epidermoid) all the DTI parameters except MD show a statistically significant difference of P value <0.05.

Hence by all these we can clearly infer that epidermoid cysts stands out separate from all other groups.

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-1	25	31.74	0.931
	Others	37	31.34	
MD	Group-1	25	41.94	<0.001
	Others	37	24.45	
RA	Group-1	25	36.00	0.106
	Others	37	28.46	
VR	Group-1	25	30.66	0.763
	Others	37	32.07	
GA	Group-1	25	40.44	0.001
	Others	37	25.46	
CL	Group-1	25	36.88	0.054
	Others	37	27.86	
CP	Group-1	25	37.18	0.042
	Others	37	27.66	
CS	Group-1	25	25.68	0.037
	Others	37	35.43	
BO	Group-1	25	21.12	<0.001
	Others	37	38.51	
TRACE W	Group-1	25	16.84	<0.001
	Others	37	41.41	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-2	5	9.20	0.004
	Others	57	33.46	
MD	Group-2	5	35.50	0.605
	Others	57	31.15	
RA	Group-2	5	6.80	0.001
	Others	57	33.67	
VR	Group-2	5	54.20	0.003
	Others	57	29.51	
GA	Group-2	5	20.20	0.144
	Others	57	32.49	
CL	Group-2	5	11.60	0.010
	Others	57	33.25	
CP	Group-2	5	12.50	0.014
	Others	57	33.17	
CS	Group-2	5	51.40	0.010
	Others	57	29.75	
BO	Group-2	5	38.60	0.359
	Others	57	30.88	
TRACE W	Group-2	5	33.00	0.846
	Others	57	31.37	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-3	7	51.57	0.002
	Others	55	28.95	
MD	Group-3	7	25.93	0.386
	Others	55	32.21	
RA	Group-3	7	27.43	0.526
	Others	55	32.02	
VR	Group-3	7	18.71	0.046
	Others	55	33.13	
GA	Group-3	7	22.57	0.164
	Others	55	32.64	
CL	Group-3	7	32.93	0.824
	Others	55	31.32	
CP	Group-3	7	32.14	0.920
	Others	55	31.42	
CS	Group-3	7	30.71	0.903
	Others	55	31.60	
BO	Group-3	7	44.86	0.038
	Others	55	29.80	
TRACE W	Group-3	7	35.43	0.541
	Others	55	31.00	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-4	10	27.85	0.485
	Others	52	32.20	
MD	Group-4	10	34.15	0.612
	Others	52	30.99	
RA	Group-4	10	30.55	0.856
	Others	52	31.68	
VR	Group-4	10	33.75	0.667
	Others	52	31.07	
GA	Group-4	10	25.60	0.259
	Others	52	32.63	
CL	Group-4	10	28.40	0.553
	Others	52	32.10	
CP	Group-4	10	21.10	0.047
	Others	52	33.50	
CS	Group-4	10	37.90	0.221
	Others	52	30.27	
BO	Group-4	10	32.00	0.924
	Others	52	31.40	
TRACE W	Group-4	10	35.90	0.400
	Others	52	30.65	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-5	5	12.50	0.014
	Others	57	33.17	
MD	Group-5	5	28.80	0.727
	Others	57	31.74	
RA	Group-5	5	16.50	0.052
	Others	57	32.82	
VR	Group-5	5	50.10	0.016
	Others	57	29.87	
GA	Group-5	5	14.20	0.025
	Others	57	33.02	
CL	Group-5	5	17.70	0.074
	Others	57	32.71	
CP	Group-5	5	23.50	0.301
	Others	57	32.20	
CS	Group-5	5	41.40	0.201
	Others	57	30.63	
BO	Group-5	5	36.80	0.493
	Others	57	31.04	
TRACE W	Group-5	5	37.60	0.430
	Others	57	30.96	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P-Value
FA	Group-6	5	23.30	0.289
	Others	57	32.22	
MD	Group-6	5	4.80	0.001
	Others	57	33.84	
RA	Group-6	5	27.80	0.632
	Others	57	31.82	
VR	Group-6	5	36.30	0.535
	Others	57	31.08	
GA	Group-6	5	11.20	0.009
	Others	57	33.28	
CL	Group-6	5	14.00	0.024
	Others	57	33.04	
CP	Group-6	5	21.50	0.196
	Others	57	32.38	
CS	Group-6	5	47.60	0.037
	Others	57	30.09	
BO	Group-6	5	27.00	0.561
	Others	57	31.89	
TRACE W	Group-6	5	54.40	0.003
	Others	57	29.49	

Mann-Whitney Test

Variables	Cyst group	N	Mean Rank	P -Value
FA	Group-7	5	59.00	<0.001
	Others	57	29.09	
MD	Group-7	5	7.20	0.002
	Others	57	33.63	
RA	Group-7	5	60.00	<0.001
	Others	57	29.00	
VR	Group-7	5	3.00	<0.001
	Others	57	34.00	
GA	Group-7	5	60.00	<0.001
	Others	57	29.00	
CL	Group-7	5	60.00	<0.001
	Others	57	29.00	
CP	Group-7	5	60.00	<0.001
	Others	57	29.00	
CS	Group-7	5	3.00	<0.001
	Others	57	34.00	
BO	Group-7	5	55.80	0.002
	Others	57	29.37	
TRACE W	Group-7	5	60.00	<0.001
	Others	57	29.00	

DTI PARAMETER IN ONE GROUP VERSUS OTHER GROUPS

(Mann-Whitney U Test with Bonferroni correction for multiple pair wise comparison)

	GROUP-1 VS REST	GROUP-2 VS REST	GROUP-3 VS REST	GROUP-4 VS REST	GROUP-5 VS REST	GROUP-6 VS REST	GROUP-7 VS REST
FA	0.931	0.004	0.002	0.485	0.014	0.289	<0.001
MD	0.001	0.605	0.386	0.612	0.727	0.001	0.002
RA	0.106	0.001	0.526	0.856	0.052	0.632	<0.001
VR	0.763	0.003	0.046	0.667	0.016	0.535	<0.001
GA	0.001	0.144	0.164	0.259	0.025	0.009	<0.001
CL	0.054	0.010	0.824	0.553	0.074	0.024	<0.001
CP	0.042	0.014	0.920	0.047	0.301	0.196	<0.001
CS	0.037	0.010	0.903	0.221	0.201	0.037	<0.001
BO	<0.001	0.359	0.038	0.924	0.493	0.561	0.002
TRACE	<0.001	0.846	0.541	0.400	0.430	0.003	<0.001

*. The P value is significant <0.05 level Mann-Whitney test;.(yellow coloured boxes)

The DTI parameters like MD, GA, CP, CS, B0 \& TRACE W help us differentiating developmental cysts from all other group of cysts. FA, RA, VR \& geometric tensors differentiates acquired cysts from the rest. FA, VR \& B0 differentiates Neurocysticercosis cysts from the rest. CP \& TRACE W differentiates low grade tumours from others. FA, VR \& GA differentiates high grade tumours from others. Similarly MD, CL, CS \& TRACE W differentiates
abcesses from other cystic lesions. All 10 DTI parameters clearly delineates Epidermoid from all other cysts.

ROC CURVE OF DTI PARAMETERS IN GROUP 1 VERSES OTHER

GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.896216
Standard Error $^{\mathrm{a}}$	0.0414
95\% Confidence interval ${ }^{\mathrm{b}}$	0.792395 to 0.959257
Significance level P (Area=0.5)	<0.0001

ROC CURVE OF DTI PARAMETERS IN GROUP 2 VERSES OTHER

 GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.933333
Standard Error $^{\mathrm{a}}$	0.0370
95\% Confidence interval ${ }^{\mathrm{b}}$	0.840099 to 0.981018
Significance level P (Area=0.5)	<0.0001

ROC CURVE OF DTI PARAMETERS IN GROUP 3 VERSES OTHER

 GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.864935
Standard Error $^{\mathrm{a}}$	0.0588
95\% Confidence interval ${ }^{\mathrm{b}}$	0.754251 to 0.938468
Significance level P (Area=0.5)	<0.0001

ROC CURVE OF DTI PARAMETERS IN GROUP 4 VERSES OTHER

 GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.700000
Standard Error ${ }^{\mathrm{a}}$	0.0871
95\% Confidence interval ${ }^{\mathrm{b}}$	0.570283 to 0.809854
Significance level P (Area=0.5)	0.0217

ROC CURVE OF DTI PARAMETERS IN GROUP 5 VERSES OTHER

GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.880851
Standard Error $^{\mathrm{a}}$	0.0531
95\% Confidence interval ${ }^{\mathrm{b}}$	0.773467 to 0.949267
Significance level P (Area=0.5)	<0.0001

ROC CURVE OF DTI PARAMETERS IN GROUP 6 VERSES OTHER

 GROUPS

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.968421
Standard Error $^{\mathrm{a}}$	0.0330
95\% Confidence interval ${ }^{\mathrm{b}}$	0.889293 to 0.996281
Significance level P (Area=0.5)	<0.0001

ROC CURVE OF DTI PARAMETERS IN GROUP 7 VERSES OTHERS

All the DTI parameters show statistically significant P values and AUC in group 7

Area under the ROC curve (AUC)

In group 1 (developmental cysts) the parameter TRACE W has the highest diagnostic accuracy showing AUC of 0.8 , sensitivity of 92% \& specificity of 81%. In group 2 (acquired cysts) the parameter RA has the highest diagnostic accuracy showing AUC of 0.9 , sensitivity of 100% \& specificity of 88%. In group 3 (Neurocysticercosis) the parameter FA has the highest diagnostic accuracy showing AUC of 0.86 , sensitivity of 85.7% \& specificity of 81.8\%. In group 4 (low grade tumours) the parameter CP has the highest diagnostic accuracy showing AUC of 0.7 , sensitivity of 90% \& specificity of 48%. In group 5 (high grade tumours) the parameter MD has the highest diagnostic accuracy showing AUC of 0.8 , sensitivity of 73% \& specificity of 93.6\%. In group 6 (abcesses) the parameter MD has the highest diagnostic accuracy showing AUC of 0.9 , sensitivity of 100% \& specificity of
84.2\%. In group 7 (Epidermoid) all the parameters showed a very good diagnostic accuracy showing AUC =1, sensitivity of 100% \& specificity of 100%.

Comparison of AUC for DTI parameters

$\begin{aligned} & 0.1 \\ & 0.9 \\ & 0.7 \\ & 0.6 \\ & 0.5 \\ & 0.4 \\ & 0.3 \\ & 0.2 \\ & 0.1 \end{aligned}$					
	F A	M D	R A	V R	GA
■ Group 1	0.506	0.782	0.622	0.523	0.742
- Group 2	0.891	0.57	0.933	0.898	0.698
- Group 3	0.865	0.601	0.574	0.732	0.622
- Group 4	0.57	0.551	0.518	0.543	0.613
- Group 5	0.502	0.881	0.57	0.536	0.565
- Group 6	0.644	0.968	0.565	0.584	0.856
- Group 7	0.982	0.926	1	1	1

Comparison of AUC for DTI parameters

Group	1	2	3	4	5	6	7
FA	0.506	0.891	0.865	0.57	0.502	0.644	0.982
MD	0.782	0.57	0.601	0.551	0.881	0.968	0.926
RA	0.622	0.933	0.574	0.518	0.57	0.565	1
VR	0.523	0.898	0.732	0.543	0.536	0.584	1
GA	0.742	0.698	0.622	0.613	0.565	0.856	1
CL	0.645	0.849	0.526	0.56	0.52	0.807	1
CP	0.654	0.833	0.512	0.7	0.514	0.675	1
CS	0.657	0.849	0.514	0.623	0.518	0.782	1
B0	0.781	0.625	0.743	0.51	0.678	0.579	0.926
TRACE	0.896	0.526	0.571	0.585	0.908	0.902	1

Significant by area under the curve

Summarised values of mean of DTI parameter, Mann-Whitney U Test \&
Area under curve of all groups, high lightening the mean of the DTI
parameter with statistically significant P values

Group		FA	MD	RA	GA	VR	CL	CP	CS	B0	TRACE
1	Mean	0.0984	2.8384	75.056	138.21	983.40	36.680	55.100	908.17	598.25	35.040
	SD	0.0393	0.4303	25.640	33.061	23.518	15.265	19.995	32.791	122.44	20.045
	MWU	0.931	0.001	0.106	0.001	0.763	0.054	0.042	0.037	<0.001	<0.001
	AUC	0.506	0.982	0.622	0.742	0.523	0.645	0.654	0.657	0.781	0.896
2	Mean	0.0561	2.5236	41.500	102.84	996.66	17.640	31.000	951.30	748.32	79.060
	SD	0.0094	0.9041	4.6433	50.474	0.8532	3.104	5.008	5.838	168.00	86.152
	MWU	0.004	0.605	0.001	0.144	0.003	0.010	0.014	0.010	0.359	0.846
	AUC	0.891	0.57	0.933	0.698	0.898	0.849	0.833	0.849	0.625	0.526
3	Mean	0.154	2.4054	57.371	95.343	963.18	36.786	63.029	900.04	769.74	50.957
	SD	0.1921	0.4102	2.0646	5.0305	21.983	27.024	59.895	86.610	114.70	19.466
	MWU	0.002	0.386	0.526	0.164	0.046	0.824	0.920	0.903	0.038	0.541
	AUC	0.891	0.601	0.574	0.622	0.732	0.526	0.512	0.514	0.743	0.571
4	Mean	0.0842	2.6910	64.050	108.77	990.09	28.020	38.360	933.74	672.92	57.440
	SD	0.0132	0.3147	14.516	28.612	5.5062	9.575	13.354	20.766	63.004	21.048
	MWU	0.485	0.612	0.856	0.259	0.667	0.553	0.047	0.221	0.924	0.400
	AUC	0.57	0.57	0.518	0.613	0.543	0.56	0.7	0.623	0.51	0.585
5	Mean	0.0604	2.4984	49.400	85.600	995.86	20.820	37.600	941.50	713.68	68.040
	SD	0.0069	0.6560	5.2536	9.1572	0.8905	2.830	5.5403	7.5580	93.019	51.376
	MWU	0.014	0.727	0.052	0.025	0.016	0.074	0.301	0.201	0.493	0.430
	AUC	0.502	0.881	0.57	0.565	0.536	0.52	0.514	0.518	0.678	0.908
6	Mean	0.0780	0.7774	56.840	78.760	988.88	17.640	37.440	944.94	651.00	239.940
	SD	0.0177	0.5554	10.375	19.124	10.799	10.102	8.8410	18.331	132.23	71.857
	MWU	0.289	0.001	0.632	0.009	0.535	0.024	0.196	0.037	0.561	0.003
	AUC	0.644	0.968	0.565	0.856	0.584	0.807	0.675	0.782	0.579	0.902
7	Mean	0.5088	0.8662	477.20	920.00	686.20	218.50	332.92	448.62	859.34	413.600
	SD	0.0768	0.1396	27.380	42.608	46.397	2.0821	5.4300	4.5036	43.722	27.7453
	MWU	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001
	AUC	0.982	0.926	1	1	1	1	1	1	0.926	1

[^0]

Fig. 1: Case of right cerebellar abscess
A, T2 weighted MRI shows a multiloculated hyperintense lesion with surrounding edema involving the right cerebellar hemisphere
B, T1 FS Contrast MRI shows ring enhancement of the same lesions
C, ROI placement
D, DWI showing restriction
\mathbf{E}, Derivation of metrics in the lesion.

CASE 2

Fig. 2: Case of intraventricular arachnoid cyst
A, T2 wieghted MRI shows a well circumscribed T2 hyperintense lesion in the body of right lateral ventricle.

B, FA map with ROI placement
C, Derivation of metrics

CASE 3

Fig. 3: Case of DNET
A , T2 weighted image shows a well-defined hyperintense lesion in left medial temporal lobe

B, T 1 contrast shows no enhancement of the lesion

CASE 4

Fig. 4: Case of DNET
A, B - Axial T2, Sagittal T1images
C, D - T2flair Coronal,

E - DTI metrics images.

CASE 5

Fig. 5: Case of Neurocysticercosis
A, T2 weighted image shows a well-defined hyperintense lesion in right parietal lobe
B, T1 contrast shows enhancement of the eccentric scolex
C, FA map with ROI placement.
D, Derivation of metrics

CASE 6

Fig. 6: Case of Epidermoid
A, T2 weighted image shows a well-defined hyperintense lesion in right parietal lobe
B, Diffusion shows restricted diffusion
C, D FA map with ROI placement.
E, Histopathology showing the tissue microstructure of epidermoid

CASE 7

Fig. 7: Case of Pilocytic Astrocytoma
A, T2 weighted image shows a hyperintense lesion with solid areas in left cerebellar hemisphere

B, FA map
C, Derivation of metrics

CASE 8

Fig. 8: Case of Porencephalic Cyst

A, T2 weighted image shows a large hyperintense cystic lesion in right parietooccipital lobe.

B, FA map with placement of ROI
C, MRS shows elevated inverted lactate peak.

CASE 9

Fig. 9: Epidermoid cyst.
A, Axial T2,
B, T2flair Coronal images
C, Diffusion images

Fig. 10: Ganglioglioma
A, Axial T2,
B, T2flair Coronal images
C, Sagittal T1, diffusion images
D, FA maps

CASE 11

Fig.11: Neuro Cysticercosis.
A. Axial T2,

B, Space images
C, T2 flair Coronal

CASE 12

Fig. 12: Choroidal Fissure Cyst.
A, Axial T2,
B, coronal T2 images
C, ROI placement,
D, DTI metrics

CASE 13

Fig.13: Giant cistern magna.
A, Axial T2
B, FA maps
C, DTI metrics images

CASE 14

Fig. 14 : Glioma with Necrosis.

A, B, Axial T2

C, FA maps,
D, DTI metrics images

CASE 15

Fig. 15: 3 year old male with Cerebral Abscess.
A, Axial T2
B, FA maps
C, DTI metrics

CASE 16

Fig. 16: Postoperative Cystic Encephalomalacia.
A, Axial T2, spectroscopy
B, DTI metrics

CASE 17

Fig. 17: Post Treatment Cyst
A, T2 Axial

B, FA map
C, DTI metrics

CASE 18

Fig. 18: Post Treatment Cyst
A, Axial T2
B, DTI metrics

DISCUSSION

DTI is a non invasive imaging tool that provides information regarding the microstructural organization of our living human brain. FA represents tissue anisotropy and is the measure of the portion of the magnitude of the diffusion tensor due to anisotropy. FA of more than 0.4 generally suggests omnidirectional structural organization and a very high directional diffusivity. Geometric tensors consists,[13] of the linear anisotrophy, planar anisotrophy and the spherical anisotrophy. In Linear anisotrophy, CL the predominant direction of diffusion is along the direction of the largest eigenvalue ($\lambda 1>\lambda 2$ and $\lambda 3$). In planar anisotrophy, CP the diffusion is restricted to a plane spanned by the two largest eigenvalues $(\lambda 1, \chi 2>\lambda 3)$. These three coordinates of tensor basics are then normalized to obtain the shape of the tensor, which gives useful information as to the linearity and anisotropy of the concerned structure.

Developmental cyst $(\mathrm{n}=25)$ such as arachanoid $\operatorname{cyst}($ Fig.1) showed highest mean diffusivity MD of $2.838 \pm 0.430 \times 10(-3) \mathrm{mm}(2) / \mathrm{s} \&$ lowest TRACE $\mathrm{W}=35 \pm 20$. The parameter TRACE W has the highest diagnostic accuracy showing Area Under the Curve, AUC $=0.8$, with a sensitivity of 92% \& specificity of 81%. These are mostly composed of just CSF, not much cellular materials, to cause hindrance in the movement of water molecules which is reflected by the findings in our study with the highest mean diffusivity, and very low fractional anisotrophy compared to all other cysts.

Acquired porencephalic cyst ($\mathrm{n}=5$) (Fig.2) showed lowest fractional anisotrophy $\mathrm{FA}=0.056 \pm 0.009$. Also in acquired cysts the parameter relative anisometry RA has the highest diagnostic accuracy showing Area under the Curve, AUC $=0.9$, with a sensitivity of 100% \& specificity of 88%. These cysts are similar to developmental cysts showing lowest fractional anisotrophy compared to other cysts.

Neurocysticercosis (n=7) (Fig.4) showed higher mean fractional anisotrophy, FA $=0.0915 \pm 0.192$ next to epidermoid. In Neurocysticercosis the parameter FA has the highest diagnostic accuracy showing Area Under the Curve, $\mathrm{AUC}=0.86$, with a sensitivity of 85.7% \& specificity of 81.8%. The FA values of these cysts showed wide variation since these lesions could be in varying stages of evolution. Two of the larger lesions show significantly higher FA values, while the smaller cysts which measured 5 -10mm shows lower FA values. Hence how far it could be generalised for the diagnosis of neurocysticercosis is beyond the limits of our study.

Low grade tumoral cysts(n=10)(Fig.4) showed lower mean fractional anisotrophy, $\mathrm{FA}=0.084 \pm 0.013, \mathrm{MD}=2.69 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}$. In a similar way did high grade tumoral cysts (n=5) (Fig.5) showed lower mean fractional anisotrophy, $\mathrm{FA}=0.06 \pm 0.007, \mathrm{MD}=2.49 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}$. Our study did not show much factors to differentiate high from low grade tumoral cysts. But the cut off values to differentiate low grade from high grade tumours will require further more studies with a large sample volume.

Abscess ($n=5$) (Fig. 6) shows lower mean fractional anisotrophy,[14-19], $F A=0.078 \pm 0.018$, with lowest mean diffusivity, $M D=0.777 \pm 0.55 \times 10(-3)$ $\mathrm{mm}(2) / \mathrm{s}$ and lowest Geodesic anisometry, GA, $=78.760 \pm 19.12$. Also in abcesses the parameter mean diffusivity, MD has the highest diagnostic accuracy showing Area Under the Curve, AUC = 0.9 , with a sensitivity of 100% \& specificity of 84.2%. The study done by Rakesh K. Gupta, Khader M. Hasan, Asht M. Mishra demonstrates that brain abscess cavity shows regions of increased fractional anisotrophy, FA values with restricted mean diffusivity compared with other cystic intracranial lesions. This statement is very much contradictory to the results obtained in our study in that the FA values were very much less when compared to Epidermoid as well as Neurocysticercosis. This could be explained by the fact that Epidermid cysts were not included in their study which we have included it in our study. One another possibility is that the abscesses could be in varying stages of evolution, in a similar way does Neurocysticercosis. The purulent material obtained from the abscess cavity at the time of surgery showed inflammatory cells, necrotic cellular debris, proteins, and amino acids as well as low molecular weight metabolites. This explains for the lowest Mean diffusivity (MD) obtained in abscess cavity compared to all their cysts. One possibility could be that these cells are tightly packed, thus reducing the extracellular space and therefore are responsible for a large anisotropy in the abscess cavity. In abscesses the microorganisms cause aggregation of leukocytes and release of large amounts of chemo tactic peptides and an up-regulation of intracellular adhesion molecules (ICAM-1) that are recruited to the cell surface
to mediate their aggregation via lymphocyte function associated molecule 1. DWI can be used to differentiate pyogenic abscess from other ring-enhancing mass lesions.

In our study Epidermoid cyst ($\mathrm{n}=5$) (Fig. 7)showed highest mean fractional anisotrophy, $\mathrm{FA}=0.509 \pm 0.077$, lower mean diffusivity, $\mathrm{MD}=0.866$ $\pm 0.140 \times 10(-3) \mathrm{mm}(2) / \mathrm{s}$, highest relative anisotrophy, RA $=477.200 \pm$ 27.381,lowest volumetric ratio, $\mathrm{VR}=686.200 \pm 46.397$, highest Geodesic anisometry, GA = 920 ± 42.60, grossly different linear component,[13], CL = 218.5, planar component $\mathrm{CP}=332.920$, spherical component, $\mathrm{CS}=448.62$, highest $\mathrm{B} 0=859.34$ \& highest TRACE $\mathrm{W}=413.6 \pm 27.745$ compared to all other cysts. Also in Epidermoid cysts all the parameters showed a very good diagnostic accuracy showing Area Under Curve(AUC)=1, with a sensitivity of 100% \& specificity of 100%. With regards to epidermoid cysts, in the study done by Santhosh K, Bejoy thomas observed a high fractional anisotropy (FA) \& planar anisometry (Cp) indicating a highly structured orientation of the tissue, fibers, or white matter tracts \& this is illustrated in Fig 8 which explains the shape of the tensor model. Similar results were obtained in our study. Hence in our study epidermoid cysts revealed an entirely different value for all the parameters with a P value <0.05. Another difference comparing the study done by Santhosh K, Bejoy Thomas is that they have observed higher Cp and lower Cl in epidermoid because they had compared to white matter tracts. In our study since we have compared to other cysts it revealed a higher CP and CL also. Epidermoid cysts are derived from inclusions of surface ectoderm into the
developing brain and have concentric lamellated internal architecture due to continuous accumulation of keratin debris produced by the surface epithelium. The keratin content of epidermoid cysts were visualised as free water-like in a few number of cases regardless of the sequence used, even though non- CSF material is present within these lesions. The MR behaviour of the content of these cysts depends on the amount of lipids present, which however can be differentiated by DTI, which also gives clues to the internal characteristics of these cysts.

Limitation of the study:

Factors such as cellularity, viscosity, permeability, and histology can affect the diffusivity of water. The values of parameters measured with DTI are the summation effect of all these micro structural barriers. Because in vivo quantification of the individual effect of each factor is currently impossible, we could not definitely state that the changes of tensor metrics were directly related to the differences in histological features alone thus explaining the limitation of the study. The cysts were grossly grouped into 7 groups for the purpose of statistical comparison. So the differentiations of individual cysts within the group were not done. In some of the groups the sample size was less. So the significance of each of the parameter could not be generalised. Few other important pathological cysts such as hydatid cyst were not included in our study. All the cysts were not confirmed by the gold standard histological diagnosis.

CONCLUSION

Considering the clinical importance of distinguishing cystic intracranial lesions that require further therapy from those that need only follow-up DTI with calculated FA,MD values add more information to MRI in the differentiation of intracranial cystic mass lesions. The quantitative nature of DTI will play a role in assessing the outcome of clinical trials, as an additional surrogate marker in monitoring the therapeutic response. Careful studies to validate DTI and its metrics will allow it to become more applicable clinically and can affect therapeutic decision-making and eventually patient outcome. This will ensure future acceptance of the implementation of tools such as DTI for use in determining the safety and efficacy of novel therapies.

IMPACT OF STUDY \& RECOMMENDATIONS

This study implicates the need for inclusion of DTI in the routine protocol of imaging cystic intracranial mass lesions with higher magnetic strength, instead of visual inspection, advanced post processing techniques can help to analyse the lesions voxel by voxel, evaluation individual group of pathologies with large sample size, familiarity of normal DTI images and appearances of various pathologies, and knowledge about artefacts in DTI images are required.

Hence Diffusion tensor imaging proves as a powerful tool for investigating the tissue microstructure and finding new clinical applications for DTI is a hot topic in the MR research community.

ANNEXURES

BIBLIOGRAPHY

1. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637-648
2. Brown R. A brief account of microscopical observations and on the general existence of active molecules in organic and inorganicbodies. In: The Philosophical Magazine, vol. IV. London: Richard Taylor; 1828. p 161173.
3. Einstein A. About the movement of suspended particles in liquids at rest as required by the molecular kinetic theory of heat. [Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen]. Ann Phys 1905;322:549 560. (Ger)
4. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003;4:469-480
5. Qian Dong, Robert C. WelshThomas L. Chenevert, Ruth C. CarlosPia Maly-Sundgren, Diana M. Gomez-Hassan, Suresh K. Mukherji, Clinical Applications of Diffusion Tensor Imaging JOURNAL OF MAGNETIC RESONANCE IMAGING 19:6-18 (2004).
6. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999;42:526540.
7. Mishra AM, Gupta RK, Jaggi RS, et al. Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr 2004;28:540-547
8. Reiche W, Differential diagnosis of intracranial ring enhancing cystic mass lesions--role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clin Neurol Neurosurg. 2010 Apr;112(3):218-25. Epub 2010 Jan 6.
9. Role of diffusion weighted imaging and proton magnetic resonance spectroscopy in ring enhancing brain lesions Dina M. ABO-Sheisha, Mohamed A. Amin , Ahmed Y. Soliman The Egyptian Journal of Radiology and Nuclear Medicine (2014) 45, 825-832
10. Desprechins B, Stadnik T, Koerts G, et al. Use of diffusion weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 1999;20:1252-1257
11. Rakesh K. Gupta, Khader M. Hasan, Asht M. Mishra, Deepak Jha High Fractional Anisotropy in Brain Abscesses versus Other Cystic Intracranial Lesions AJNR Am J Neuroradiol 26:1107-1114, May 2005
12. Crank J. The mathematics of diffusion. Oxford: Oxford University Press; 1975. p 1-10
13. Santhosh K, Diffusion tensor and tensor metrics imaging in intracranial epidermoid cysts. J Magn Reson Imaging. 2009 Apr;29 (4):967-70.
14. C. H. Toh, K-C Wei, S-H Ng, y-L Wan, C-P Lin, M. Castillo,Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging AJNR. 32(9) 1646-51 (2011).
15. Ping H Lai, Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. Ajnr American Journal Of Neuroradiology (2002)Volume: 23, Issue: 8, Pages: 1369-1377
16. Tadeusz W. Stadnika, Diffusion-weighted MR Imaging of Intracerebral Masses: Comparison with Conventional MR Imaging and Histologic Findings AJNR 2001 22: 969-976
17. Brigitte Desprechinsa, Tadeusz Stadnika, Guus Koertsa, Wael Shabanaa, Catherine Breucqa and Michel Osteauxa-Use of Diffusion-Weighted MR Imaging in Differential Diagnosis Between Intracerebral Necrotic Tumors and Cerebral Abscesses. AJNR 1999 20: 1252-1257
18. Kunii N, Rathke's cleft cysts: differentiation from other cystic lesions in the pituitary fossa by use of single-shot fast spin-echo diffusion-weighted MR imaging. Acta Neurochir (Wien). 2007 Aug;149(8):759-69; discussion 769. Epub 2007 Jul 9.
19. Reddy JS, The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol. 2006 Sep;66(3):246-50; discussion 250-1.

ABBREVIATIONS

DTI : Diffusion tensor imaging
FA : Fractional anisotrophy
MD : Mean diffusivity
RA : Relative anisotrophy
GA : Geodesic anisometry
CL : linear tensor
CP : planar tensor
CS : spherical tensor.
VR Volume ratio

TRACE w TRACE weighted VALUE

PROFORMA
 DEPARTMENT OF RADIOLOGY
 STANLEY MEDICAL COLLEGE.
 CHENNAI-1, TAMILNADU

TITLE:"ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC

INTRACRANIAL MASS LESIONS"

WEIGHTED MR IN INTRACRANIAL CYSTIC LESIONS"

NAME:
AGE/ SEX :
STUDY NO:
CLINICAL HISTORY:
RISK FACTORS:

TECHNIQUE				OBSERVATION
Conventional MRI	Size, location			
	$\mathbf{T 1}$			
	T2			
	flair			
	GRADIENT			
	space			
	Contrast enhancement			
DTI	FA			
	MD			
	RA			
	GA			
	VR			
	CL			
	CP			
	CS			
	TRACE W			
	B0			
DIAGNOSIS				
BIOPSY				
FOLLOWUP				

KEY TO MASTER CHART

1)-Column 1- S No - Serial number
2)-Column 5 - FA - Fractional Aniostrophy
(0 TO 1)
3)-Column 6 - MD: Mean diffusivity

UNIT $-10^{-3} \mathrm{~mm}^{2} / \mathrm{sec}$
4)-Column 7 -RA: Relative anisotrophy
5)-Column 8 -VR:Volume ratio
6)-Column 9 -GA: Geodesic anisometry
7)-Column 10 -CL: linear tensor
8) Column 11-CP: planar tensor
9)-Column 12-CS : spherical tensor.
10)-Column 13-B0
11)-Column 14-TRACE w- TRACE weighted VALUE

CONSENT FORM

GOVT. STANLEY MEDICAL COLLEGE, CHENNAI - 600001

INFORMED CONSENT

Study title:- "ROLE OF DTI METRICS IN DIFFERENTIATION OF CYSTIC INTRACRANIAL MASS LESIONS"

Patient's Identification No : \qquad Patient's Name: Patient's Date of Birth : ___ $/$
\qquad

I confirm that I have read and understood the Information sheet for the above study. I have had the opportunity to ask the questions and all my questions and doubts have been answered to my complete satisfaction.

I understand that my participation in the study is voluntary and that i am free to withdraw at any time, without giving any reason without my legal rights being affected.

I understand that clinical study personnel, the Ethics Committee and the regulatory Authorities will not need my permission to look at my health records both in respect of the current study and any further research that may be conducted in relation to it, even it i withdraw from the study. I agree to this access. However, I understand that my identity will not be revealed in any information released to third parties or published, unless as required under the law. I agree not restrict the use of any data or results that arise from this study. I agree not to withhold any information about my health from the investigator and will convey the same truthfully.

I agree to take part in the above study and to comply with the instructions given during the study and to faithfully co-operate with the study team , and to immediately inform the study staff, if I suffer from any deterioration in my health or well- being or any unexpected or unusual symptoms.

I hereby consent to participate in this study. I consent to give my medical history, undergo complete physical examination and diagnostic tests including haematological , biochemical and urine examination etc.

Signature/ Thumb Impression of the Patient : \qquad Place \qquad Date: \qquad

Patient's Name \& Address :

Signature of the Investigator: \qquad Place: \qquad Date: \qquad
Study Investigator's Name : \qquad Institution: \qquad
*Signature of the witness \qquad Place \qquad Date: \qquad
*Name and Address ot the Witness :

* Mandatory for uneducated patients (where thumb impression has been provided above)

GOVT. STANLEY MEDICAL COLLEGE, CHENNAI - 600001

சுய ஒப்புதல் படிவம்

ஆய்வு செய்யப்படும் தலைப்பு :
D.T.I மூலம் மூளையில் ஏற்படும் வலிப்பு நோயை ஆய்வு செய்தல்

ஆராய்ச்சி நிலையம்:கதிர் வீச்சு இயல்துறை,
தமிழ்நாடு அரசு ஸ்டான்லி மருத்துவக்கல்லூரி \& மருத்துவமனை,
சென்னை - 600001.

பங்கு பெறுபவரின் பெயர் :
பங்குபெறுபவரின் எண் :
பங்கு பெறுவர் இதனை (V) குறிக்கவும்.

மேலே குறிப்பிட்டுள்ள மருத்துவ ஆய்வின் விவரங்கள் எனக்கு விளக்கப்பட்டது. என்னுடைய சந்தேகங்களை கேட்கவும், அதற்கான தகுந்த விளக்கங்களை பெறவும் வாய்ப்பளிக்கப்பட்டது.

நான் இவ்வாய்வில் தன்னிச்சையாகதான் பங்கேற்கிறேன். எந்த காரணத்தினாலோ எந்த கட்டத்திலும் எந்த சட்ட சிக்கலுக்கும் உட்படாமல் நான் இவ்வாய்வில் இருந்து விலகி கொள்ளலாம் என்றும் அறிந்து கொண்டேன்.

இந்த ஆய்வு சம்மந்தகமாகவோ, இதை சார்ந்த மேலும் ஆய்வு மேற்கொள்ளும் போதும் இந்த ஆய்வில் பங்குபெறும் மருத்துவர் என்னுடைய மருத்துவ அறிக்கைகளை பார்ப்பதற்கு என் அனுமதி தேவையில்லை என அறிந்து கொள்கிறேன். நான் ஆய்வில் இருந்து விலகிக் கொண்டாலும் இது பொருந்தும் என அறிகிறேன்.

இந்த ஆய்வின் மூலம் கிடைக்கும் தகவல்களையும், பரிசோதனை முடிவுகளையும் மற்றும் சிகிச்சை தொடர்பான தகவல்களையும் மருத்துவர்

மேற்கொள்ளும் ஆய்வில் பயன்படுத்திக்கொள்ளவும் அதை பிரசுரிக்கவும் என் முழு மனதுடன் சம்மதிக்கிறேன்.

இந்த ஆய்வில் பங்கு கொள்ள ஒப்புக்கொள்கிறேன். எனக்கு கொடுக்கப்பட்ட அறிவுரைகளின்படி நடந்து கொள்வதுடன் இந்த ஆய்வை மேற்கொள்ளும் மருத்துவ அணிக்கு உண்மையுடன் இருப்பேன் என்றும் உறுதியளிக்கிறேன். என் உடல் நலம் பாதிக்கப்பட்டாலோ அல்லது எதிர்பாராத வழக்கத்திற்கு மாறான நோய்க்குறி தென்பட்டாலோ உடனே அதை மருத்துவ அணியிடம் தெரிவிப்பேன் என உறுதி அளிக்கிறேன்.

பங்கேற்பவரின் கையொப்பம் \qquad இடம் \qquad தேதி

கட்டைவிரல் ரேகை

பங்கேற்பவரின் பெயர் மற்றும் விலாசம் \qquad

ஆய்வாளரின் கையொப்பம் \qquad இடம் \qquad தேதி

ஆய்வாளரின் பெயர் \qquad

ETHICAL COMMITTEE APPROVAL LETTER

INSTITUTIONAL ETHICAL COMMITTEE, STANLEY MEDICAL COLLEGE, CHENNAI-1

Title of the Work	$:$ Role of DTI metrics in differentiation of Cystic intracranial mass lessions.
Principal Investigator	: Dr. M Priya
Designation	$:$ PG in MD (Radio Diagnosis)
Department	$:$ Department of Radio Diagnosis - Government Stanley Medical College, Chennai-01

The request for an approval from the Institutional Ethical Committee (IEC) was considered on the IEC meeting held on 02.07.2014 at the Council Hall, Stanley Medical College, Chennai-1 at 2PM

The members of the Committee, the secretary and the Chairman are pleased to approve the proposed work mentioned above, submitted by the principal investigator.

The Principal investigator and their team are directed to adhere to the guidelines given below:

1. You should inform the IEC in case of changes in study procedure, site investigator investigation or guide or any other changes.
2. You should not deviate from the area of the work for which you applied for ethical clearance.
3. You should inform the IEC immediately, in case of any adverse events or serious adverse reaction.
4. You should abide to the rules and regulation of the institutions).
5. You should complete the work within the specified period and if any extension of time is required, you should apply for permission again and do the work.
6. You should submit the summary of the work to the ethical committee on completion of the work.

Klasanition MEMBER SECRETARY, IEC, SMC, CHENNAI MEMBER SECRETARY ETHICAL COMMITTEE, STANLEY MEDICAL COLLEGE CHENNAI -600 001.

PLAGIARISM

DIGITAL RECEIPT

turnitin ($)$

Digital Receipt

This receipt acknowledges that Tumitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author:	Priya Muthalyan
Assignment tite:	TNMGRMU EXAMNATIONS
Submission tile:	-ROLE OF DTIMETRICS IN DFFER...
File name:	Dissertation.pdf
File size:	1.37 M
Page count:	81
Word count:	11,496
Character count:	48,669
Submission date:	$25-$ Sep-2015 0126PM
Submission D:	573028817

turnitin'

[^0]: Mann-Whitney U Test ALONE significant below P value $<\mathbf{0 . 0 5}$.

 ## AUC and Mann-Whitney U Test both are significan

 AUC alone significant

