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1. Introduction

1.1 Neurodegeneration
Neurodegenerative disorders are a heterogeneous group of diseases of the

nervous system. Due to the prevalence, morbidity, and mortality of the

neurodegenerative diseases, they represent significant medical, social and

financial burden on the society. Many of the Neurodegenerative disorders are

hereditary, some are secondary to toxic metabolic processes, and others result

from infections. These are including the brain, spinal cord and peripheral nerves

that have many different etiologies. Neuropathologically, these are

characterized by abnormalities of relatively specific regions of the brain and

specific populations of neurons. The degenerating neuron clusters in the

different diseases determine the clinical phenotype of that particular illness.

Recent investigations in medical genetics have identified specific genes for

various neurodegenerative disorders and specially bred animal models have

begun to be used to study the etiological factors and underlying pathogenic

mechanisms (Singh et al., 2004). Over the last decade there has been an

incomprehensible  increase in the number of neurodegenerative diseases,

especially Alzheimer’s disease (AD), Parkinson’s disease (PD) and

Amyotrophic lateral sclerosis (ALS), that appears to go beyond the normal

ageing of the population (Blaylock, 1998).

Neurodegenerative diseases lead to nervous system dysfunction by the result of

the gradual and progressive loss of neural cells. Neurodegenerative disorders

are characterized by progressive and irreversible loss of neurons from specific

regions of the brain. Prototypical neurodegenerative disorders include AD, PD,

Huntington’s disease (HD), and ALS. Even though the pathology and the

pathogenesis are distinctly different, they share a common pathogenic

mechanism in the process of neuronal cell death and degradation. The common

mechanisms include:  (a) neuronal injury resulting from the presence of excess

glutamate in the brain; (b) energy, metabolism and ageing; (c) selective

vulnerability, characterized by the exquisite specificity of the disease processes

for particular types of neuron; (d) genetic predisposition, playing an important

role in the etiology of neurodegenerative disease; infectious agents and

environmental toxins have also been proposed as etiologic agents; (e) oxidative
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stress, where neurons depend on oxidative metabolism for survival, a

consequence of this process is the production of reactive compounds such as

hydrogen peroxide and oxyradicals (Standaert & Young, 2006); and (f)

Inflammation, due to increased levels of proinflammatory cytokines

(Interleukins - IL-1, IL-2, IL-6), Interferon-γ  (INF-γ), Proteases, Complement

proteins, S100β, Tumor necrosis factor-α (TNF-α), etc. These agents other than

the mediators can lead to DNA damage, peroxidation of membrane lipids and

neuronal death. Stress, hypoxia, ischemia, metabolic alterations like

atherosclerosis and diabetes and neurohumoral changes like hypertension are

also implicated in neurodegeneration.

Neurodegenerative diseases comprise a wide range of diseases that share the

common characteristic of progressive loss of structure or function of neurons

and glial cells in the brain and spinal cord. Many neurodegenerative diseases

are a result of neuronal loss, although glial cells are also involved (Glass et al.,

2010).

Neurodegenerative diseases present a chronic and slowly progressive process.

Neurons in neurodegenerative diseases are affected by neuronal dysfunction at

the level of synaptic transmission, synaptic contacts, and axonal and dendritic

degeneration. In different neurodegenerative diseases, neurite degeneration and

cell loss of neurons are present within specific neurotransmitter populations. In

addition, numbers of functional neurons in neurogenic regions, and adult

neurogenesis are altered or decreased. Adult neurogenesis increases after

several acute pathologic stimuli, including stroke, seizure and acute trauma

(Arvidsson et al., 2002; Rice et al., 2003; Parent, 2007). Brain regions differ in

their vulnerability to aging; some regions that are very sensitive to age-related

neurodegenerative changes are the dentate gyrus (DG) of the hippocampus,

subiculum (Small, 2003) and subventricular zone (SVZ) ⁄ olfactory bulb (OB)

(Braak et al., 2003). The generation and cell death of newly generated cells

have critical roles in brain development and maintenance in the embryonic and

adult brain, and alterations in these processes are seen in neurodegenerative

diseases.
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1.2 Neurodegenerative disorders
Although neuronal degeneration predominantly affects or starts with specific

neuronal populations [including dopaminergic neurons in PD, striatal medium

spiny neurons in HD, motor neurons in amyotrophic lateral sclerosis, and

cortical and hippocampal neurons in AD], there are many similarities between

different neurodegenerative disorders. These include atypical protein

assemblies and oligomerization as well as induced cell death. At a late disease

stage, protein aggregation is no longer restricted to specific brain regions.

Interestingly, in PD and HD, the specific alterations in neurogenic areas such as

the DG and SVZ ⁄ OB system parallel the early or premotor symptoms that are

seen in the early stages of neurodegenerative disease, such as depression,

anxiety or olfactory dysfunction. Therefore, it is intriguing that the mechanisms

of neurodegenerative diseases are closely linked to brain plasticity. Brain

plasticity in the adult, originally conceived of as changes at the level of synaptic

transmission, synaptic contacts and gene expression (reviewed in Buonomano

& Merzenich, 1998), became a more complicated concept.

Genes that are key players in neurodegenerative diseases [α-syn, presenilin

(PSEN)1, tau, huntington] are also physiologically involved in modulating brain

plasticity in the embryonic brain, specifically as membrane proteins and when

concentrated in synapses. These proteins commonly show high conservation

between species and are located close to membranes or are involved in

microtubule transport. α-syn is a protein that is physiologically enriched in

presynaptic termini (Abeliovich et al., 2000). Initially shown to be upregulated

in a discrete population of presynaptic terminals of the song bird brain during a

period of acquisition-related synaptic rearrangement (George et al., 1995), α-

syn can interact with tubulin (Alim et al., 2002). In addition, it is involved in

DA synthesis, metabolism and release, and slight changes in concentration can

have vast effects on neurotransmitter release (Nemani et al., 2010).

1.3 Neurodegenerative disorders of interest
1.3.1 Alzheimer's disease (AD)
AD was first described by Alois Alzheimer more than a century ago in

Germany, and it constitutes one of the most common causes of senile dementia.

AD refers to a clinical syndrome that occurs in the elderly and is severe enough

to interfere with social and occupational activities. At least two clinical
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abnormalities are essential for diagnosis of the disease, namely, memory loss in

an alert person and impairment of one or more of the following functions:

language, attention, perception, judgment or problem solving (Forstl & Kurz,

1999).

The pathology of AD includes neuronal and synaptic loss, neurofibrillary

tangles due to hyperphosphorylated tau proteins and deposition of amyloid-β

(Ab) protein in senile plaques in the basal forebrain cholinergic neurons as well

as in the cortex, hippocampus and amygdala (Hardy & Selkoe, 2002). Ab is the

product of proteolysis of amyloid precursor protein (APP) by b- and c-secretase

enzymes.

Amyloid β (Aβ) accumulates intracellularly in the neuronal endoplasmic

reticulum but also extracellularly (Trojanowski & Lee, 2000; Cuello, 2005).

Although Aβ plaques are the neuropathological hallmarks of AD, the small

Aboligomeric species rather than its amyloid counterpart is thought to be the

toxic culprit in the disease. Evidence for this assumption includes a correlation

between oligomerization and memory deficit in both transgenic mice and

humans, the presence of oligomers in the brains of transgenic mice, the toxicity

of Aβ dimer and trimer measured by long-term potentiation, and lack of a good

correlation between plaque amount and AD (at least in the early phase of the

disease) (Walsh et al., 2002; Walsh & Selkoe, 2007). Patient deficits include

olfactory deficits, memory impairment, cognitive and functional decline, and

death. These symptoms can be partly related to regions and functions of adult

neurogenesis.
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Fig.1 Changes in Tau protein lead to microtubule disintegration.

Fig.2 "Tangles" of a protein called "tau" occur in Alzheimer's patients' brains-causing
neurons to lose their function and increasing memory loss.

[β amyloid] [Normal Neuron] [Amyloid

Plague]
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Fig.3 Enzymes act on the APP (amyloid precursor protein) and cut it into fragments.
The beta-amyloid fragment is crucial in the formation of senile plaques in AD.

1.3.2 Parkinson’s disease (PD)
PD is the second most common neurodegenerative disease, affecting about 1%

of the population over 65 years of age. PD is characterized clinically by resting

tremor, rigidity and bradykinesia, resulting from the progressive and selective

loss of DA neurons in the substantianigra (SN) pars compacta, and

histopathologically by the eosinophilic proteinaceous intracytoplasmic

inclusion known as Lewy bodies (LBs) in surviving dopaminergic cells (Forno,

1996). The etiopathogenesis of PD is probably multifactorial, including both

environmental and genetic factors (Di Monte, 2003; Hardy et al., 2003). As

mentioned above, α-syn is the principal component of LBs (Spillantini et al.,

1997). This was seen in molecular hereditary investigations that identified

autosomal dominant missense mutations of α-synuclein (A53T) in heritable

cases of PD (Polymeropoulos et al., 1997). Another missense mutation on the

α-syn gene (A30P) was associated with familial PD (Kruger et al., 1998) and a

new mutation (A46K) was found recently in a Spanish family, associated with

PD, dementia of LBs (Zarranz et al., 2004).

It was suggested that α-synuclein aggregation is the key event that triggers

neuronal damage and death (Forloni et al., 2000; Volles & Lansbury, 2003). In

this context, α-syn mutations would speed up the protein aggregation (Conway

et al., 2000). It is likely that the α-synuclein concentration is crucial to switch

from a physiological to a pathological condition, and only when a threshold

concentration is reached do the deleterious effects of aggregation become

evident. Misregulation in the homeostasis of α-syn (caused by mitochondrial

complex I inhibition, environmental toxins, oxidative stress or proteasome

impairment) would be sufficient to trigger α-syn chemical modifications and

aggregation in sporadic PD too (Sherer et al., 2003; Norris et al., 2003).

Loss of DAergic neurons in the SN of the midbrain and loss of other

neurotransmitter phenotype neurons in other brain regions are characteristic

neuropathological hallmarks (Goedert, 2001). Prominent clinical features of PD

are motor symptoms (bradykinesia, tremor, rigidity and postural instability) and

non-motorrelated PD symptoms (olfactory deficits, autonomic dysfunction,

depression, cognitive deficits and sleep disorders). Non-DA brain regions that
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are affected in PD have recently attracted increasing interest because the onsets

of the non-motor symptoms linked to these neuropathological alterations are

observed early in the course of the disease. They include rapid eye movement

(REM) sleep behavior disorder, subtle cognitive deficits, depression, olfactory

dysfunction and constipation (Tolosa&Poewe, 2009). As described above, a

subset of these functions is connected to the stem and progenitor cell

populations in the hippocampus and SVZ ⁄ OB system. Interestingly, several

monogenetic forms of PD show a decreased gray matter volume in the

hippocampal region (Reetz et al., 2010).

1.3.3 Huntington’s disease (HD)
HD is an autosomal dominant neurodegenerative disorder characterized by

motor dysfunction, cognitive impairment and psychosis (Sharp et al., 1995).

The disease is caused by an IT15 gene mutation on chromosome 4 (Sharp et al.,

1995). This mutation produces a CAG / polyglutamate repeat expansion in the

gene’s protein product, huntington (Sharp et al., 1995). The DNA sequence

CAG encodes the protein glutamate, an amino acid known primarily for its

roles in metabolism and as a neurotransmitter (Cotman & Monaghan 1986;

Kandel, 2001). Normal huntington protein contains 9-35 CAG repeats;

however, its mutant form may contain up to 250 of these repeats (Cattaneo et

al., 2002). Both forms of the protein are known to undergo caspase cleavage to

generate smaller, truncated fragments; however, the mutant protein’s fragments

are distinct in their correlation with neurodegeneration (Wellington et al., 2002).

Researchers are unsure why the mutant protein’s CAG repeats cause HD;

however, two theories exist to explain disease onset. One theory, the loss of

function hypothesis, suggests that the CAG expansion disables huntington from

carrying out its normal function (Catteneo et al., 2002). A second theory, the

gain of function hypothesis, suggests that the IT15 mutation produces a toxic

huntington protein with a distinct conformation that enables it to stick to both

itself and normal huntington (Catteneo et al., 2002).

1.3.4 Amyotrophic lateral sclerosis (ALS)
ALS is a progressive, degenerative disorder characterized by the selective loss

of motor neurons in the brain and spinal cord leading to paralysis, muscle

atrophy and eventually, death (Pasinelli & Brown, 2006). Two missense

mutations in the gene encoding the human Vesicle-associated membrane
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protein (VAMP)-Associated Protein B (hVAPB) causes a range of dominantly

inherited motor neuron diseases including ALS8 (Nishimura et al., 2004; Chen

et al., 2010). VAP family proteins are characterized by N-terminal major sperm

protein (MSP) domain, a coiled-coil (CC) motif and a transmembrane (TM)-

spanning region. They are implicated in several biological processes, including

regulation of lipid transport, endoplasmic reticulum (ER) morphology and

membrane trafficking (Lev et al., 2008). Drosophila Vap-33-1 (DVAP)

hereafter, regulates synaptic structure, synaptic microtubule (MT) stability and

the composition of postsynaptic glutamate receptors (Pennetta et al., 2002;

Chai et al., 2008). MSP domains in DVAP are cleaved and secreted into the

extracellular space where they bind Ephrin receptors (Tsuda et al., 2008). MSPs

also bind postsynaptic Roundabout and Lar-like receptors to control muscle

mitochondria morphology, localization and function (Han et al., 2012).

Transgenic expression of the disease-linked alleles (DVAP-P58S and DVAP-

T48I) in the larval motor system recapitulates major hallmarks of the human

disease, including aggregate formation, locomotion defects and chaperone

upregulation (Chen et al.,2010;Chai et al.,2008;Ratnaparkhi et al.,2008).

Several studies have also implicated the ALS mutant allele in abnormal

unfolded protein response (UPR) (Chen et al., 2010; Kanekura et al., 2006;

Langou  et al., 2010; Suzuki et al., 2009; Gkogkas et al., 2008) and in the

disruption of the anterograde axonal transport of mitochondria (Mo´rotz et

al.,2012). However, it is unclear how these diverse VAP functions are achieved

and which mechanisms underlie the disease pathogenesis in humans. One way

to address these questions is to search for DVAP-interacting.

1.3.5 Multiple sclerosis (MS)
MS is a chronic idiopathic demyelinating and neurodegenerative disease of the

CNS. As such, both the onset and exacerbation of MS are thought to be

influenced by multiple factors, including infectious agents, genetic composition

and environment (Hauser et al, 2006).A key defining feature of MS is that

lesions are disseminated in both space and time, i.e., they occur at more than

one site and develop on more than one occasion. Clinically, MS symptoms

emerges between the ages of 20 and 40 years in approximately 70% of patients

(Weinshenker et al.,1989; Confavreux et al.,1980) although changes visible on
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MRI are much more common than clinical activity and may well precede the

latter (O’Riordan et al.,1998; Sailer et al.,1999; Brex et al.,2002).

1.4 Common motifs in neurodegeneration
Neurodegenerative disorders such as AD and PD account for a significant and

increasing proportion of morbidity and mortality in the developed world

(Hebert et al., 2001; Hebert et al., 2003). Largely as a result of increased life

expectancy and changing population demographics (i.e., the aging of baby

boomers), neurodegenerative dementias and neurodegenerative movement

disorders are becoming more common (Brookmeyer et al., 1998; Samii et al.,

2004). As our population ages, an improved understanding of these diseases

will be vital to developing more effective therapies and combating the

staggering personal, social, and economic costs of these diseases (Ernst et al.,

1997). Unifying theories of pathogenesis in neurodegenerative disease provide

an avenue for developing therapeutic strategies with broad applicability for

disease prevention and an opportunity for decreasing morbidity and mortality

from these disorders in the elderly population (Forman et al., 2004).

Converging lines of investigation have revealed a potential single common

pathogenic mechanism underlying many diverse neurodegenerative disorders.

1.5 Mechanisms of neuronal death
Acute injury to cells causes them to undergo necrosis, recognized

pathologically by cell swelling, vacuolization and lysis, and associated with

calcium (Ca2+) overload of the cells and membrane damage. Necrotic cells

typically spill their contents into the surrounding tissue, evoking an

inflammatory response. Cells can also die by apoptosis or programmed cell

death (Raff, 1998), a slower process that occurs normally during development

and is essential for many processes throughout life, for example development,

immune regulation and tissue remodeling. Apoptosis, as well as necrosis,

occurs in many neurodegenerative disorders including acute conditions such as

stroke and head injury (Bredesen, 1995). The distinction between necrosis and

apoptosis as processes leading to neurodegeneration is not absolute, for

challenges such as excitotoxicity and oxidative stress may be enough to kill

cells directly by necrosis, or, if less intense, may induce them to undergo

apoptosis. Both processes, therefore, represent possible targets for putative

neuroprotective drug therapy. Pharmacological interference with the apoptotic
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pathway may become possible in the future, but for the present, most efforts are

directed at the processes involved in cell necrosis, and at compensating

pharmacologically for the neuronal loss.

In recent years there has been an increasing interest in the studies on

neurodegeneration, including the physiological or programmed neuronal death

and the cell disruption occurring as a consequence of necrosis. This interest has

been greatly stimulated by the fact that precipitation and localization of

neuronal destruction is a central event in the course of many acute and chronic

disorders of the CNS. These disorders include stroke (anoxia-ischemia),

hypoglycemia, cerebral trauma, epilepsy and several devastating

neurodegenerative diseases, such as ALS, PD, AD and HD. Among the cellular

mechanisms possibly involved in neuronal death in neurodegenerative

disorders, three closely related factors seem to play important roles: (1) the

generation of reactive oxygen species (ROS) or free radicals, (2) the over

activation of synaptic excitatory amino acid (EAA) receptors, and (3) the

increase in cytoplasmic free Ca2+ concentration and (4) infection. As shown in

Fig. 1, the links between these factors are multiple and an initial event may

lead, in a cascade manner, to the generation of further alterations (Rang et al.,

2006). In addition to these, several other factors like selective vulnerability and

exquisite specificity of the disease process for particular types of neurons;

genetic predisposition; excitotoxicity; oxidative stress; environmental triggers –

infectious agents, toxins, brain injury; aging and disruption in energy

metabolism (Standaert & Young, 2006).

1.6 Monosodium L-glutamate (MSG)
MSG, a widely used food flavor enhancer, may cause serious adverse effects in

some cases, such as allergy, retina injury, osteoblast dysfunction and cardiac

tachyarrhythmias. These symptoms are described as “monosodium glutamate

symptom complex” or “Chinese restaurant syndrome”. However, the

underlying mechanisms are not clearly elucidated. MSG is water soluble and

ionised into glutamate (Glu) and Na+ in the water at body temperature. MSG

ingestion is considered safe in the general population, but the possibility

remains that some individuals are sensitive to it: those with neurodegenerative

diseases and heart diseases. The circulating level of glutamate is one source that
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may give rise to adverse effects. Other sources of unusually high glutamate

levels may take roles in certain local sites of a diseased organ, for example, in

the extracellular spaces of an infarct heart due to “glutamate outflow”, or in an

injured brain potentially caused by glutamate release from the glia or the

dysfunction of glutamate transporters. These high local glutamate levels are

correlated with organ injuries and dysfunction. Glutamate is also an important

excitatory neurotransmitter in the mammalian CNS and its excessive activity

may be a cause of excitotoxicity in the brain, whether gutamate induces

excitotoxicity in peripheral tissues is not well documented.  Virtually all

members of the glutamate receptor family are involved in excitotoxicity.

However, the ionotropic glutamate receptors (iGluRs) are recognized as the key

receptors.

1.7 Glutamate and excitotoxicity
One of the key events in this chain of reactions resulting in neuronal damage is

an excess excitatory synaptic neurotransmission mediated by EAA, mainly

glutamate. Pioneer studies in the decade of the seventies showed that exposure

of nervous tissue to high concentrations of glutamate and other EAA produced

neuronal degeneration and death, and demonstrated that such effects are related

to the ability of these neurotransmitters to depolarize the membrane and

therefore to excite neurons (Olney, 1971; Olney et al., 1971; Rothman et al.,

1987). Because of the capability of glutamate to produce both excitation and

toxicity in neurons, the term “excitotoxicity” was proposed by Olney (1978).

For years the central effects of glutamate were thought to be exclusively

mediated by ion channel mechanisms, however, glutamate receptors can now be

categorized into two groups: ionotropic [i(GluR)] activated by glutamate and

aspartate; and metabotropic [m(GluR)]. The i(GluR)s are ligand-gated ion

channels, mainly localized postsynaptically, characterized by their selective

affinity for the specific agonists: N-methyl-D-aspartate (NMDA), α-amino-2-

hydroxy-4-methyl-3-isoxazolepropionate (AMPA); and kainic acid (KA). The

second group is that of mGluR, which are frequently present in the presynaptic

membrane and do not form ion channels but are associated to G proteins and

coupled to the production of second intracellular messengers (Hollmann &

Heine-mann, 1994; Michaelis, 1998; Miller, 1994). They are subdivided into 3
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types by amino acid sequence, agonist sensitivity and signal transduction

mechanisms. Group I  (mGluR1-5) are coupled to phospholipase C-mediated

polyphosphoinositide hydrolysis, while group II (mGluR2 and 3)  and group III

(mGluR4,6,7 and 8) are either negatively coupled to adenyl cyclase or linked to

ion channels  (Hynd et al., 2004; Stone & Addae, 2002).

EAA neurotoxicity is cellular selective and different EAAs produce distinctive

degenerative patterns (Coyle et al., 1981); it is predominantly mediated by

i(GluR) (Olney, 1990). Two deleterious processes can be distinguished by

differences in time-dependence and ionic characteristics (Choi, 1992). The first

involves acute swelling of cell bodies and dendrites via the opening of

membrane cation channels, causing depolarization. The Na+ influx, and passive

influx of CI− ions and water, precedes the cell volume expansion. Swelling

occurs within minutes of glutamate exposure and is critically dependent on the

extracellular concentrations of Na+ and Cl− ions (Rothman, 1985). The second,

slowly evolving component is marked by delayed neuronal degeneration. In

vitro, the accumulation of radiolabelled Ca2+ correlates closely with the

degenerative process, suggesting that the toxicity is principally mediated by

Ca2+ influx, probably via NMDA-receptor (NMDAR) (Choi, 1992). NMDARs

exhibit a higher permeability for Ca2+ than do AMPA or KA receptors, and

possess a higher capacity for inducing intracellular Ca2+ overload and initiating

the degenerative cascade (Choi, 1992).

Although non-NMDA receptors were not originally thought to be permeable to

Ca2+, heteromeric complexes comprised of both AMPA- and KA-sensitive

receptor subunits can actually form channels that sustain Ca2+ ion currents

(Wisden & Seeberg, 1993). In addition, some variants of AMPA-kainate

receptors are coupled to ion channels that are somewhat permeable to Ca2+

(Hollmann et al., 1991) and can thus contribute to excessive calcium entry.

Furthermore, stimulation of any of the i(GluR)s results in membrane

depolarization because of the influx of positively charged ions, and thus

indirectly activate voltage-gated calcium ions channels further contributing to

neurotoxicity (Hynd et al., 2004).

Under resting conditions, the NMDAR is not readily opened by the agonists,

because its channel is blocked by magnesium (Mg2+). However, because of the
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voltage sensitivity of this receptor, when the membrane is depolarized Mg2+ is

expelled out of the channel and the receptor is able to respond to its ligand.

Consequently, when the non-NMDAR is activated and depolarization occurs

due to the entrance of Na+ through its channel, the over activation of the

NMDAR is facilitated. The hyperactivation of the NMDAR results in a massive

entrance of Ca2+ (Hartley et al., 1993; Randall & Thayer, 1992), which may

overcome the intracellular calcium (i[Ca2+]) buffering mechanisms that,

together with plasma membrane Ca2+-ATPases and Na+-Ca2+ exchangers, are

responsible for maintaining a sub-micromolar intracellular concentration of the

cation. The resulting accumulation of cytoplasmic Ca2+ eventually leads to

neuronal death due to several factors, such as activation of proteases, lipases

and endonucleases, membrane protein and lipid alterations, generation of toxic

ROS, mitochondrial damage, disruption of energy metabolism, and membrane

depolarization. These events potentiate each other in a cascade manner to

produce membrane damage and consequently cell death. (Mattson, 1994;

Siesjo, 1994).

Studies in tissue culture indicate that glutamate receptor (GR)-mediated

neuronal degeneration can be separated into two distinct forms: acute and

delayed form of neuronal degeneration. The acute form of neurotoxicity is

characterized by neuronal swelling in the presence of agonist, which leads to

osmotic lysis of the neurons, and can be prevented by eliminating from the

culture medium sodium or chloride ions, two ions responsible for the massive

influx of water when glutamate-gated cation channels are open. In contrast,

delayed neuronal degeneration caused by NMDA and in most cases, KA

agonists is calcium ion-dependent and transpires over several hours after a brief

exposure to a high concentration of agonist or prolonged exposure to a low

concentration of agonist. The Ca2+ mediated effects of GR activation leading to

neuronal degeneration may involve a number of different pathways that cause

oxidative stress and degeneration (Choi et al., 1987; Kato et al., 1991; Rothman

et al., 1987).

NMDAR activation or neuronal increases in Ca2+ subsequent to sodium, or both

can activate a series of enzymes, including protein kinases C (PKC),

Phopholipases (PL), proteases, protein phosphatases, and nitric oxide synthase
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(NOS) (Choi, 1988; Dawson et al., 1992; Trout et al., 1993). After PL2 is

activated, arachidonic acid (AA), its metabolites, and platelet activating factor

(PAF) are generated. PAF increases neuronal calcium ions levels (Ca2+),

apparently by stimulating the release of glutamate (Bito et al., 1992; Clark et

al., 1992). AA potentiates NMDA-evoked currents (Miller et al., 1992) and

inhibits reuptake of glutamate into astrocytes and neurons (Volterra et al.,

1992), further exacerbating the situation; ROS can be formed during AA

metabolism (Lafon-Cazal et al., 1993), leading to further PLA2 activation,

which represents positive feedback (Chan et al., 1985). These processes can

cause the neuron to digest itself by protein breakdown, free-radical formation,

and lipid peroxidation. In addition, one might envisage that in cerebral

ischemia, tissue reperfusion increases this damage by providing additional free

radical in the form of superoxide anions (Rosen et al., 1993). When NMDARs

are excessively stimulated, influx of Ca2+ activates the generation of NO and

superoxide in increased quantities. Under these conditions, NO and superoxide

ions may react to form a toxic substance called peroxynitrite (ONOO-),

resulting in neuronal death (Dawson et al., 1991; Lipton et al., 1993). In

addition to these effects Ca2+ can activate nuclear enzyme (endonucleases) that

result in condensation of nuclear chromatin and ultimately DNA fragmentation

and nuclear breakdown, a pathological process known as apoptosis (Kane et al.,

1993).

PLs capable of breaking down the cell membrane and liberating AA are

activated by glutamate (Hynd et al., 2004). AA metabolism, by cellular

oxidases, generates ROS, resulting in the degradation of lipid membranes

(Chan & Fishman, 1985). Endonucleases that break down genomic DNA may

be activated. Elevated cytosolic Ca2+ may act in concert with diacylglycerol to

activate Ca2+-sensitive protein kinases, resulting in the hyper-phosphorylation

of cytoskeletal proteins including tau and ubiquitin, which are constituents of

neurofibrillary tangles (Mattson, 1994). The influx of extracellular Ca2+,

augmented by release from intracellular i[Ca2+] stores, may act via a positive

feedback mechanism to enhance synaptic efficacy and neuronal excitability,

causing further release of glutamate (Choi, 1992).
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Studies have demonstrated that synaptic glutamate release and uptake are

energy (ATP)-dependent, and any impairment or breakdown may lead to

generation of ROS and inactivation of glutamate reuptake mechanism leading

to excessive glutamate accumulation. If the circumstance continues unabated,

there is excessive influx of Na+, Cl- and Ca2+, via post-synaptic ion channels

producing swelling and destruction of post synaptic elements not only in the

immediate vicinity but also the entire neuron as well. Upon destruction of

neurons by this mechanism, additional glutamate may be released further

increasing the level of extracellular glutamate and thereby propagating the

excitotoxicity and death of additional glutamate-sensitive neurons in the region

of involvement (Auer & Siesjo, 1988; Benveniste et al., 1984; Nicholis &

Attwell, 1990; Novelli et al., 1988; Siesjo, 1984).

In spite of its ubiquitous role as a neurotransmitter, glutamate is highly toxic to

neurons, a phenomenon dubbed ‘excitotoxicity’ (Choi, 1988). A low

concentration of glutamate applied to neurons in culture kills the cells and the

finding in the 1970s that glutamate given orally produces neurodegeneration in

vivo caused considerable alarm, because of the widespread use of glutamate as a

'taste-enhancing' food additive. The 'Chinese restaurant syndrome'-an acute

attack of neck stiffness and chest pain is well known, but so far the possibility

of more serious neurotoxicity from dietary glutamate is only hypothetical. Local

injection of KA is used experimentally to produce neurotoxic lesions. It acts by

excitation of local glutamate-releasing neurons and the release of glutamate,

acting on NMDA and also mGluR leading to neuronal death. Ca2+ overload is

the essential factor in excitotoxicity. The mechanism by which this occurs

leading to cell death is depicted in Figure 4, as following (Rang et al., 2006):

 Glutamate activates NMDA, AMPA and mGluR (sites1, 2 and 3 in Figure 4).

Activation of AMPA receptors depolarises the cell, which unblocks the

NMDA-channels, permitting Ca2+ entry. Depolarization also opens voltage-

activated Ca2+ channels (site 4), releasing more glutamate. mGluR cause the

release of  i[Ca2+] from the endoplasmic reticulum. Sodium entry further

contributes to Ca2+ entry by stimulating Ca2+/Na+ exchange (site 5).

 Depolarization inhibits or reverses glutamate uptake (site 6), thus increasing the

extracellular glutamate concentration.
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 The mechanisms that normally operate to counteract the rise in i[Ca2+] include

the Ca2+ efflux pump (site 7) and, indirectly, the Na+ pump (site 8).

 The mitochondria and endoplasmic reticulum act as capacious sinks for Ca2+

and normally keep i[Ca2+] under control. Loading of the mitochondrial stores

beyond a certain point, however, disrupts mitochondrial function, reducing ATP

synthesis, thus reducing the energy available for the membrane pumps and for

Ca2+ accumulation by the endoplasmic reticulum. Formation of ROS is also

enhanced. This represents the danger point at which positive feedback

exaggerates the process.

 Raised i[Ca2+]  affects many processes, the chief ones relevant to neurotoxicity

being: (a) increased glutamate release (b) activation of proteases (calpains) and

lipases, causing membrane damage (c) activation of NO, nitric oxide synthase

(NOS); while low concentrations of NO are neuroprotective, high

concentrations, in the presence of ROS, generate peroxynitrite and hydroxyl

free radicals, which damage many important biomolecules, including

membrane lipids, proteins and DNA (d) increased AA release, which increases

free radical production and also inhibits glutamate uptake (site 6).

Glutamate and Ca2+ are arguably the two most ubiquitous chemical signals,

extracellular and intracellular respectively, underlying brain function, so it is

disconcerting that such cytotoxic mayhem can be unleashed when they get out

of control. Both are stored in dangerous amounts in subcellular organelles, like

hand-grenades in an ammunition store. Defense against excitotoxicity is clearly

essential if our brains are to have any chance of staying alive. Mitochondrial

energy metabolism provides one line of defense, and impaired mitochondrial

function, by rendering neurons vulnerable to excitotoxic damage, may be a

factor in various neurodegenerative conditions, including PD. The role of

excitotoxicity in ischemic brain damage is well established, and it is also

believed to be a factor in other neurodegenerative diseases (Lipton &

Rosenberg, 1994). There are several examples of neurodegenerative conditions

caused by environmental toxins, acting as agonists on glutamate receptors

(Olney, 1990).
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Figure 4. A detailed mechanism of glutamate-induced excitotoxicity
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1.8.1 Glutamate and oxidative stress
The production of ROS is associated with many forms of apoptosis (Suzuki et

al., 1997), as well as the cell death that occurs in stroke, ischemia, and many

neurodegenerative diseases (Halliwell, 1992; Ames et al., 1993; Coyle &

Puttfarcken, 1993; Jenner, 1994; Shigenaga et al., 1994). Glutamate toxicity is

a major contributor to pathological cell death within the nervous system and

appears to be mediated by ROS (Coyle & Puttfarcken, 1993). There are two

forms of glutamate toxicity: receptor-initiated excitotoxicity (Choi, 1988) and

non-receptor-mediated oxidative glutamate toxicity (Murphy et al., 1990).

Oxidative glutamate toxicity is initiated by high concentration of extracellular

glutamate that prevent cystine uptake into the cells, followed by the depletion of

intracellular cystine and the loss of GSH. With a diminishing supply of GSH,

there is an accumulation of excessive amounts of ROS and ultimately cell

death. Understanding the relationship between GSH depletion and ROS

production should lead to a better understanding of all forms of programmed

cell death in which ROS play a central role.

Oxidative glutamate toxicity has been observed in primary neuronal cell

cultures (Murphy et al., 1990; Oka et al., 1993), and tissue slices (Vornov &

Coyle, 1991) and has been studied recently in the immortalized mouse

hippocampal cell line, HT22 (Davis & Maher, 1994; Maher & Davis, 1996; Li

et al., 1997a,b; Sagara et al., 1998). In HT22 cells, glutamate induces a form of

programmed cell death with characteristics of both apoptosis and necrosis. The

exposure of HT22 cells, cortical neurons and neuroblastoma cells to glutamate

results in the rapid depletion of GSH followed by an increase in ROS. The

assumption has been that the increase in ROS is a direct result of this GSH

depletion, but the functional relationship between the two has not been defined.

Tan et al., (1998) summarized that there are two phases of ROS formation after

exposure to glutamate: an early 5-10 fold increase coupled to GSH depletion

and a later 200-400 fold increase derived from mitochondria. Early gene

activation and caspase activity are required for both maximal ROS production a

subsequent cell death.



19

1.9 Current scenario
Neurodegeneration is a process involved in both neuropathological conditions

and brain ageing. It is known that brain pathology in the form of

cerebrovascular and neurodegenerative disease is a leading cause of death all

over the world, with an incidence of about 2/1000 and an 8% total death rate

(Kolominsky Rabas et al., 1998). Cognitive dysfunction, is a major health

problem in the 21st century, and many neuropsychiatric disorders and

neurodegenerative disorders, such as schizophrenia, depression, AD, dementia,

cerebrovascular impairment, seizure disorders, head injury, Parkinsonism can

be severely functionally debilitating in nature (Commenges et al., 2000).

A recent study (Andlin-Sobocki et al., 2005) has evaluated the total cost of brain

diseases per year, including direct and indirect costs, in 28 countries in Europe

at about 386 billion Euros for the year 2004. This represented 35% of the total

burden of diseases affecting about 27% of the 465 million people who are

suffering brain diseases. If mental disorders are excluded from the calculation

the total cost of neurological diseases including dementia could be about 146

billion Euros per year and the total specific cost of the neurodegenerative

diseases could be as much as 72 billion Euros. These diseases are found in

about 5% of the total number of patients suffering brain diseases. They are

characterized by more or less selective neuronal degenerations inducing

neurological syndromes, and affect both sensory-motor areas and cognitive

functions.

In industrial countries, PD has a prevalence of approximately 0.3% in the

general population and affects about 1% of those older than 60 (de Lau &

Breteler, 2006). This disease rarely occurs before the age of 50, and men are at

higher risk than women. In Europe, PD affected 1.2 million people in 2010,

resulting in costs per patient of EUR 5,626 for direct health care and EUR 4,417

for non-medical care. In 30 European countries, the total cost of all care for

patients with PD in 2010 was EUR 13.9 billion (de Lau & Breteler, 2006).

According to a recent estimation, it is possible that almost 80% of individuals

with dementia suffer from AD (Jellinger & Attems, 2010). AD is a severe

progressive neurodegenerative brain disorder that affects approximately 5% of

the population older than 65 years (Shah et al., 2008). According to the US
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Centers for Disease Control and Prevention (2003), the number of people in the

world who are over the age of 65 will increase to around 1 billion by 2030. It

has also been projected that by 2050 the number of dementia cases will reach

around 14 million in Europe (Mura et al., 2010) and 13.2 million in the United

States (Hebert et al., 2001). Furthermore, it has been estimated that the annual

incidence of AD in the United States will increase from the 337,000 cases

recorded in 1995 to 959,000 cases in 2050 (Hebert et al., 2001). At the level of

individuals, AD decreases the quality of life and shortens life expectancy. At

the societal level, the long-term care of AD patients in nursing homes is an

economic challenge in Western countries, as illustrated by a report in which

Olesen and colleagues (2012) showed that in Europe the annual cost for

patients with dementia was EUR 105.2 billion in 2010. The mentioned date

certainly indicate the tremendous impact of AD in terms of the enormous

number of patients with this disease, the pressure on their relatives, and the

negative socioeconomic consequences. In short, it can be said that AD is one of

the major public health problems in the world.

1.9.1 Current therapeutic approaches in neurodegeneration
Drugs to improve memory generally work by altering the balance of particular

chemicals (neurotransmitters) in the brain that are involved in the initial

learning of a memory or its subsequent reinforcement. Some of them along with

their mechanism are listed in table 2. Some acts by selective enhancement of

cerebral blood flow and metabolism, including enhanced glucose uptake, which

may protect against the effects of hypoxia and ischemia. Reports from literature

reveal that some medications currently available to patients with memory

disorders may also increase performances in healthy people. Drugs designed for

psychiatric disorders can also be used to enhance certain mental functions.

However, the long-term effects of these drugs are unknown. Drugs which act as

cognition enhancer increase synaptic plasticity by, regulating release of

neurotransmitter from the pre-synaptic terminal and increasing sensitivity and

specificity of receptors and ion channels in the membranes of synapse to

neurotransmitter signaling. Some of the agents also modulate the process at

transcriptional and translational level.

1.10 Herbal medicines
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In traditional practices of medicine, numerous plants have been used to treat

cognitive disorders, including neurodegenerative diseases such as AD and other

memory related disorders. Various studies have been undergone to identifying

potential new drugs from plant sources, including those for memory disorders.

There are numerous drugs available in market that have been isolated from

plants, e.g. alkaloids from plant sources have been investigated for their

potential in AD therapy, and are now in clinical use. Usually herbal

preparations are well tolerated but they may have harmful side-effects,

including interactions with pharmaceuticals (Howes et al., 2003). Herbal

medicines, such as, Ginkgo Biloba, Bacopa monnieri (Bramhi) (Das et al.,

2002), Shankh pushpi etc., has been found to increase memory power. Some of

the herbal medicinal plants with potential cognitive enhancement activity are

listed in table 3 (Howes & Houghton, 2003; Kennedy et al., 2003).

The past decade has also witnessed an intense interest in herbal medicines in

which phytochemical constituents can have long-term health promoting or

medicinal qualities. In contrast, many medicinal plants exert specific medicinal

actions without serving a nutritional role in the human diet and may be used in

response to specific health problems over short- or long-term intervals.

Phytochemicals present in vegetables and fruits are believed to reduce the risk

of several major diseases including cardiovascular diseases, cancers as well as

neurodegenerative disorders. Therefore people who consume higher vegetables

and fruits may be at reduced risk for some of diseases caused by neuronal

dysfunction (Selvam, 2008; Lobo et al., 2010). Herbal medicine has long been

used to treat neural symptoms. Although the precise mechanisms of action of

herbal drugs have yet to be determined, some of them have been shown to exert

anti-inflammatory and/or antioxidant effects in a variety of peripheral systems.

Now, as increasing evidence indicates that neuroglia-derived chronic

inflammatory responses play a pathological role in the CNS, anti-inflammatory

herbal medicine and its constituents are being proved to be a potent

neuroprotector against various brain pathologies. Structural diversity of

medicinal herbs makes them a valuable source of novel lead compounds against

therapeutic targets that are newly discovered by genomics, proteomics, and

high-throughput screening. This review will highlight the importance of
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phytochemicals on neuroprotective function and other related disorders, in

particular their mechanism of action and therapeutic potential (Pueyo & Calvo,

2009).

Table 1. Some putative cognitive enhancing plants
Acoruscalamas

Angelica
archangelica

Asparagus
racemosus

Bacopamonniera

Biota orientalis

Boerhaviadiffusa

Celastruspaniculatus

Centellaasiatica

Clitoriaternatea

Codonopsispilosula

Convolvulus
pluricaulis

Coptischinensis

Crocus sativus

Curcuma longa

Embeliaribes

Emblicaofficinalis

Eugenia caryophyllus

Evodiarutaecarpa

Galanthusnivalis

Ginkgo biloba

Glycyrrhizaglabra

Huperziaserrata

Hydrocotylasiatica

Lawsoniainermis

Lycoris radiate

Magnolia officinalis

Melissa cordifolia

Nardostachysjatamansi

Nicotianatabacum

Paeoniaemodi

Panax ginseng

Piper longum

Polygonummultiflorum

Polygala tenuifolia

Pongamiapinnata

Rosmarinusofficinalis

Salvia lavandulifolia

Salvia miltiorrhiza

Schizandrachinensis

Terminaliachebula

Tinosporacordifolia

Withaniasomnifera

1.11. Phytochemicals in neuroprotection
There has been considerable public and scientific interest in the use of

phytoconstituents for neuroprotection or to prevent neurodegenerative diseases.

Many phytochemicals have been shown to exert neuroprotective actions in

animal and cell culture models of example, a chalcone (safflor yellow B) can

protect neurons against ischemic brain injury and piceatannol can protect

cultured neurons against Aβ-induced death. Epidemiological studies of human

populations, and experiments in animal models of neurodegenerative disorders,

have provided evidence that phytochemicals in fruits and vegetables can protect

the nervous system against disease (Liu, 2003; de Rivera  et al., 2005). The vast

majority of studies on health benefits of phytochemicals have focused on the

fact that many of the active chemicals possess antioxidant activity.

Neuroprotective effects of various phytochemicals are associated with reduced

levels of oxidative stress. For example, resveratrol, quercetin and catechins
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reduced oxidative stress and protected cultured hippocampal neurons against

nitric oxide-mediated cell death.

Some of the neuroprotective herbs with their major bioactive compound and

mode of action were shown in table 4. Hundreds of articles have been published

reporting neuroprotective effects of compounds in natural products, including

α-tocopherol, lycopene, resveratrol, ginkgo biloba and ginsenosides.

1.12 Flavonoids
Recently, there has been intense interest in the potential of flavonoids to

modulate neuronal function and prevent age-related neurodegeneration. Dietary

intervention studies in several mammalian species, including humans, using

flavonoid rich plant or food extracts have indicated an ability to improve

memory and learning, by protecting vulnerable neurons, enhancing existing

neuronal function or by stimulating neuronal regeneration. Individual

flavonoids such as the citrus flavanone tangeretin, have been observed to

maintain nigro-striatal integrity and functionality following lesioning with 6-

hydroxydopamine, suggesting that it may serve as a potential neuroprotective

agent against the underlying pathology associated with Parkinson's disease

(Youdim et al., 2004). In order for flavonoids to access the brain, they must first

cross the blood brain barrier (BBB), which controls entry of xenobiotics into the

brain.

Flavanones such as naringenin and their in vivo metabolites, along with some

dietary anthocyanins, cyanidin-3-rutinoside and pelargonidin-3-glucoside, have

been shown to traverse the BBB in relevant in vitro and in situ models (Youdim

et al., 2004; Youdim et al., 2002). Anthocyanins can possibly cross the

monolayer in blood-brain barrier models in vitro.Flavonoids and tannins are

phenolic compounds that are a major group of compounds act as primary

antioxidants or free radical scavengers.

1.12.1. The role of plant flavonoids in neurodegeneration
There has been a recent explosion of interest by research scientists in the

flavonoid compounds, with a multitude of medically useful properties having

been demonstrated in experimental, as well as, clinical studies of flavonoids.

For instance, flavonoids have been shown to act as powerful free radical

scavengers for a multitude of free radical species, even the powerful
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peroxynitrite radical. In addition, several flavonoids have shown powerful

metal-chelating properties, especially for iron and copper, two of the most

potent-free radical catalysts (Morel et al., 1998). Of equal importance are

several studies that have shown that flavonoids interact with cell membranes,

improving their fluidity, thereby protecting them from lipid peroxidation (Saija

et al., 1995; Ratty & Das, 1988). Along these same lines is the protection of

micro vessels in the nervous system by specific flavonoids from free radical

damage. This not only prevents leakage of such vessels, but has been shown to

preserve the blood–brain barrier as well (Robert et al., 1977). There is also

evidence that several of the flavonoids can inhibit platelet

Table 2. Nootropic herbs with their active constituents' that help in
neuroprotection

thereby preventing strokes (Tzeng et al., 1991). Finally, some of the flavonoids
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have the unique ability to inhibit certain enzymes, such as the COX-2 enzyme

(Kim et al., 1998).

1.12.2 Flavonoids as free radical scavengers
The flavonoid compounds have two properties that make them especially useful

as antioxidants. First, many are powerful, primary free radical scavengers

against a wide variety of radicals, including singlet oxygen, superoxide,

peroxyl, hydroxyl, and the peroxynitrite radicals (Saija et al., 1995). Second,

several are known to be very effective metal chelators (Duthie et al., 1997).

Most flavonoids are present in plants as glycosides. In the intestines, this

moiety is cleaved off, leaving the aglycone form of the flavonoids (Griffiths,

1982). It is the aglycone form that is thought to have the highest antioxidant

activity in biological systems. There is experimental evidence that hydrogen

peroxide accumulation occurs during the process of catecholamine catabolism,

making it especially important in PD (Li et al., 1995). Recent evidence also

indicates that H2O2 plays an important role in the toxicity of Alzheimer’s

plaques. As we have seen, iron accumulation within neurons is characteristic of

ageing of the nervous system, but is especially high in the case of

neurodegeneration. A multitude of phytochemicals have specific properties that

make them especially useful in combating neurodegeneration, and a list of

nutrients that stimulate energy generation, primarily through the mitochondrial

system.
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2. Plant Profile
(Wealth of India, 2003 [Anon]; Devasagayam 2007; Wealth of India, CSIR, 1969;
Indian Medicinl Plants [Kitikar & Basu] 1975, 1987, 1999; The Flora of Orissa;
Saxsena & Brahmam, 1994; Sharma et al., 2005; Sharma 2003; Swain & Das 2007;
Nadkarni 1976; Kapoor, 1989).

Botanical Name: Pterocarpus marsupium Roxb.
Botanical Source: The plant consists of the bark, leaves, heartwood of Pterocarpus
marsupium P. marsupium

Order: Fabales

Family: Leguminosaa (Fabaceae)

Subfamily: Faboideae

Tribe: Dalbergieae

Genus: Pterocarpus

Species: marsupium

Authority: Roxb.

Vernacular names: (Sharma 2003; Swain & Das 2007)

1. Sanskrit: Pitasala, Bijaka, Murga

2. Hindi: Bijasal

3. English: Malabarkino; Indian Kino Tree

4. Bengali: Pitsal

5. Nepalese: Bijasar

6. Sinhalese: Gammalu

7. German: Malabarkino

8. Kannada: Honne

8. French: Pterocarp

9. Unani: Dammul-akhajan

10. Arabian: Dammul Akhwayn

11. Persian: Khoon-e-siyaun-shan

12. Tamil: Vengai

13. Telugu: Yegi

14. Malayalam: Venga

P. marsupium, also known as Malabar kino, (Gamble, 1935) Indian kino tree or

vijayasar, is a medium to large, deciduous tree that can grow up to 30 metres tall. It is
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native to India, Nepal, and Sri Lanka, where it occurs in parts of the Western Ghats in

the Karnataka-Kerala region and also in the forests of Central India. Parts of the

Indian kino (heartwood, leaves, and flowers) have long been believed to have

medicinal properties in Ayurveda (The Flora of Orissa, Saxsena & Brahmam, 1994).

In Karnataka the plant is known as honne or kempu honne. The Kannada people in

India make a wooden tumbler from the heartwood of this herb tree (Saldanha, Flora

of Karnataka, 1984).

Bark of Pterocarpus marsupium Leaves of Pterocarpus
marsupium

2.1 Habitat

A moderate to large deciduous tree about 90ft or more high, commonly found in hilly

region of central and peninsular India (Andhra Pradesh, Bihar, Gujarat, Kerala,

Madhya Pradesh, Maharashtra, Karnataka, Orissa, Tamilnadu, Uttar Pradesh); found

at 3000 ft in Gujarat, Madhya Pradesh and Himalayan & sub Himalayan tracts-Nepal

(Kapoor, 1989) and Sri Lanka. It grows on a variety of formation provided the

drainage is good. It prefers a soil with a fair proportion of sand though it is often

found on red loam with a certain amount of clay. The normal rainfall in its natural
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habitat ranges from 75 to 200cm but it attains its largest size in parts of Mysore and

Kerala, where the rainfall is even higher. It is a moderate light demander and the

young seedlings are frost-tender (Wealth of India, CSIR, 1969).

Parts used: Bark, Leaves, Kino (gum)

2.2 Pharmacognostical Characteristics

Morphology

It is a moderate-sized to large deciduous tree. bark grey, longitudinally fissured and

scaly. The older trees exude a blood red gum-resin.

Description
Leaves: compound; with 5 to 7 leaflets, 3 to 5 in long, oblong or elliptical with  wavy

margin or rounded or obtuse or retuse ends, glaucous beneath, secondary nerves close

and parallel, over 12 cm each side.

Flowers: yellow, , up to 1.5 cm long, corolla papilionaceous, exserted beyond calyx,

Stamen 10, split in 2 bundles , yellow, in very large, dense bunches.

Fruits: 2 to 5 cm long, roundish, winged, with one seed. Legume indehiscent,

orbicular, compressed, broadly hardened winged around margin, usually single

seeded, seeds subreniform, hilum small.

The Heartwood: is golden to yellowish brown with dark streaks staining yellow

when damp and turning darker on exposure, strong and tough.

2.3 Microscopic Characteristics

The wood consists of vessels, tracheids, fibre tracheids and wood parenchyma all the

elements being lignified and filled with tannin. Vessels are medium sized drum

shaped, scattered, leading to semiring-porous conditions, tyloses present. Tracheids

are long, abundant, thick walled, with tapering ends and simple pits on the side walls.

Xylem parenchyma is small, thick walled with blunt ends; rectangular simple pitted

surrounding the vessel. A few crystal fibers are observed in tangential section of the

wood. Tree bark yields a reddish gum known as Kino gum, which becomes brittle on

hardening and is very astringent. Sclerenchyma diffused pores Red marks are resin

canals 8 Stem hairs overlapping metaxylem and protoxylem.

2.4 Chemical Constituents

Researches in the past have established the genus Pterocarpus to be the rich sources

of polyphenolic compounds. All active principles of P. marsupium are thermostable.
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The primary chemical components of P. marsupium are pterosupin, pterostilbene,

isoliquiritigenin, liquiritigenin, epicatechin, kinotannic acid, kinoin, kino-red beta-

eudesmol,

marsupol, carpusin and marsupinol.

The plant contains pterostilbene 4 5%, alkaloids 0.4%, tannins 5%, protein, pentosan,

pterosupin, pseudobaptigenin, liquiritigenin, isoliquiritigenin, garbanzol,

5 de oxykaempferol, P hydroxybenzaldehyde, beudesmol,

erythrodirol 3 monoacetate, l epicatechin, marsupol, carpusin, propterol, propterol B,

marsupinol, irisolidone 7  O A L rhamnopyranoside, have been obtained mainly

from the heartwood and root.

The gum kino from the bark provides non glucosidal tannins - kinotannic acid,

kinonin (C28H24O12), kino red (C28H22O11),pyrocatechin, pyrocatechin acid &

small quantities of resin, pectin and gallic acid.

Aqueous extract of the heartwood of Pterocarpus marsupium contains 5 new

flavonoids C glucosides namely 6 hydroxyl 2 (4 hydroxybenzyl) benzo

furan 7C â D glucopyr anoside, 3 (á  methoxy 4 hydro xybenzylidene)

 6 hydroxybenzo 2(3H) furanone 7 C â  D glucopyranoside, 2 glucopyranoside,

8 (C â D glucopyranosyl)  7,3,4 trihydroxyflavone and 1,2 bis (2,4 dihydroxy,

3 C glucopyranosyl) – ethanedione and two known compounds C â D

glucopyranosyl 2,6 dihydroxyl benzene and sesquiterpene were isolatedEther extract

of the roots of   Pterocarpus marsupium consists of a new flavonol glycoside 6

hydroxy 3,5,7,4 te tramethoxyflavone 6 O rhamnopyranoside, 8 hydroxy4’m

ethoxyisoflavone 7 O glucopyranoside.

A benzofuranone derivative 2,4’6trihydroxy4methoxy benzofuran3(2H)-one

designated carpus in, 1,3 bis(4 hydroxyphenyl) propan 2 ol designated propterol,

1 (2,4 di hydroxyphenyl ) 3 (4 hydroxyphenyl ) propan 2 ol designated propterol,

6 hydroxy 7 O  methyl 3 (3 hydroxy 4 O methyl benzyl) chroman 4 one.Ethyl

acetate extract of root contains benzofuranone, marsupin, dihydrochalcone,

pterosupin, stilbene, pterostilbene, aliquiritigenin, isoliquiritigenin.

Methanolic extract of heart wood c ontains an isoflavone  7 O á L rhamno-

pyranosyloxy4’methoxy5hydroxyisoflavone. Three new isoflavone glycosides

viz retusin 7 glucoside, irisolidone 7 rhamnoside and 5,7 dihydroxy 6 methoxy
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isoflavone 7 rhamnoside have been isolated from the heartwood of Pterocarpus

marsupium. 2,6-

dihydroxy 2 (P hydroxybenzyl) 3(2H) benzofuran 7 C â D glucopyranoside

(Maurya et al., 2004; Gairola et a., 2010; Yogesh et al., 2010; Tiwari & Khare 2015).

2.5 Ethnomedicinal Uses (Tiwari et al., 2015)

Useful parts of the herb are heartwood, leaves, flowers, gum. The genus is widely

distributed on the Earth and the astringent drug from this genus is known as “Kino”.

The phloem of stem contains red astringent fluid present in secretory cell, which

exudes after given incision. Kino is odourless but has astringent taste and sticks in the

teeth, colouring the saliva red in colour. As astringent it is used in diarrhoea,

dysentery etc.

Bruised leaves are applied on fractures, leprosy, leucoderma, skin diseases, sores and

boils, Constipation, depurative, rectalgia, opthamology, hemorrhages and Rheumatoid

arthritis. Marsupin and Pterostilbene significantly lower the blood glucose levels

useful in NIDDM. Bark is used as diuretic in Gabon and fresh leaves are used as food

in Nizeria. Also is used in the form of powder or decoction in diarrhoea, and

decoction is very useful for diabetic patients.

Stem in the treatment of neurological problems.

Leaves are used in GIT disorders, wood, stem bark, seed and flours are used in

African traditional medicine, especially in the Cameroonian pharmacopoeia, for

treating various diseases including hypertension, diabetes, intestinal parasitizes, renal

and cutaneous diseases. The leaf paste is used as an ointment to treat skin diseases,

sores and boils.

Wood: The heartwood is used as an ointment to astringent, bitter, acrid, cooling, anti-

inflammatory, union promoter, depurative, urinary astringent, haemostatic,

asthelmintic, constipating, anodyne alterant and rejuvenation. It is also useful in

elephantiasis, inflammations, fractures bruises, leprosy, skin disease, leucoderma,

erysipelas urethrorrhoea, diabetes, rectalgia, rectitis, opthalmopathy, diarrhea,

dysentery, cough, asthma, bronchitis and greyness of hair.

Flower: The flower is used as appetizing and febrifuge and also taken to treat

anorexia and fever.
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Gum-resin: The gum is taken to treat bitter, styptic, vulnerary, antipyretic,

anthelmintic and liver tonic. It is useful in spasmodic gastralgia, boils, gleet,

urethrorrhoea, odontalgia, diarrhea, psoriasis, wound and ulcers, helminthasis, fevers,

hepatopathy and ophthalmia.

Some facts: P. marsupium is a plant drug belonging to a group called ‘Rasayana’ in

Ayurvedic system of medicine. These ‘Rasayana’ drugs are immunomodulators and

relieve stress in the body. In India, Kannada peoples are used to make a wooden

tumbler from the heartwood. Water is left overnight in the wooden tumbler and is

consumed in the next morning to cure diabetes. Kol tribes in Odisha pound a paste

mixture of the bark of P. marsupium with the bark of Mangifera indica, Shorea

robusta & Spondias pinnata to treat some dysentery illness. The gum resin of this

plant is the only herbal product ever found that regenerate beta cells that produce

insulin in pancreas.

2.6 Biological activity
Although a large number of compounds have been isolated from various parts of P.

marsupium, few of them have been studied for biological activity as shown in Table

1. The structure of some of these bioactive compounds has been presented in Figure

1. The bark contains l-epicatechin and a reddish brown colouring matter. The bark is

occasionally employed for dyeing. The heartwood yields liquiritigenin,

isoliquirtigenin, a neutral unidentified component, alkaloid and resin. The wood also

contains a yellow colouring matter and an essential oil and a semi-drying fixed oil.

The tree yields a gum-Kino which exudes when an incision is made through the bark

up to the cambium. It is odourless and bitter with astringent taste and colours saliva

pink when masticated. Kino contains a non-glucosidal tannin kinotannic acid, kinoin

and Kino-red, small quantities of catechol, protocatechuic acid, resin, pectin and

gallic acid. The therapeutic value of Kino is due to Kino is due to kinotannic acid.

Kino is powerfully astringent and was formerly used widely in the treatment of

diarrhea and dysentery. It is locally applied in leucorrhoea and in passive

haemorrhages. It is also used for toothache. The bark is used as an astringent and in

toothache. The flowers are said to be used in fever. The bruised leaves are considered

useful as an external application for boils, sores and skin diseases. The aqueous
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infusion of the wood is said to be of use in diabetes and water stored in vessels made

of the wood is reputed to have antidiabetic qualities (Anon, Wealth of India, 2003).

2.7 Medicinal use of various parts of P.marsupium

Various parts of the P. marsupium tree have been used as traditional ayurvedic

medicine in India from time immemorial. The medicinal utilities have been described,

especially for leaf, fruit and bark. The bark is used for the treatment of stomachache,

cholera, dysentery, urinary

complaints, tongue diseases and toothache. The gum exude ‘kino’, derived from this

tree, is used as an astringent (Singh et al., 1965). The gum is bitter with a bad taste.

However, it is antipyretic, anthelmintic and tonic to liver, useful in all diseases of

body and styptic vulnerant and good for griping and biliousness, opthalmiya, boils

and urinary discharges. The flowers are bitter, improve the appetite and cause

flatulence (Indian Medicinal Plants 1999). P. marsupium has a long history of use in

India as a treatment for diabetes. It is a drug that is believed to have some unique

features such as beta cell protective and regenerative properties apart from blood

glucose reduction (WHO 1980; Chakravarthy et al., 1981). Some of the medicinal

attributes of various parts of P. marsupium have been summarized (Yogesh et al.,

2010) in table 2.
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3. LITERATURE REVIEW

3.1 Anti-diabetic and antioxidant activity

P. marsupium demonstrates unique pharmacological properties, which include beta

cell protective and regenerative properties as well as blood glucose lowering activity.

The animal studies conducted have used various species including rats, dogs, and

rabbits with induced diabetes and subsequent treatment with various extracts of P.

marsupium. In all of these studies, P. marsupium was found to reverse the damage to

the beta cells and actually repopulate the islets, causing a nearly complete restoration

of normal insulin secretion (Chakravarthy et al., 1981, 1982a,b; Manickam et al.,

1997; Ahmad et al., 1991a,b; Pandey & Sharma 1976; Shah 1967).

In one study it was shown that aqueous extract of P. marsupium modulates the

inflammatory cytokine TNF-alpha in type 2diabetic rats and this has an indirect effect

on PPAR-Gamma expression. By decreasing TNF-α, drug can upregulate the PPAR-

Gamma and in turn the glucose metabolism (Halagappa et al., 2010).

The bark of P. marsupium is traditionally used in the Indian Ayurvedic system of

medicine as an anti-diabetic drug. The compound that is responsible for antidiabetic

activity is (-) epicatechin, a member of the catechin group of compounds belonging to

the class of flavonoids (Zaid et al., 2002).

It has been shown that P. marsupium works by the regeneration of the beta cells and

increase proinsulin biosynthesis. Marsupin and Pterostilbene significantly lowered the

blood glucose level of hyperglycemic rats, and the effect was comparable to that of

1,1-dimethyl biguanide (metformin) (Manickam et al., 1997).

Overnight water stored in water tumblers made out of the heartwood of P. marsupium

is used as a traditional therapy for patients of Diabetes mellitus especially in the state

of Madhya Pradesh (Maheswari et al., 1980).

Isolated compounds from P. marsupium have been shown to enhance the conversion

of Pro-insulin to insulin and stimulate cAMP content in the islets of Langerhans

(Ahmad et al., 1991a,b).
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It is proposed that the flavonoid fraction of P. marsupium bark effectively reverses

the alloxan induced changes in the blood sugar level and the beta cell population in

the pancreas (Chakravarthy et al., 1980).

P. marsupium methanol extract has been found to cause normalization of serum

protein and albumin levels, possibly through the increase in insulin mediated amino

acid uptake, enhancement of protein synthesis and inhibition of protein degradation

(Dice et al., 1978).

Administration of the bark extract to diabetic rats restored the levels of serum

electrolytes, glycolytic enzymes and hepatic cytochrome p-450 dependent enzyme

systems by inhibiting the formation of liver and kidney lipid peroxides (Gayathri &

Kannabiran et al., 2010).

3.2 Cardiotonic activity

Cardiotonic activity was reported of the aqueous extract of heartwood of P.

marsupium. This plant species contains 5,7,2,4-tetrahydroxy isoflavone 6-6 glucoside

which are potent antioxidants and are believed to prevent cardiovascular diseases.

The cardiotonic effect of the aqueous extract of heartwood of P. marsupium was

studied by using the isolated frog heart perfusion technique. Calcium free Ringer

solution was used as vehicle for administration of aqueous extract of P.marsupium as

a test extract and digoxin as a standard (Mohire  et al., 2007). Liquiritigenin and

Pterosupin, the flavonoid constituents of P. marsupium are effective against reducing

serum cholesterol levels, LDL cholesterol, and atherogenic index. Pterosupin being

additionally effective in lowering serum triglycerides (Jahromi & Ray, 1993).

3.3 Hepatoprotective activity

Methanol extract of the stem barks of P. marsupium possesses significant

hepatoprotective activity (Mankani et al., 2005).

3.4 Antioxidant activity

The whole aqueous extract of the stem bark of P. marsupium showed high anti-

oxidant activity and protects the mitochondria against oxidative damage

(Mohammadi et al., 2009).
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Heartwood extracts of P. marsupium promotes wound healing in both normal and

diabetic animals by topical application of the extracts (Singhal et al., 2013).

Ethanol extracts of the heartwood of P. marsupium is found to be useful in preventing

allergic conditions and diseases such as asthma owing to its ability to decrease the

increased eosinophilic , leucocytic count, prevention of mast cell degranulation

(Suralkar et al., 2012).

Antidiarrhoeal activity of Ethanol heartwood extract of Pterocarpus marsupium was
also studied (Dilpesh et al., 2011).

3.5 Antibacterial activity

Hexane, ethyl acetate and methanol extracts were tested against four selected Gram

positive and Gram negative bacteria- S. aureu, K. pneuminiae, and P. aeruginosa

(Sapha 1956; Gayathri & Kannibaran, 2010). In vitro, it inhibits Pseudomonas

aeruginosa, Streptococcus pyrogens and Staphylococcus aureus. Ethyl and methanol

extracts were more sensitive to the bacteria than extracts made out of hexane. Both

the extracts exhibited concentration dependent variation in their anti-bacterial

activity. Similar observations have been reported where it has been showed that

ethanol extracts of P. marsupium exhibited significant anti-ulcer and antioxidant

properties in rats (Nair et al., 2005; Patil & Gaikwad, 2011).

3.6 Anti-inflammatory activity

P. marsupium has also shown strong potential for its antiinflammatory activity. In this

study, an extract of P. marsupium containing pterostilbene has been evaluated for its

PGE2- inhibitory activity in LPS-stimulated PBMC. In addition, the COX-1/2

selective inhibitory activity of P. marsupium extract was investigated (Hougee et al.,

2005; Salunkhe et al., 2005).

3.7 Central Nervous System

The methanol extracts of P. marsupium has potent nootropic activity (Chauhan &

Chaudhary, 2012).

3.8 Other Studies

Anti-cataract activity of P. marsupium in diabetes was observed (Vats et al., 2004).
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Lukewarm aqueous suspension of 2g gum with jaggery is given early in the morning

for a week to treat asthma (Patil et al., 2008).

Bark is useful in vitiated condition of kapha, pitta, elephantiasis, erysipelas,

urethrorrhea, rectalgia, opthalmopathy, hemorrhages, dysentry, cough, and grayness

of hair (Patil & Gaikwad., 2011).

20g of the stem bark boiled with 1 litre of water till 200ml along with 7 black pepper

dried seeds of Piper nigrum) taken orally cures spermaturia, spermatorrhea,

leucorrhoea, amenorrhoea, dysmennorhoea, menorrhagia and impotency (Behera &

Mishra, 2005).

Table 3. Primary chemical components from Pterocarpus marsupium

Neem compound Source Biological Reference
Liquiritigenin bark Antidiabetic,

Antihyperlipidemic effect
Jahromi & Ray 1993

Isoliquiritigenin bark Antidiabetic Jahromi & Ray 1993
Pterosupin Antihyperlipidemic effect Jahromi & Ray 1993
Epicatechin bark Antidiabetic, Anthelmentic

properties
Pterostilbene bark blood glucose levels, Anti-

oxidant and anti tumor
effects

Grover et al., 2005

Marsupinol bark Antihyperlipidemic effect Jahromi & Ray 1993

Table 4. Some medicinal uses of Pterocarpus marsupium as mentioned in
Ayurveda

Parts Medicinal use
Leaf External application for boils, sores and

skin diseases, stomach pain
Bark Astringent, toothache
Flower Fever
Gum-Kino Diarrhea, dysentery, leucorrhoea, passive

haemorrhages

3.9 Clinical studies and plausible medicinal applications

Although studies have been carried out on various biological activities of P.

marsupium extracts and some of the isolated compounds in several animal models, a

few reports are available on clinical studies with the extracts or the compounds and

their medicinal applications (Anon, Wealth of India, 2003). Pterocarpus marsupium

(Leguminnaceae family), commonly known as Bija, that has been recommended as
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early as 1000 BC, by Sushruta for the treatment of diabetes. Various reports indicate

the hypoglycemic activity of PMS both in experimental and clinical studies (Pandey

& Sharma 1976; Remsberg et al., 2008; Manlio et al., 2005).
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4. Scope of the work

As human life expectancy has increased, so too has the incidence of stress related

neurodegenerative disorders such as AD, PD and HD. Plant extracts have a wide

range of medicinal actions, and throughout history, they have been used to treat many

different types of diseases. In the treatment of many diseases, antioxidant therapy

plays a key role, so current research is now directed towards finding naturally

occurring antioxidant of plant origin.

Although medicinal herbs has been found to share many medicinal properties with

‘rasayans’ in Ayurveda, its neuroprotective effect in different experimental

neurodegenerative models are still debatable. Actually, little is known about the

feeding pattern and feeding rhythms that underly the hypophagia of the stress treated

rats. The general behavior, anxiolytic, antidepressant and antioxidant enzyme

examination of the rat whole brain, pattern of food and water intake are used for the

first time, to assess the protective effect of ethanol extract of Pterocarpus marsupium

bark (EEPM) against MSG-induced neurodegenerative injury.  We anticipate that the

behavioral tests used in the present study could contribute to the evaluation of

potential drugs effective in the prevention of functional deficits induced by

neurotoxic agent and may shed an insight into the mechanism of action. Hence, a

special attention is focused to understand the treatment of neurodegenerative diseases

by natural phenolic antioxidants from this plant.

There are, indeed, a multitude of paradigms assessing various aspects of the

behavioral performance and cognitive abilities. Till now, some of the paradigms will

be not used at all in the evaluation of Pterocarpus marsupium bark against behavioral

consequences of adult rats in stress.

Hence, in order to contribute further to the knowledge on Pterocarpus marsupium

bark, the objective of the present study has been designed to evaluate the possible

neuroprotective effect of EEPM against MSG-induced excitotoxicity in adult rats.

4.1 SPECIFIC OBJECTIVE:
 To observe behavioral parameters in anxiety & depression following MSG

induced excitotoxic neurodegeneration.

 To evaluate the neuroprotective role of EEPM bark against MSG-induced

excitotoxicity model in SD rats, following pre-treatment with EEPM for 30 days,
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and analyzing the possible effects on attenuating and normalizing the

perturbations following intraperitoneal administration, to induce neurotoxic

effects, using MSG for 07 days and thereafter , by studying:

 The behavior of animals in anxiety and depression models.

 The perturbations in the levels of antioxidant defense systems-SOD, CAT, GSH,

and LPO in the whole brain of the rat.
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5. Plan of work

Phase I:
5.1 Phytochemical studies

 Collection and authentication of plants.

 Extraction of plant material by using various solvent systems.

 Preliminary phytochemical study for the identification of plant secondary

constituents.

Phase II:
5.2 Pharmacological Studies:
5.2.a. Pretreatment with ethanol extract of Pterocarpus marsupium

(EEPM) Roxb. bark:
EEPM was administered orally for 30 days, to the animals in all the

groups, except the control, MSG-only treated and diazepam-only treated

groups, at two different dose levels (100 and 200mg/kg), prior to the

administration of MSG on day 31.

5.2.b. Induction of neurotoxicity:
Following 30 days of pretreatment with EEPM, neurodegeneration was

induced by intraperitoneal injection of 2g/kg of MSG for seven days, in

all the groups except the control group.

5.3. Evaluation of general behavioral alterations in excitotoxicity-
induced rats:

5.3.a. General parameters

i. Body weight
ii. Food intake and

iii. Water intake

5.3.b. Tests for anxiety

i. Actophotometer

5.3.b. Test for depression

i. Test for depression

Phase III:
5.4. Biochemical Analysis
5.4..a. Specimen Preparation
5.4.b. In-vivo Studies
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Enzymatic and non-enzymatic antioxidants play a crucial role in

neurodegeneration. Hence, the effects of EEPM and the following antioxidant

defense elements in brain were also be measured: Biochemical Analysis of rat

brain

 In vivo antioxidant studies

i. Superoxide dismutase (SOD)

ii. Catalase (CAT)

iii. Glutathione (GSH) and

iv. Lipid Peroxidation (LPO)

Phase IV:
5.5. Statistical analysis

The data’s were presented as mean ± SEM and were subjected to statistical

analysis by Dunnett’s test followed by one way ANOVA. P-value less than 0.05

were considered statistically significant.
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6. Materials & methods

6.1. Chemicals used
Ferric chloride, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), quercetin,

thiobarbituric acid (TBA), trichloroacetic acid (TCA), sodium nitroprusside,

Griess reagent, Eggphospatidyl choline, n-butanol, copper(II)chloride,

neocuprine, Ammonium acetate buffer, O-phenanthroline, Sodium nitrite,

Aluminium chloride, Corticosterone, potassium ferricyanide and

dextromethorphan were purchased from Sigma Aldrich Co., St Louis, USA.

Reduced glutathione (GSH), 5, 5-dithiobis-2-nitrobenzoic acid (DTNB) were

obtained from Sisco Research Laboratories Pvt Ltd., Mumbai, India. Gallic

acid, Ascorbic acid, Tris–hydrochloride buffer, and methanol, ethanol, sodium

bicarbonate, sodium carbonate, copper sulphate, sodium potassium tartarate,

hydrochloric acid, sodium dihydrogen phosphate, disodium hydrogen

phosphate, were obtained from S.D. Fine Chem Ltd., Biosar, India.

Epinephrine, saline was purchased from Kovai Medical Center and Hospital.

Folin’s ciocalteau reagent, potassium hydroxide, Merck Ltd., Mumbai, India.

Monosodium glutamate was purchased from Chemico laboratories. Acetonitrile

(HPLC grade) was purchased from Qualigens Fine Chemicals, Mumbai, India.

The water used in HPLC for sample preparation was purchased from Ranbaxy

Laboratories Ltd., Mumbai, India. All other chemicals and reagents used were

of analytical grade.

The present study was designed to assess the neuroprotective effect of

standardized bark extract of P. marsupium in excitotoxicity-induced

neurodegenerative models and the work was carried out using the methods

described below:

6.3. Phase-I: Collection and authentication of bark extract of P.
marsupium

6.4. Phase II: Pharmacological studies
6.4.1. Animal study
Adult female Sprague Dawley rats were used in the present study.

6.4.2. Housing and feeding condition
All the rats were kept at room temperature (22 ± 30°c). They were housed and

treated as per the internationally accepted ethical guidelines for the care of
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laboratory animals. Prior to the experiments, rats were fed with standard food,

water ad libitum and were acclimatized to the standard laboratory conditions of

temperature (22 ± 30°c) and maintained a 12:12 h light: dark cycle. All the

experimental procedures were performed on the animals after approval from the

ethics committee and in accordance with the recommendations for the proper

care and use of laboratory animals.

6.4.3. Experimental Protocol
The animals were divided into 05 groups and the animals in all the groups,

except group-I (Vehicle control), II (MSG-only) and III (MSG+memantine), all

the other groups were pretreated with EEPM for 30 days. Then from day 31 to

37, the animals in group III, IV and V groups were administered with MSG

(2g/kg, i.p.) for seven days to induce excitotoxicity, as mentioned below:

1. Pretreatment with EEPM (100 and 200mg/kg): 30 days

2. MSG treatment (2g/kg, ip.): 07 days

3. Observations on changes in general behavior: 07 days

 Measurement of food intake

 Measurements of water intake

 Measurement of body weight

4. Tests for anxiety and depression on day 37

5. Analysis of brain anti-oxidant systems following behavioral tests on

day 37

Grouping of animals:
Group- I, served as control group and received 0.9% normal saline.

Group- II, was administered only MSG

Group-III, served as positive control (memantine 20 mg/kg) + MSG

Group- IV, pretreated with EEPM (100 mg/kg) + MSG and

Group- V, pretreated with EEPM (200 mg/kg) + MSG.

6.4.4. Evaluation of general behavioral alterations in MSG-treated
rats
The animals were subjected to the following behavioral procedures immediately

following intraperitoneal administration of MSG to animals in all the groups,

excepting the control group, which was not exposed to MSG. The following
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studies were carried out from day 31 to day 37. During the entire period of

study the animals were observed for any changes in behavior and suitably

noted. On day 37, the rats were sacrificed and the brain was removed for

estimation of antioxidant enzymes. All the measurements were made every day

between 8.30am and 9.15am, starting from the day of MSG and drug treatment,

and continued for 7 days thereafter.

a. Measurement of body weight
The body weight of the animals was monitored daily by weighing on an

electrical balance with accuracy to ± 0.1 g. All measurements were made every

day between 8.30 and 9.15 h, immediately before administration of stress.

Changes in body weight were calculated by subtracting the weight of the animal

obtained on last day of stress from that of the animal weight immediately before

the first stressor.

b. Measurement of food intake
The measurement of food intake was studied by presenting pre-weighed food to

the animals in all the groups’ immediately following stress and drug treatment.

The amount of food (Brook Bond, Lipton, India) consumed by the animals

(food intake in g/g weight of rat) was evaluated by weighing the remaining

amount of food, 24 h after food presentation with accuracy to ± 0.1 g. Spillage

of food pellets was rare, but any obvious spillage was noted and those data

excluded from the analysis. The food pellets were placed at a height accessible

to the experimental animals (5 cm from the floor of the cage), so they did not

need to rear up to reach water and food. Water and food intake evaluation

started immediately after stress administration.

c. Measurements of water intake
The animals in all groups had free access to water during the entire duration of

the study. The intake of water was studied by measuring the volume of water

(water intake in ml / gram body weight of rat) consumed over a 24 h period,

following induction of stress, in all the groups. Clean water was provided in

graduated burettes with drinking spouts allowing direct volumetric

measurements of intake to the nearest 0.1 ml. The drinking spouts were placed

at a height accessible to the experimental animals (5 cm from the floor of the

cage), so that they did not need to rear up to reach water.
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6.4.6. Evaluation of behavioral studies
6.4.6.a. Test for anxiety studies
i. Actophotometer
The actimeter test was performed independently as a test to record the effects of

the drugs on the spontaneous locomotor activity of rats using a photo-electric

actimeter, 1 h after administration of all drugs. The apparatus consist of

stainless steel box containing transparent cages (270+220+110) in which the

animal’s horizontal activity in measured by two light beams connected to a

photoelectric cell. The total numbers of beam crossings are then recorded over a

period of 5 min (Ramanathan et al., 2007).

6.4.6.b. Test for depression
i. Forced swim test
A modified forced swim test procedure consisting of an increase in water depth

was used to enhance sensitivity for detecting putative antidepressant activity of

drugs (Porsolt et al., 1991). Rats were placed into plastic buckets (19 cm

diameter, 23 cm deep, filled with 23–25°C water) and videotaped for the entire

session. As described previously by Porsolt, only the last 4 min. were scored

for mobility duration.

6.5. Phase III: Biochemical studies
At the end of the behavioral studies, the animal models were anesthetized with

mild chloroform and sacrificed by cervical dislocation; the whole brain were

quickly removed, rinsed in ice-cold isotonic saline and packed in an aluminium

foil for further use.

6.5.1. Test drug and chemicals
All chemicals used for the experiments were of analytical grade obtained from

SD Fine Chemicals Mumbai, India.

6.5.2. Preparation of homogenate
The brain tissue were  weighed  and  10%  tissue  homogenate  was  prepared

with  0.025M Tris-Hcl buffer,  pH 7.5. After centrifugation at 10,000 x g for 10

min. the resulting supernatant was used for enzyme assays for the estimation of

non-enzymatic and enzymatic antioxidants.

6.5.2.a. Estimation of Superoxide Dismutase (SOD)
The SOD activity in supernatant was measured by the method of Misra and

Fridovich (1967). The supernatant (500 µl) was added to 0.800ml of carbonate

buffer (100 mM, pH 10.2) and 100 µl of epinephrine (3 mM). The change in
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absorbance of each sample was then recorded at 480 nm in spectrophotometer

for 2 min. at an interval of 15 sec. Parallel blank and standard were run for

determination SOD activity. One unit of SOD is defined as the amount of

enzyme required to produce 50% inhibition of epinephrine auto oxidation.

The reaction mixtures are diluted 1/10 just before taking the readings in a

spectophotometer.

Calculation
% Inhibition= [X A480nm/min. Uninhibited – X A480nm /min. inhibited X 100] /

[X A480nm /min. Uninhibited – X A480nm /min. Blank]

Units/ml enzyme = [% Inhibition X Vt] / [(50%) X Vs]

Units/mg protein = [Units/ml enzyme] / [mg protein/ml enzyme]

6.5.2.b. Estimation of Catalase (CAT)
Catalase activity was measured by the method of Aebi. 0.1 ml of supernatant

was added to cuvette containing 1.9 ml of 50 mM phosphate buffer (pH 7.0).

Reaction was started by the addition of 1.0 ml of freshly prepared 30 mM H2O2.

The rate of decomposition of H2O2 was measured spectrophotometrically from

changes in absorbance at 240 nm. Activity of catalase was expressed as

units/mg protein. A unit is defined as the velocity constant per second.

Reagents Sample Blank

Phosphate buffer
solution

1.9 ml 2..9 ml

Supernatant 0.1 ml 0.1 ml

H2O2 1 ml ……

Reagents (Standard) (Sample) Blank

Carbonate
buffer

0.900 ml 0.800 ml 1.0 ml

Supernatant …… 0.1 ml ……

Epinephrine 0.1 ml 0.1 ml ……
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The reaction occurs immediately after the addition of H2O2. Solutions are

mixed well and the first absorbance (A1) is read after 15 seconds (t1) and the

second absorbance (A2) after 30 seconds (t2).The absorbance is read at wave

length 240 nm.

Calculation
K= [(Vt/ Vs) x (2.3 x Δt) x (Log A1/ A2) x 60]

where,

K = Rate constant of the reaction; Δt = (t2 – t1) =15 seconds; A1= absorbance

after 15 seconds; A2= absorbance after 30 seconds; Vt = total volume (3 ml); Vs

= volume of the sample (0.1ml);

6.5.2.c. Estimation of reduced glutathione (GSH)
Reduced glutathione (GSH) was measured by the method of Ellman et al.,

(1959). The PMS of  rat  brain  (720  µl)  and  5%  TCA  were  mixed  to

precipitate  the  protein content of  the supernatant. After centrifugation at

10,000 x g for 5 min. the supernatant was taken.  DTNB (5,5’-dithio-bis(2)-

nitrobenzoic  acid )  Ellman’s  reagent  was  added  to  it  and  the absorbance

was  measured  at  412  nm.  A standard graph was drawn using different

concentration of standard GSH solution. GSH contents were calculated in the

rat brain.

6.5.2.d. Estimation of Lipid peroxidation (LPO)
Ohkawa et al., (1979) method was used to estimate the total amount of lipid

peroxidation (LPO) product. LPO was estimated in terms of TBARS and

malondialdehyde (MDA) was taken to represent the TBARS. The incubation

mixture consisting of 0.5ml of supernatant brain homogenate, 0.2 ml of 8%

sodium dodecyl sulphate, 1.5 ml of 20% acetic acid solution (adjusted to pH 3.5

with 1NaOH / 0.1N HCl) and 1.5 ml of 0.9% aqueous solution of thiobarbituric

acid (adjusted to pH 7.4 with 1N NaOH / 0.1N HCl) was made up to 5.0 ml

with double distilled water and then heated in boiling water bath for 30 minutes.

After cooling, the red chromogen was extracted into 5 ml of the mixture of n-

butanol and pyridine (15.1v/v) centrifuged at 4000 rpm for 10 minutes. The

absorbance of organic layer was measured at 532 nm. 1, 2, 3, 3-

tetraethoxypropane (TEP) was used as an external standard and the levels of

lipid peroxide was expressed as µmoles of MDA / g protein. The calibration
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curve of TEP was prepared by the above procedure taking 80-240 nmoles of

TEP as standard over which, linearity was obtained.
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7. Results

7.1.1. Effect of EEPM and memantine on general behavior parameters in
MSG treated rats

7.1.1a. General behavior
Following the administration of MSG, (for the induction of exitoxicity), the

animals were observed for general behavior up to 45 min, on all the 07 days.

MSG may result in psychological and physiological changes in behavior,

attributable to excitotoxicity. The observations made on general behavior for a

period of 45 minutes following administration of MSG, memantine and

pretreatment with EEPM, is described below:

Rats treated with MSG exhibited a prolonged aggressive behavior in

comparison to the control rats.  Pretreatment with EEPM for 30 days, resulted

in profound calmness. Memantine-treated animals exhibited little or no

obviously observable behavior effects.

The MSG-treated group exhibited a score of 4.1 ± 0.21, and the relative scores

of other groups of animals are EEPM 100 and 200 mg/kg were observed to be

3.35 ± 0.36 and 2.65± 0.66, respectively.  Memantine (2.41 ± 0.25) rats

exhibited similar scores, in comparison to the control animals (2.32 ± 0.28).

7.2.2b. Feed intake
The cumulative measurement of food intake is shown in table 3 and figure X. In

comparison to control group (0.165 g/g b.w), MSG-treated rats consumed

significantly less food (0.122 g/g b.w).  The suppression of food intake was

found to be highest with the MSG-treated group, in comparison to all other

groups. This diminishment in food intake was associated with an increase in

time spent in eating and in meal duration. The food intake of animals pre-

treated with EEPM was measured to be 0.126 g/g b.w, (100 mg/kg) and 0.152

g/g b.w. (200mg/kg). Memantine- treated group was found to be 0.179 g/g b.w

of food.

The suppression of food intake in rats pre-treated EEPM at different dose level

was found to be significantly antagonized in comparison to MSG-treated rats.
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The suppression of food intake was found to be minimal with memantine-

treated rats.

Table 6.Effect of MSG, Memantine and EEPM on feed intake in MSG-treated
rats

Groups Feed intake (in g/g b.w)

Control 0.165±0.05

MSG only 0.122±0.01

MSG+Memantine 0.179±0.05

MSG+EEPM 100mg/Kg 0.126±0.02

MSG+EEPM 200mg/Kg 0.152±0.04

\

(Values are mean ± SE from 6 observations in each group)
ap<0.05, bp<0.01, cp<0.001– compared with control group

pp<0.05, qp<0.01, rp<0.001 – compared with MSG group
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7.2.1c. Water intake
The results on cumulative intake of water in all the groups of animals studied

are shown in table 4 and figure. In comparison to control group (0.124±0.07

ml/g b.w); MSG-treated rats consumed significantly more water (0.164±0.03

ml/g b.w). The intake of water in EEPM pre-treated rats (100 and 200 mg/kg)

was found to be significantly less (0.116±0.01 and 0.103±0.06 ml/g b.w;

p<0.01, respectively), in comparison to control and MSG-treated group.

Similarly memantine-treated rats had consumed 0.123±0.08 ml/g b.w of water

(p<0.01) in comparison to MSG-treated group. The results indicate that

administration of MSG had increased consumption of water and this effect was

antagonized by pre-treatment with EEPM and memantine.

Table 7. Effect of MSG, Memantine and EEPM on water intake in MSG-treated
rats

Groups Waterintake (in mL/g b.w)

Control 0.124±0.07

MSG only 0.164±0.03

MSG+Memantine 0.123±0.08

MSG+EEPM 100mg/Kg 0.116±0.01

MSG+EEPM 200mg/Kg 0.103±0.06
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(Values are mean ± SE from 6 observations in each group)
ap<0.05, bp<0.01, cp<0.001– compared with control group

pp<0.05, qp<0.01, rp<0.001 – compared with MSG group

7.2.2c. Body weight
The results of body mass measured from day31 to day 37 are shown in table 5

and figure. In comparison to the control group animals, the MSG-treated

animals were found to be decreasing in body weight from day 3 onwards and

had significantly lower body weights on day 4 (-1.24%) (p<0.05) and, day 5 (-

1.39%) (p<0.05), day 6 (-1.48 %) (p<0.05) and, day 7 (-1.57%) (p<0.05), in

comparison to control group which gained +1.64 % g, +3.54 % g weight on day

4, and day 5, +2.61 % g on day 6 and, +3.49 % g weight on day 7 respectively.

Pre-treatment with EEPM for 7 days, prevented the suppression of rat body

growth induced by MSG insult. A reversal in the loss of body weight in animals

was observed following treatment with different doses: EEPM 100 mg/kg

gained +1.72 % and + 2.39 % on day 6 and day 7, respectively; EEPM 200

mg/kg gained +0.92 % and + 2.31 % on day 6 and day 7, respectively, in

comparison to animals of the respective group on day 1. EEPM pre-treatment

was found to improve the body weight of the animals. Memantine-treated

animals were found to be undisturbed in the rate of growth of body weight

mass, in comparison to control and MSG-treated animals.
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Table 8. Effect of MSG, Memantine and EEPM on body weight in MSG-treated
rats

Groups Body weight on day 7 (in %)

Control +3.61±0.12

MSG only -1.75±0.09

MSG+Memantine +1.05±0.06

MSG+EEPM 100mg/Kg + 2.54±0.11

MSG+EEPM 200mg/Kg + 1.75±0.05

(Values are mean ± SE from 6 observations in each group)
ap<0.05, bp<0.01, cp<0.001– compared with control group

pp<0.05, qp<0.01, rp<0.001 – compared with MSG gr

oup
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7.2.1b. Effect of EEPM and MSG on Locomotor Activity in MSG-Treated
Rats Using Actophotometer
Locomotor activity of MSG-treated animals was determined with an

actophotometer and the results are shown in figure and table 6. When tested in

an actophotometer, a significant increase in movement levels were seen in

MSG-treated rats (302.63±10.26), when compared with control animals

(215.71±22.5). A significant reduction in movement activity was seen in MSG-

treated animals pretreated different doses of EEPM (100 mg/kg: 228.12±12.6;

200 mg/kg: 191.17±08.14). The locomotor activity of rats treated with

memantine (208.4±11.25) was found to be significantly better.

Table 9.Effect of MSG, Memantine and EEPM on locomotor activity

Groups Locomotor activity (in sec)

Control 215.71±22.5

MSG only 302.63±10.26

MSG+Memantine 208.4±11.25

MSG+EEPM 100mg/Kg 228.12±12.6

MSG+EEPM 200mg/Kg 191.17±08.14

(Values are mean ± SE from 6 observations in each group)
ap<0.05, bp<0.01, cp<0.001– compared with control group

pp<0.05, qp<0.01, rp<0.001 – compared with MSG group
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7.2.1c. Effect of EEPM and memantine on FST in MSG treated rats
The effect of MSG, EEPM and memantine on the duration of immobility of rats

in the FST is shown in figure and table 9. Pretreatment with EEPM 200mg/kg

(31.25±8.32; P<0.01) was found to attenuate the duration of immobility

significantly compared to other EEPM-treated groups [EEPM 100mg/kg:

35.31±6.43 (P<0.01) and, in comparison to control [42.38±12.6] group.

Analysis of the results of the experiment, which examined the effect of MSG

[65.14±11.5 (P<0.0001)], following pretreatment for day 30with EEPM on FST

revealed that changes in the freezing time displayed by the rats were less

apparent when compared with stressed group. The duration of immobility was

found to be 29.67±8.14 (P<0.0001) for rats treated with memantine displaying

antidepressant activity.

Table 10.Effect of MSG, Memantine and EEPM on forced swim test in MSG-
treated rats

Groups Duration of Immobility (in sec)

Control 42.38±12.6

MSG only 65.14±11.5

MSG+Memantine 29.67±8.14

MSG+EEPM 100mg/Kg 35.31±6.43

MSG+EEPM 200mg/Kg 31.25±8.32



56

(Values are mean ± SE from 6 observations in each group)
ap<0.05, bp<0.01, cp<0.001– compared with control group

pp<0.05, qp<0.01, rp<0.001 – compared with MSG group

7.3 Phase III: Biochemical analysis of brain antioxidants
7.3.1 Effect of EEPM and memantine on rat brain antioxidant system in

MSG-treated rats

Table 11.Effect of MSG, Memantine and EEPM on the rat brain anti-oxidant
system in MSG-treated rats

Groups SOD
(U/mg

protein)

CAT
(U/mg

protein)

GSH
(mg/g

protein)

LPO
(µmoles of

MDA/g
protein)

Control 39.19±8.51 102.14±12.4 35.25±5.12 1.32±0.05

MSG Only 22.92±6.58 45.21±5.91 22.12±6.54 1.88±0.02

MSG+Memantine 35.12±6.12 93.85±12.05 34.24±4.54 1.41±0.09

MSG+EEPM
100mg/Kg

25.17±7.62 71.55±9.45 27.19±3.60 1.58±0.05

MSG+EEPM
200mg/Kg

31.18±5.18 94.54±7.32 31.23±2.82 1.43±0.01
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7.3.1a. Effect of EEPM on SOD (U/mg protein) levels in MSG-treated rat
brain
The SOD profile in the rat brain is depicted in table 11 and figure. In

comparison to control rats (39.19±8.51), MSG administration, resulted in

significant reduction of SOD levels in brain (22.92±6.58). Pre-treatment with

EEPM (100mg/kg: 25.17±7.62 and 200mg/kg: 31.18±5.18) for 30 days

significantly improve the SOD activity in comparison to stress-treated rats in

the brain studied. Among all the groups, a marked increase in SOD status was

observed with EEPM 200mg/kg treatment (18.23±27.56).

The results suggest a significant dose dependent increase SOD status following

EEPM pre-treatment for 30 days. Memantine (35.12±6.12) significantly

attenuated the stress effect on SOD status and increased the antioxidant level in

all the regions.

7.3.1b. Effect of EEPM on CAT (U/mg protein) levels in MSG-treated rat

brain

Table 11 and figure shows the alteration of CAT levels in various brain regions

studied. In comparison to control rats (102.14±12.4), MSG induction resulted in

significant reduction of CAT level of brain (45.21±5.91; P<0.0001). Pre-

treatment with EEPM (100mg/kg: 71.55±9.45 (P<0.001) and 200mg/kg:

94.54±7.32 (P<0.001) for 30 days significantly improve the CAT activity in

comparison to stress-treated rats in the brain studied.

Among all the groups, a marked increase in CAT status was observed with

control groups (106.0±3.41). The results suggest a significant dose dependent

increase CAT status following EEPM pre-treatment for 30 days. Memantine

(93.85±12.05; P<0.0001) significantly elevated the stress effect on CAT status

and increased the antioxidant level in all the regions studied.

7.3.1c. Effect of EEPM on GSH (mg/g protein) levels in MSG-treated rat

brain

The effect of drugs employed on GSH levels are summarized in figure 11 and

table. In comparison to control rats (35.25±5.12), MSG stress resulted in

significant decrease of GSH level of brain (22.12±6.54). Pre-treatment with

EEPM (100mg/kg: 27.19±3.60; and 200mg/kg: 31.23±2.82, P<0.0001) for 30
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days significantly increase the GSH activity in comparison to stress-treated rats

in the brain studied.

The results suggest a significant dose dependent increase GSH status following

EEPM pre-treatment for 30 days. Memantine (34.24±4.54, P<0.0001)

significantly diminished the stress effect on GSH status and decreased the

antioxidant level in all the regions studied.

7.3.1d. Effect of EEPM on LPO (µ Moles of MDA/mg protein) levels in
MSG-treated rat brain

The effect of drugs employed on LPO levels are summarized in figure 11 and

table. In comparison to control rats (1.32±0.05), MSG resulted in significant

increase of LPO level of brain (1.88±0.02). Pre-treatment with EEPM

(50mg/kg: 0.072±0.01, P<0.0001; 100mg/kg: 1.58±0.05; and 200mg/kg:

1.43±0.01, P<0.0001) for 30 days significantly decrease the LPO activity in

comparison to stress-treated groups in the brain studied.

Among all the groups, a marked decrease in LPO status was observed with

control rats. The results suggest a significant dose dependent decrease LPO

status following EEPM pre-treatment for 30 days. Memantine (1.41±0.09,
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P<0.0001) significantly diminished the stress effect on LPO status and

increased the antioxidant level in all the regions studied.
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8. Discussion
The present study was designed to evaluate the possible neuroprotective effect

of ethanol extract of Pterocarpus marsupium Roxb. bark (EEPM) pre-treatment

against the excitotoxic effect of MSG-induced neurodegeneration in SD rats.

The neuroprotective effect was assessed using a series of general behavior (feed

intake, water intake and body weight), anxiety and depression behavioral tests

and biochemical analysis of the brain antioxidant elements in rat brain.

Excitotoxicity was induced by intraperitoneal injection of MSG (2 g/kg) for

seven days which resulted in glutamate receptor activation and Ca2+ overload

(via a number of different mechanisms). To substantiate the neuroprotective

effect of EEPM, the implications on general behavior, body weight (BW), food

intake (FI) and water intake (WI) were also analyzed, as these behavior could

be disturbed in depression and anxiety models that were employed in this study.

Also there may be perturbations in the levels of brain antioxidant enzyme

systems in stressful states. Hence, the effects of EEPM on the levels of

superoxide dismutase (SOD), Catalase (CAT), glutathione (GSH), and lipid

peroxidation (LPO) were studied in the whole rat brain.

8.1 Behavior tests with MSG-induced excitotoxicity

 The effects of EEPM on the perturbations produced in behavioral paradigms

like anxiety and depression were studied following pre-treatment with EEPM

at two different dose levels (100 and 200 mg/ kg) by oral route for 30 days.

 The results indicated that administration of MSG induced anxiety and

depression. The locomotor activity was found to have increased significantly

following MSG and was found to be normalized due to pre-treatment with

EEPM, when tested in an actophotometer cage. Depression was manifested as

increased freezing time in FST with MSG only treated group and significant

attenuation of the same in the EEPM and memantine treated groups.

 Administration of EEPM for 30 days significantly attenuated the MSG-

induced behavioral alterations, at a higher dose level of 200 mg/kg body

weight. The results on behavioral alterations are comparable with the

NMDAR antagonist memantine (20 mg/kg). As our herb exhibited anxiolytic

behavior, it may be assumed that EEPM may mediate its activity through
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controlling the glutamate induced excitation in the CNS, among a number of

other mechanisms as well. The result showed that stress-induced anxiety

associated with MSG treatment is attenuated by EEPM pre-treatment as

evident from locomotor activity.

 This study reveals that MSG-induced neurotoxicity produces behavioral

changes in adult rats (Ramanathan et al., 2007). Significant differences in

behavioral performance   between the controls and MSG treated rats were

found in all paradigms tested. Measurements in an activity cage showed that

MSG treated rats had decreased spontaneous motor activity than the controls

when tested. A similar reduction of locomotion has been reported in rats

treated with 5 g/kg of MSG (Pradhan et al., 1972) but not in those given

lower doses (Ali et al., 2000; Pradhan et al., 1972). The findings suggest that

a distinction in locomotor activity between the control and MSG treated

animals becomes evident in adult rats as well. This study also supports the

findings that locomotor activity becomes distinctly disturbed between control

and MSG treated animals with the progression of age. (Zdenek Hlnak et al.,

2005).

 The locomotor activity is closely related to the hippocampus and its

cholinergic input (Carlton, 1968; Fibiger, 1991; exploratory rearing behavior

relates evidently to the hippocampal glutamatergic mechanisms (Cerbone &

Sadile, 1994). It is possible to consider that a relative imbalance in the

impairment of these two mechanisms may be decisive factor in behavioral

output of animal. This suggests that different relationships between

cholinergic and /or glutamatergic mechanisms might explain differences

observed in MSG treated rats.

 Considerable evidence suggests that pharmacological agents which block

NMDAR may possess therapeutic properties for the treatment of anxiety,

pain, epilepsy and stroke.

 Exploratory rearing behavior is related evidently to the hippocampal

glutamatergic mechanisms (Cerbone & Sadile, 1994). It is possible to

consider that a relative imbalance in the impairment of these two mechanisms

may be decisive factor in behavior output of animals.
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 Recent reports suggested that alteration in the levels of biogenic amines (NE,

E, DA, 5-HT, 5-HIAA, ACh and AChE) in rat brain following reperfusion and

noise-stress was attenuated by EEPM pre-treatment, which may be correlated

to anxiolytic and antidepressant activity.

 EEPM pre-treatment also attenuated the MSG induced depression in forced

swim test.

 The present data support the view that a series of tests and not a single test

should be used to characterize animal behavior. The testing paradigms used

here are reproducible in the evaluation of potential drugs effective in the

consequent prevention of long-term behavioral functioning induced by MSG

treatment. Pre-treatment with EEPM in a dose dependent manner attenuated

the depressive effects on feeding pattern and suppression in body weight gain.

 The detailed mechanism involved in the antidepressive-like properties of

EEPM is not yet clear. Rats forced to swim in a restricted area assume an

immobile posture after initial attempts to escape. In a subsequent immersion,

the beginning of the immobility is faster and marked. Porsolt et al., (1978)

named this phenomenon “behavior despair” and attributed the animals’

response to the development of a depression process. Treatment with anti-

depressive medicines reduces the immobility time during the swimming test.

The authors presented it as a model of animal depression. In the forced

swimming test, which evaluates the depressive behavior doted by Porsolt, a

significant decrease of the immobility time was observed after the

administration of different doses of EEPM to rats. These results suggest that

EEPM induces an anti-depressive, of stimulant activity on the CNS, in a dose-

dependent manner.

8.2 Other behavioral studies

The effect of EEPM in MSG induced changes on food intake, water intake and

body weight were also studied. The results on these parameters indicated that

MSG treated animals had significantly lower body weights than the control.

The significant suppression of body weight in MSG treated rats coincides with

a number of previous findings (Klingberg et al., 1987; Pradhan et al., 1972;

Squibb et al., 1981). Considering that MSG treated animals develop obesity at

later age (Redding et al., 1971; Takasaki et al., 1979), the growth curves, must
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be followed for several months to see this effect. Unfortunately, this was not the

essence of the present study.

A significant suppression in the consumption of food and increased intake of

water was noted with MSG treated rats and these effects were attenuated by

treatment with EEPM.

The present experiment has showed that MSG treated rats were characterized

by disturbances in feeding pattern and feeding rhythms. MSG rats consumed

less food and more water than normal rats mainly by decreasing meal size and

eating rate. This agrees with many previous experiments recording gross food

intake only (Dawson & Lorden, 1981; Dawson & Annau , 1983; Dawson et al.,

1989; Lorden & Caudle,1986; Beck et al., 1997).

Among the brain transmitter systems that play a role in food intake and might

support the behavior syndrome of the MSG rats, the intrahypothalamic arcuate-

paraventricular neuropeptide Y (NPY) network is a good contender. There are

major augment in its favor. The first one comes from central injection studies.

When continuously infused in cerebral ventricles, NPY induces a disruption of

dark/light rhythms of food intake independently of its orexigenic properties

(Beck et al., 1990). Its stimulation properties in the paraventricular nucleus

(PVN) vary along the daily cycle, being more effective in the first portion of the

dark phase. When injected into the suprachasmatic nucleus, the circadian clock,

it phase-shifts the activity of the hamsters (Albers & Ferris, 1984). The second

one comes from biochemical studies which show the existence of daily rhythms

of endogenous NPY levels within hypothalamic areas. In the parvocellular part

of the PVN, it increases the onset of the dark period; while in the ARC levels

reach peaks at the two phase shifts (Jhanwar-Uniyal et al., 1990). These

endogenous peaks are in phase with those observed in food intake in the control

animals of this experiment. The third one comes from studies showing that the

activity of the hypothalamic NPY-containing pathway is higher in obese Zucker

rats (Stricker-Krongrad et al., 1994; Beck et al., 1993; McCarthy et al., 1991;

Sanacora et al.,(1990), fasted rats (Beck et al., 1990; Frankish et al., 1993;

Sahu et al., 1988; White & Kershaw,1990) and diabetic rats (Frankish et al.,

1993; Williams et al., 1989); all of which are characterized by having increased

meal sizes (Alingh-Prins et al., 1986; Thomas et al.,1976; Levitsky, 1970). The
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fourth one comes from studies showing that hypothalamic NPY is depleted in

MSG rats (Dawson et al., 1989; Stricker-Krongrad et al., 1996; Beck et al.,

1997; Abe et al., 1990). Recent evidence also suggests that leptin, the ob gene

product, might contribute in association with NPY to the day-night feeding

alterations observed in MSG+ stress treated rats (Dawson et al., 1989). These

results describe profound eating behavior disturbances that are induced by MSG

induced lesions of the arcuate nucleus. In our study the decrease in body weight

of MSG treated rats could be attributed to suppression in food consumption.

In glutamate toxicity, the neuronal death is linked closely to glutamate-evoked

excitotoxicity. Glutamate plays a central role in neurodegeneration and

increases extracellular glutamate concentrations from 30 to 200 µM in ischemic

brain. A characteristic response to glutamate challenge is the increase in the

cytosolic Ca2+ level, which is due to either influx from the extracellular space

through the activation of NMDA or non-NMDA or metabotropic receptor

activation leading to release from the intracellular stores. In this excitotoxic

condition the survival of a cell depends largely on functioning of the

mitochondria. The mitochondrial potential, the driving force necessary to

satisfy the cellular energy demands, is also involved in the generation of ROS,

which in turn are suspected to cause cell death if unabated. The interplay

between mitochondrial potential and ROS generation is not yet fully

understood. Since EEPM could control the neurodegeneration and suppression

of elevated antioxidant enzymes, it can be stated that EEPM produced

antioxidant effect in this animal model of excitatory response through

controlling the glutamate induced radical generation.

Recent work suggests that different types of stressful events may sometimes

produce qualitatively different patterns of effects in both behavior and

physiology. Adequate regulation of food intake under stress is important for

survival. Therefore, it is not surprising that the HPA axis is not only the

‘conductor’ of an appropriate stress response, but is also tightly intertwined

with endocrine parameters that regulate appetitive behaviours. In addition to

regulation by the circadian rhythm, characterized by increased cortisol

concentrations in the morning, low concentrations in the evening and fast

feedback under stress activation (Rosmond 2003), glucocorticoid release is also
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food-entrainable (Shiraishi et al., 1984). Studies suggest feedback loops

between glucocorticoids, leptin, insulin and NPY under acute HPA activation

(Cavagnini et al., 2000). The interactions between these hormones facilitate

storage, distribution and release of energy according to needs and contribute to

initiation and termination of a meal.

NPY is an anxiolytic peptide, leading to decreased anxiety. It is known to play

an important role in the response to stress and in psychiatric disorders (Yehuda

et al., 2006), thus, potentially an important mediator of what is anecdotally

described as ‘emotional eating’. Low NPY concentrations have been observed

in subjects with posttraumatic stress disorder and depression (Rasmusson et al.,

2000) -psychiatric conditions classically associated with a loss of appetite.

Increased NPY is associated with stress resilience in subjects exposed to

traumatic experience (Yehuda et al., 2006). NPY increases in response to stress

may be one biochemical signal underlying stress eating.

Several researchers also have provided evidence that palatable food can cause

endogenous opioid dependence (Rada et al., 2005, Colantuoni et al., 2002).

Opioid dependence was tested by using naloxone, an opioid antagonist, and

defined as naloxone-induced withdrawal after sucrose exposure (Colantuoni et

al., 2002). Activation of the HPA axis elicits–among other neurotransmitter

systems–the release of endogenous opioids (O’Hare et al., 2004). There is

strong evidence suggesting that opioid release is part of an organisms' powerful

defense mechanism against the detrimental effects of stress (Drolet et al.,

2001). Opioids decrease activity of the HPA axis on different levels in order to

terminate and attenuate the stress response, providing a negative feedback

control mechanism (Kreek and Koob 1998). Opioid release increases palatable

food intake and palatable food sustains opioid release. Thus, food intake

resembles a powerful tool to shut down stress-induced HPA axis activation. If

stress becomes chronic and eating is learned to be effective coping behavior,

highly palatable food may appear to be ‘addictive’ via the neurobiological

adaptions mentioned earlier.

Rats living in a stressful milieu may lose weight and regain weight in recovery,

leaving them fattier than before. Continual bouts of minor daily stressors may

keep the stress arousal system in chronically activated state. Indeed, cortisol
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tends to be higher on working days than weekend days (Kunz-Ebrecht et al.,

2004, Schlotz et al., 2004). This low but chronic level of stress may modulate

appetite and food intake in ways that are only loosely related to true caloric

need (Epel et al., 2007). The more intense the stressor and the longer the

duration, the greater reduction in food intake and body weight in the rats. The

studies done on rats conclude that stress invokes a reduction in food intake in

the animals. The energy intake was significantly greater on the examination

day, when compared to stress-free days.

8.3 Biochemical studies with MSG

NMDA receptor activation or neuronal increases in Ca2+ subsequent to Na+, or

both can activate a series of Ca2+ dependent enzymes, including protein kinases

C (PKC), Phopholipases (PL), proteases, protein phosphatases, and nitric oxide

synthase (NOS) (Choi, 1988; Dawson et al., 1992; Trout et al., 1993). After

PL2 is activated, arachidonic acid (AA), its metabolites, and platelet activating

factor (PAF) are generated. PAF increases neuronal Ca2+ levels, apparently by

stimulating the release of glutamate (Clark et al., 1992); Bito et al., 1992). AA

potentiates NMDA-evoked currents (Miller et al., 1992) and inhibits reuptake

of glutamate into astrocytes and neurons (Volterra et al., 1992), further

exacerbating the situation; reactive oxygen species (ROS) can be formed during

AA metabolism (Lafon-Cazal et al., 1993), leading to further PLA2 activation,

which represents positive feedback (Chan et al., 1985). These processes can

cause the neuron to digest itself by protein breakdown, free-radical formation,

and lipid peroxidation. In addition, one might envisage that in cerebral

ischemia, tissue reperfusion increases this damage by providing additional free

radical in the form of superoxide anions (Rosen et al., 1993).When NMDA

receptors are excessively stimulated influx of Ca2+ ions activates the generation

of NO and superoxides in increased quantities. Under these conditions, NO and

superoxide ions may react to form a toxic substance called peroxynitrite

(ONOO•), resulting in neuronal death (Lipton et al., 1993; Dawson & Dawson,

1991). In addition to these effects Ca2+ can activate nuclear enzyme

(endonucleases) that result in condensation of nuclear chromatin and ultimately

DNA fragmentation and nuclear breakdown, a pathological process known as

apoptosis (Kane et al., 1993).



67

Studies have demonstrated that synaptic glutamate release and uptake are

energy-(ATP)-dependent, and any impairment or breakdown may lead to

generation of ROS and inactivation of glutamate reuptake mechanism leading

to excessive glutamate accumulation. If the circumstance continues unabated,

there is excessive influx of Na+, Cl- and Ca2+ via post-synaptic ion channels

producing swelling and destruction of post synaptic elements not only in the

immediate vicinity but also the entire neuron as well. Upon destruction of

neurons by this mechanism, additional glutamate may be released further

increasing the level of extracellular glutamate and thereby propagating the

excitotoxicity and death of additional glutamate-sensitive neurons in the region

of involvement (Seisjo 1984; Benveniste et al., 1984, Novelli et al., 1988; Auer

& Siesjo 1988; Nicholis & Attwell 1990).

Convincing evidence of the role of free radicals in non-NMDA receptor-

mediated (AMPA and KA) neurotoxicity leading to the accumulation of lipid

peroxidation products and attenuation by treatment with antioxidants is also

mounting.

In addition to its action on the ionotropic receptors (NMDA and non-NMDA),

glutamate also acts on a variety of metabotropic receptors, and has shown to

modify Ca2+ levels either at postsynaptic or presynaptic sites and there is now

clear agreement that they are able to modulate neuronal damage and death and,

correspondingly antagonists protect against these effects (Stone & Addae,

2002).

The depletion in the levels of SOD, CAT, GSH, and increased LPO in the rat

brain, following seven days administration of MSG is consistent with a

previous study in our laboratory. These results clearly show that glutamate can

lead to excitation and oxidative stress leading to neurodegeneration. Treatment

with EEPM, containing among a number of phenolic compounds, fixed and

volatile oils, significantly attenuated the glutamate-induced excitation and

oxidative stress.

Memantine increased SOD, CAT and decreased TBAR levels in all the regions

studied. These effects could be attributed to the antagonizing activity at
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NMDAR, leading to controlling the glutamate excitotoxicity resulting in the

preservation of brain antioxidant system.

Another interesting observation made in the present study was depletion of

glutathione levels with glutamate treatment. Though the treatment of EEPM and

memantine increased few or all antioxidant enzymes in brain, they all failed to

show any effect on glutathione levels. It has been stated that synthesis of GSH

in Astrocytes involves glutamate, cysteine and glycine. Excess of glutamate

will inhibit the transport of cysteine there by blocking the GSH formation.

Further, it is also reported that the oxidative pathway involves the breakdown of

the glutamate-cysteine antiporter leading to decrease in GSH levels that allows

for aberrant formation of free radicals, which are neurotoxic. In the present

study, administration of MSG (2 g/kg) could have blocked the synthesis of GSH

and resulted invariably in the depletion of GSH in all the groups.
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9. Summary and Conclusion

The study was undertaken to evaluate the probable neuroprotective effect of

pre-treatment of ethanol extract of Pterocarpus marsupium Roxb. bark (EEPM)

against monosodium glutamate-induced excitotoxicity model in SD rats. The

neuroprotective effect was assessed by measuring the changes in water intake,

feed intake and body weight changes in addition to using a sequence of

behavioral tests (anxiety and depression) and biochemical analysis (SOD, CAT,

GSH and LPO) of the rat brain.

The protective effect of EEPM was evaluated for depression using forced swim

test and anxiety using actophotometer and elevated plus-maze apparatus in

MSG induced models.

To substantiate the neuroprotective effect of EEPM and its implications on

general behaviors viz., feed intake (FI), water intake (WI) and body weight

(BW) were also undertaken in MSG induced models, as these behavior could be

profoundly disturbed in anxiety, depression and may impair memory and

cognitive abilities.

Also there may be perturbations in the levels of brain antioxidant enzyme

system in stressful states. Hence, the effects of EEPM on the levels of SOD,

CAT, GSH and LPO were studied in the rat brains.

Administration of MSG for 7 days resulted in elevated levels of anxiety and

depression. Pretreatment with EEPM for 30 days prevented the effect of MSG

in rats.

The anxiety and depression parameters were attenuated significantly in MSG

treated rats. Moreover, the changes in food intake, water intake and body

weight were also minimizes in MSG treated rats.

The perturbations in the levels of SOD, CAT, GSH & LPO were also found to

be attenuated in EEPM groups.
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