## ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ACETYLCYSTEINE AND TAURINE IN TABLET DOSAGE FORM BY USING RP-HPLC

Dissertation submitted to

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY

CHENNAI

In partial fulfillment of the requirements for the award of the degree of

### **MASTER OF PHARMACY**

### (PHARMACEUTICAL ANALYSIS)

By

(Reg.No:261530351)

Under the Guidance of

Dr. J. AMUTHA ISWARYA DEVI, M.Pharm., Ph.D.,



DEPARTMENT OF PHARMACEUTICAL ANALYSIS

ARULMIGU KALASALINGAM COLLEGE OF PHARMACY

ANAND NAGAR, KRISHANKOIL-626126

OCTOBER-2017



### CERTIFICATE

This is to certify that the investigation described in the dissertation entitled "ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ACETYLCYSTEINE AND TAURINE IN TABLET DOSAGE FORM BY USING RP-HPLC" submitted by Reg.No:261530351 was carried out in the Department of Pharmaceutical Analysis, Arulmigu Kalasalingam College of Pharmacy, Anand Nagar, Krishnankoil -626126, which is affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai under my supervision and guidance for the partial fulfillment of Degree of Master of Pharmacy in Department of Pharmaceutical Analysis.

Department of Pharmaceutical Analysis

Place: Krishnankoil

Date:

Arulmigu Kalasalingam College of Pharmacy

Krishnankoil



### CERTIFICATE

This is certify that the investigation described in the dissertation entitled "ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ACETYLCYSTEINE AND TAURINE IN TABLET DOSAGE FORM BY USING RP-HPLC" submitted by Reg.No:261530351 was carried out in the Department of Pharmaceutical Analysis, Arulmigu Kalasalingam College of Pharmacy, Anand Nagar, Krishnankoil -626126, which is affiliated to The Tamilnadu Dr. M.G.R. Medical University, Chennai, under the supervision and guidance of Dr. J. Amutha Iswarya Devi for the partial fulfillment of Degree of Master of Pharmacy in Department of Pharmaceutical Analysis

Place: Krishnankoil

Principal

Arulmigu Kalasalingam College of Pharmacy

Krishnankoil

Date:



### **EVALUATION CERTIFICATE**

This is to certify that dissertation work entitled "ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ACETYLCYSTEINE AND TAURINE IN TABLET DOSAGE FORM BY USING RP-HPLC" submitted by Reg.No:261530351 was carried out in the Department of Pharmaceutical Analysis, Arulmigu Kalasalingam College of Pharmacy, Anand Nagar, Krishnankoil -626126, which is affiliated to The Tamilnadu Dr. M.G.R. Medical University, Chennai, under the supervision and guidance of Dr. J. Amutha Iswarya Devi for the partial fulfillment of Degree of Master of Pharmacy in Department of Pharmaceutical Analysis were evaluated by,

Centre: Arulmigu Kalasalingam College of Pharmacy, Krishnankoil

Date:

Examiners:

1.

2.



Plant 1 : Vandalur - Kelambakkam Road, Kelambakkam - 603 103, Kancheepuram District, Tamil Nadu, India. Phone : 91-44-4740 4310 E-mail : fourrts@plant.fourrts.com website : www.fourrts.com

#### CERTIFICATE

This is to certify that the research project work entitled "ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ACETYLCYSTEINE AND TAURINE IN TABLET DOSAGE FORM USING RP-HPLC" is the bonafied work of Ms.DEVI.M, (Reg.No: 261530351) AruImigu Kalasalingam College Of Pharmacy, Krishnankoil 626126, carried out in the department of Analytical Research and Development, Fourrts (India) Laboratories Pvt. Limited, during the year 2016-2017 under my direct guidance and supervision in partial fulfillment for the award of degree of "MASTER OF PHARMACY in PHARMACEUTICAL ANALYSIS".

Industrial Guide

(Frid

J. Rajesh, M.Sc., PGDQM,

Head - Analytical Research & Development,

Fourrts (India) Laboratories Pvt. Limited,

Kelambakkam,

Chennai- 603 103

Tamilnadu.



RESEARCH,

AM . 6

Corporate Office : No. 1, Fournts Avenue, Annai Indra Nagar, Okkiyam Thoraipakkam, Chennai-600097, India. Phone : 91-44-4344 1880 E-mail : admin@fournts.com



## **"MY FRIENDS"**



#### ACKNOWLEDGEMENT

I pray our profound gratitude to the almighty god for this invisible help and blessing for the fulfillment of this work.

I take this privilege and pleasure to acknowledgement the contribution of many individuals who has been inspirational and supportive throughout my work under taken and endowed me most precious knowledge to see the success in my endeavor. My work bears the imprint of this people.

I am grateful to **"Kalvivalla!"** Thiru **T. Kalasalingam B.Com.**, for providing me required facilities for extending a rich and also I convey my sincere thanks to **"Ilaiya vallal" Dr.Sridharan, Ph.D.**, Dynamic Directors **Dr.S.Shasi Anand., Ph.D., Mr.S.Arjun Kalasalingam, M.S.**, and management of our institution for providing me necessary infrastructure.

I expressed my sincere thanks to **Dr.N.Venkateshan**, **M.Pharm.**, **Ph.D.**, **principal** of Arulmigu Kalasalingam College of Pharmacy, Krishnankoil, for his enthusiastic cooperation and timely advice and for providing facilities for the completion of my work.

I give immense pleasure to express my deepest thanks, heartfelt indebtedness and respectful guide **Dr. J. Amutha Iswarya Devi M.Pharm., Ph.D.,** for her encouragement and guidance during the course of project and special thanks for providing suggestions during the project. Especially for her patience and immense acknowledge her constants quest for knowledge and strive for excellence will always remain a source of inspiration to me.

I respectfully acknowledge to my faculities **Dr.R.Raja Pandi M.Pharm., Ph.D., Mrs.A.S.Thenmozhi M.Pharm., Mr.T.Senthil Kumar M.Pharm,** for providing suggestions, encouragement during the project.

I expressed my sincere thanks to **Mr. Veeramani manager of Fourrts India Laboratories Pvt. Limited, Chennai** for providing me necessary facilities

## I respectfully thank Mr. J.Srinivassan Associate V.P-HR &GA of Fourrts India Laboratories Pvt. Limited, Chennai.

I express my special thanks to my Industrial Guide, Mr. J. Rajesh, M.Sc., PGDQM., Manager and his team Mr. A. Baskar Palraj, M.Pharm., Mrs. R. Chitra, M. Pharm., Mr.S.Vijay, M.Sc., Mr. M.Purushothaman, M.Sc., Fourrts India Laboratories Pvt. Limited, Chennai for providing me necessary facilities and constant source of inspiration and has always encouraged scientific thinking to carry out this dissertation work for providing much of stimuli in the form of suggestions and guidance of enormous support for me during my entire project work.

Special thanks for Dr. S. R .Senthil Kumar M.Pharm., Ph.D., Mr. R.Ramprasath M.Pharm., Mr. J.Arunpandiyan M.Pharm., Mr. T. Senthil Kumar M.Pharm.,

I also convey my thanks to all the lab assistants of our institution.

I am grateful to have such my parent Mr. A. Marimuthu and Mrs. M. Kanni Mari

I am grateful my thanks my brothers Mr. M. Deivendran., Mr. M. Manikandan

I am thanking to all my friends R.Kitruthika., P.Kanika., C.Roja., M.Ponmalar., sasi., B.Stalin., Thirupathi ., Vijay Nagendiren., G.Sivakami., P.Inigo., R.Nivetha., Sattanathan, K.Arunadevi., T.Nagarani., S.Kaliammal.

Above all without my parents the accomplishment in my life would never have begun to take form my humble thanks to all the mentors, well-wishers, near and dear ones who helped me during my course of study

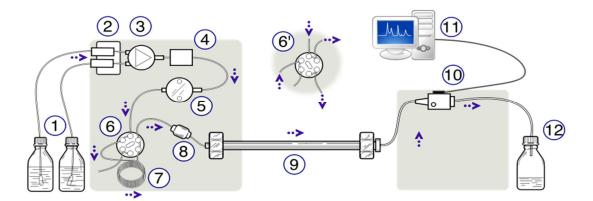
M.Devi

### TABLE OF CONTENTS

| S.NO | CONTENT                       | PAGE.NO |
|------|-------------------------------|---------|
| 1.   | Introduction                  | 1       |
| 2.   | Review of literature          | 7       |
| 3.   | Aim of work                   | 13      |
| 4.   | Drug profile                  | 14      |
| 5.   | Material and Methods          | 17      |
| 6.   | Analytical method development | 19      |
| 7.   | Analytical method Validation  | 29      |
| 8.   | Results and Discussion        | 48      |
| 9.   | Conclusion                    | 93      |
| 10.  | Glossary                      | 94      |
|      | Bibliography                  | 95      |



### INTRODUCTION


### HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

High performance liquid chromatography is a very sensitive analytical technique most widely used for quantitative and qualitative analysis of pharmaceutical. The principle advantage of HPLC compared to classical column chromatography is improved resolution of the separated substance, faster separation times and the increased accuracy, precision and sensitivity.

### PRINICIPLE OF HPLC

The principle of separation in normal phase mode and reverse phase mode is adsorption. The component which has more affinity towards the adsorbent travels slower. The component which has less affinity towards the stationary phase travels faster. Since 2 components have the same affinity towards the stationary phase, the components are separated.

### INSTRUMENTATION OF HPLC



- 1) Solvent reservoirs
- 2) Solvent degasser
- 3) Gradient valve
- 4) Mixing vessel for delivery of the mobile phase

- 5) High-pressure pump
- 6) Switching valve in "inject position" switching valve in "load position"
- 7) Sample injection loop
- 8) Pre-column
- 9) Analytical column
- 10) Detector (i.e. IR, UV)
- 11) Data acquisition
- 12) Waste or fraction collector

### Solvent delivery system

- Ability to mix solvents and vary polarity of mobile phase during run
- Unlimited solvent reservoir
- Generation of pressure to 6000 psi
- Flow rates ranging from 0.1 to 10 mL/min
- Flow reproducibility of 0.5% or better
- Resistance to corrosion by a variety of solvents
- Plus free out put

### Degasser

- Vacuum pumping systems
- Distillation system
- A system for heating and stirring the system
- Spraying system bubbles an inert gas of low solubility through the solvent

### Three basic types of **pumps** are used

- Pneumatic pumps
- Motor driven syringe type pumps
- Reciprocation pumps

### **Gradient controller**

- The gradient controller is the device that allows you to create a gradient program.
- Gradient are produced differently for different types of pumping system.

### Injectors

- Sample injection systems
- Rubber stopper injector or syringe
- Sample value

### Guard column

Remove impurities from solvent saturates mobile phase with liquid of stationary phase before the analytical column, straight: 15 to 150 cm in length; 2 to 3 mm and packing - silica gel, alumina, celite.

### Packing

Originally these were irregular silica and alumina a range synthetic regular shape is available now,

- Porous: Channels through packing.
- > Superficial porous: Rough surface.
- > Smooth: Like bead.

### Common reverse phase solvents

> Methanol, acetonitrile, tetrahydrofuran, water

### Normal phase solvents

> Amino (-NH2), Cyano (-CN), diol (glycidoxy-ethyl methoxide)

### Detector

- o Mostly optical
- Equipped with a flow cell
- o Focus light beam at the center for maximum energy transmission
- Cell ensures that the separated bands do not wide

### **Types of detector**

- > UV/Visible
  - Fixed wavelength
  - Variable wavelength
- Photo idode array
- Refractive index
- Fluorescence
- Evaporative light scattering
- Conductivity
- Electrochemical
- Chiral detectors

### Application of HPLC in the pharmaceutical industry

Manufacturing, content uniformity, degradation products and related substances, dissolution and stability studies.

### Definition of validation (As per USP)

Validation of an analytical procedure is the process by which it is established, by laboratory studies, that the performance characteristics of the procedure meet the requirements for the intended analytical applications.

### Methodology

The real goal of the validation process is to challenge the method and determine the limits or allowed deriability for the condition needed to the method.

### Types of analytical procedure to be validated

- 1. Identification test
- 2. Quantitative test for impurities contents
- 3. Limit test for the control of impurities
- 4. Quantitative test of the active molecule in samples of drug substance or drug product

### Specificity

An investigation of specificity should be conducted during the validation of identification test, determination of impurities and assay.

### Linearity

The linearity of an analytical procedure is of ability (within a given range) to obtain test result while are directly proportional to the concentration of analyte in the dam pole for establishment of linearity. A minimum of 5 concentrations is recommended other approaches would justify.

### Range

- The range of analytical procedure is introduced between the higher and lower concentration of analyte in the sample.
- For assay of drug substance: Normally from so to use of the test concentration.
- For content uniformity :- 70-80% of the concentration

• For dissolution release product 20% another one hour up to 40% after 24 hour for the validating range would be 0-100% of the label claim.

### Accuracy

Accuracy on the method was determined by relative and absolute recovery experiments.

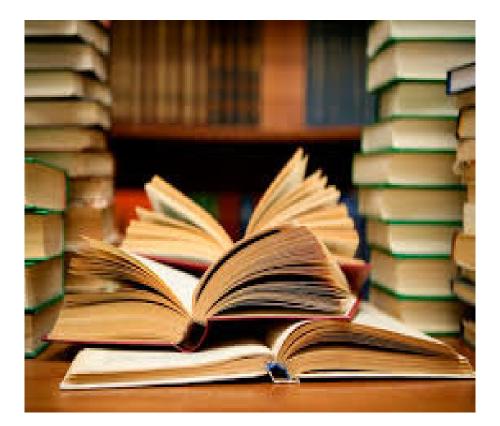
### Precision

Validation of test for assay and quantitative determination of impurities includes an included an investigation of precision.

### **Detection limit**

The detection limit of an individual analytical procedure is the lowest amount of analyte is a sample which can be detected but not necessary quantified as an exact value.

### **Quantification limit**


The quantitative limit of an individual analytical procedure is the lowest amount of analyte in the sample which can be quantitative determined with suitable precision and accuracy.

### Robustness

The robustness of the method was assessed by altering the some experimental conditions such as, by changing the flow rate from 0.9 to1.1 mL/min, amount of diluents (10% to 15%) the temperature of the column (28°C to 32°C) and pH of the mobile phase

### System stability testing

It is an integral of many analytical procedures. This based on the concept that the equipment electronics analytical operation and samples.



# LITERATURE REVIEW

### LITERATURE REVIEW

**Geetha Susmita A** *et al.,* 2015 established the simultaneous estimation of acebrophylline and acetylcysteine in tablet dosage form by RP-HPLC method. An enable Hypersil BDS, C<sub>18</sub>, 100 x 4.6 mm5µ particle size column was used as stationary phase. The mobile phase consisting of a mixture of buffer solution and acetonitrile (90:10) was pumped isocratically at a flow rate of 1 mL/min with detection at 260nm. The retention time of acebrophylline and N-acetylcysteine were found to be 5.5 min and 2.3 min respectively. The calibration curves were linear over a concentration range of 25-150 µg/mL with coefficient regression ( $r^2$ ) = 0.9995 and ( $r^2$ ) = 0.9996 for acebrophylline and N-acetylcysteine. The limits of detections were 0.18 µg/mL and 1.50 µg/mL for acebrophylline & N-acetylcysteine respectively. The selectivity, specificity, system suitability, ruggedness and robustness were performed as per ICH guidelines. In quantitative and recovery studies was 100.37% and 100.8% for acebrophylline and N-acetylcysteine respectively.

**Shukla Khushboo N et al.,** 2015 propose of this development of new analytical methods and their validation for the determination of acetylcysteine in bulk and marketed formulation. Method IA, NAC gives light brown colour with ninhydrine in alkaline medium, which showed  $\lambda^{max}$  at 485.2nm. The drug was reacted with fehling's solutions (A&B in equal volume) and ferric chloride, which produce yellow colour chromogen which showed  $\lambda_{max}$  at 537.2 nm. The linearity range of 50-300µg/mL for both method IA and method IB. The correlation coefficient is 0.9990 and 0.9991. The LOD and LOQ for estimation of NAC were found as 0.0773, 0.2343 for method IA and 0.0667, 0.2021 for method IB respectively formulations.

**Tvinkal P et al.,** 2015 have reported developed and validated for the simultaneous estimation of acebrophylline and acetylcysteine in tablet dosage form by absorbance ratio method. Acebrophylline and acetylcysteine were found to have absorbance maxima at 274 and 195 nm respectively in distilled water and iso absorptive point was found to be 210nm. Acebrophylline was found to be linear in the concentration range of 5 to 11  $\mu$ g/ mL at 274 nm and acetylcysteine was found to be

Department of Pharmaceutical Analysis

linear in the concentration range of 30 to 66  $\mu$ g/mL at 195 nm. The assay of marketed tablet formulation (Pulmo clear tablet) was found to be 103.4% and 101.58% for acebrophylline and acetylcysteine respectively. The method was validated statistically as per ICH guidelines. The method showed good reproducibility and recovery with % RSD less than 2.

**Nitin S et al.,** 2014 reported validated RP-HPLC method development for the simultaneous estimation of acetylcysteine and acebrofylline in capsule formulation a new simple, precise, rapid and accurate reverse phase high performance liquid chromatographic method had been developed or the simultaneous estimation of acetylcysteine (ACST) and acebrofylline (ACBF) in capsule dosage form. The chromatographic separation was achieved on a Hypersil BDS,  $C_{18}$ , 100 x 4.6 mm, 5µm particle size column was used with PDA detemine by using mobile phase containing mixture of 0.02M potassium dihydrogen orthophosphate (KH<sub>2</sub>PO<sub>4</sub>) buffer: acetonitrile (90:10 % v/v pH 3.2) was used. The flow rate was 0.9mL /min and effluents were monitored at 260 nm. Chromatogram showed two main peaks corresponding to acetylcysteine and acebrofylline at retention time 2.365 and 5.505 min respectively. The method was linear over the concentration range of 150-900µg/mL for acetylcysteine and 25-150 µg/mL for acebrofylline respectively.

**Mangelings D et al.,** 2014 reported development and validation of an HPLC method with post column derivatisation for assay of n-acetylcysteine in plasma determination of both low endogenous and high therapeutic concentrations of N-acetylcysteine (NAC) in plasma. The compound is detected fluorimetrically after derivatisation with orthophthalaldehyde in the presence of a primary amine. Validation of the method revealed injection and method repeatability was good. The linear range was adequate and the limit of quantification was between 0.4 and 0.6µM. Recovery of N-acetylcysteine from plasma samples was also acceptable. This method was applied to plasma samples from patients. Six samples were taken at different times after administration of N-acetylcysteine.

Asiya Begum et al., 2014 to established a development and validation of acetylcysteine and taurine tablet dosage form by using RP-HPLC using the isocratic separation method Inertsil ODS (250 x 4.6 mm, 5  $\mu$ m) column and potassium using dihydrogen OPA: acetonitrile (60:40) Mobile phase as pumped at a rate of 1mL/min the detection was carried out 248nm. The retention time is found in the range of 3.186 and 4.142 minutes. The percentage assay of acetylcysteine and taurine were 99% and 100%. The linear regression analysis data for the calibration plots showed a good linear was found to be in the range of acetylcysteine and taurine over a concentration range of 1000-3000  $\mu$ g/mL and 300-900 $\mu$ g/mL with correlation co-efficient of 0.999 for acetylcysteine and quantitation were found to be 2.93, 2.76 & 9.75, 9.20 respectively.

**Mogili Swetha** *et al.,* 2013 have reported RP-HPLC method for estimation of acetylcysteine and taurine in API and pharmaceutical dosage form development and validation for the simultaneous estimation of acetylcysteine and taurine in tablets using a Agilent  $C_{18}4.6 \times 150$ mm.5µ column, mobile phase comparied of 0.01N KH<sub>2</sub>PO<sub>4</sub> and methanol in the ratio of 60:40v/v and flow rate is 1mL/min. The linearity was in the range of 300-900µg/mL; hence the RP-HPLC method developed and validated can be used routinely for the simultaneous estimation of acetylcysteine and taurine in tablets.

**Tessier Neirinick** *et al.,* 2013 reported novel sensivity ursodeoxycholic acid and its glycine and taurine conjugates in human plasma. solid phase extraction of UDCA, GDCA, TDCA and the internal standard, 23- nordeoxycholic acid from human plasma on a C<sub>18</sub>.Chromatography was performed by isocratic reverse phase separation with methanol/25 mM ammonium acetate (40/60, v/v) containing 0.05% acetic acid C<sub>18</sub>column with embedded polar functional group. Linearity of glycine and taurine of 10– 3000 µg/mL average correlation coefficient of 0.9992. The absolute recovery for UDCA, GDCA, TDCA and the internal standard was 87.3, 83.7, 79.5 and 95.8%, respectively.

**Marine De Person et al.,** 2012 have reported development and validation of a hydrophilic interaction chromatography-mass spectrometry assay for taurine and methionine in matrices rich in carbohydrates developed and validated for the

simultaneous determination of underivatised taurine and methionine rich in carbohydrates such as energy drinks column Astecap Hera  $NH_2$  (150 mm × 4.6 mm; 5 µm) methanol–water (60/40) as mobile phase. Threonine as the internal standard for specifity, detection limits, linearity, accuracy, precision and stability limit of detection 20 µg L<sup>-1</sup> for taurine to 50 µg L<sup>-1</sup> for methionine.

Athawale Rajani *et al.,* 2012 have reported phase development and validation of RP-HPLC method for the estimation of N-acetylcysteine in wet cough syrup.  $C_{18}$  (150mm X 4.6 mm i.d., particle size 3.5µm) column. The gradient flow system was used. Mobile phase consisting of acetonitrile and 0.05M phosphate buffer (pH was adjusted to 3.0+0.05 by using orthrophosphoric acid), flow rate is 0.8 mL/min maintain the ambient temperature. Detection was carried out at 214nm. The retention time of about 4.6 minutes was recorded. Linear over the concentration range of 400-600 µg/mL (R=0.999). The proposed method was applicable to routine analysis of acetylcysteine in wet cough syrup dosage form.

Paraskevas D et al., 2012 reported HPLC method for determination of Nacetylcysteine using post-column derivatization with methyl -propiolate a new, green analytical method is proposed for the determination of N-acetylcysteine (NAC) in pharmaceutical formulations. The analyte was separated from the samples matrix using 100% а aqueous mobile phase [0.05% v/v CH<sub>3</sub>COOH+1 mol L<sup>-1</sup> ethylenediaminetetraacetic acid (EDTA) in water] and a suitable analytical column (Prevail reversed phase column). Detection was carried out at 285nm after on-line post column derivatization (PCD) with methyl- propiolate (MP) in alkaline medium. Method development included both chromatographic and reaction parameters, while validation was based on international recommendations.

Aline Ferreira Ourique *et al.*, 2011 have reported the method involves the use of phase column, and a mixture of 0.05 M the reversed  $KH_2PO_4$  and acetonitrile (95 : 5v/v) containing 0.095% (v/v) of phosphoric acid, as the mobile phase. UV detection was performed at 214 nm linear response was observed over the concentration range between 10 and 50 µg mL<sup>-1</sup> of NAC. Validated with the official guidelines for specificity,

Department of Pharmaceutical Analysis

linearity (r = 1), detection and quantification limits (0.70 and 2.11 µg mL<sup>-1</sup>), precision (RSD < 2%), accuracy (recovery > 97%), and robustness (RSD < 4%). Therefore, NAC can be assayed in granules and effervescent tablets using the same chromatographic conditions without derivatization.

Emillia Marchei et al., 2011 have reported development and validation of a highperformance liquid chromatography-mass spectrometry assay for methylxanthines and supplements C<sub>18</sub> reversed-phase taurine in dietary а column using water:methanol:acetic acid 75:20:5 as a Mobile phase analytes were determined in LC-MS single ion monitoring mode with atmospheric pressure ionization-electrospray (ESI) interface. Sample specimens were extracted with 4 mL of hexane/isopropanol (9:1). Validated in the taurine and caffeine range is 0.1-500 and 0.06-500 µg/mL or µg/g and caffeine, respectively; 0.06–100 µg/mL or µg/g for theobromine and theophylline. Mean recoveries ranged between 70.1 and 94.4% for different analytes. The quantification limits were 0.1  $\mu$ g/mL or  $\mu$ g/g for taurine and 0.06 $\mu$ g/mL or  $\mu$ g/g for methylxanthines either in liquid samples or solid samples. 100 to 1000µg/mL amount of taurine present in the energetic drinks.

**Zhi Chen et al.,** 2006 reported HPLC/ESI-MS method for the simultaneous determination of taurine and 10 water-soluble vitamins including vitamin  $B_1$  (thiamine),  $B_2$  (riboflavin),  $B_5$  (pantothenic acid),  $B_6$  (pyridoxine and pyridoxal),  $B_8$  (biotin), B9 (folic acid), C (ascorbic acid) and PP (nicotinamide and nicotinic acid) in multivitamin tablets was developed and validated. The separation was accomplished on a Johnson Spherigel C<sub>18</sub> (250 mm×4.6 mm) reversed phase column with methanol in an aqueous solution of heptafluorobutyric acid (5 mm) as mobile phase under gradient elution mode. Detection of target components was by ESI-MS switching continuously from positive ion mode to negative ion mode hippuric acid was used as an internal standard for quantification. Sensitivity, precision and accuracy were determined.

**Vander Heyden Y** *et al.,* 2004 reported that developed enables determination of both low endogenous and high therapeutetic concentrations of N-acetylcysteine (NAC) in plasma. The linear range was adequate and the limit of quantification was between 0.4

and 0.6 µM. Recovery of N-acetylcysteine from plasma samples was also acceptable. This method was applied to plasma samples from patients with a clinical septic shock who had received very high doses of N-acetylcysteine. Six samples were taken at different times after administration of N-acetylcysteine. The blood-concentration profiles obtained indicate the method is suitable for following the evolution of NAC in plasma under these conditions and can therefore be used for pharmacokinetic profiling. N-Acetylcysteine (NAC) is mainly used as a mucolytic in bronchitis or pulmonary diseases. By depolymerising mucopolysaccharides it reduces the viscosity of pulmonary secretions.



# AIM OF WORK

### AIM AND PLAN OF WORK

The drug analysis plays an important role in the development of drugs, their manufacture and the therapeutic use. Pharmaceutical industries rely upon quantitative chemical analysis to ensure that the raw materials used and final product obtained meets the required specification. The number of drugs and drug formulations introduced in to the markets has been increased at a disturbing rate. These drugs or formulation may be either in the new entities in the market or partial structure modification of the existing drugs or novels dosage forms or multi component dosage forms.

### AIM OF WORK

The present work aims at developing newer analytical methods for acetylcysteine and taurine in tablet dosage forms by using RP-HPLC, that are simple, accurate, rapid, precise, sensitive and reliable.

### PLAN OF WORK

To validated a method for analytical quantitation of assay in acetylcysteine and taurine in tablets dosage form.

To give a general ICH guidelines for the validation of methods aim for the quantitation of acetylcysteine and taurine in tablets dosage form.

Obtaing results with improved accuracy and precision.

### **OBJECTIVE OF WORK**

To develop analytical and validation method for the estimation of of acetylcysteine and taurine in tablet dosage form by using RP-HPLC method.



|                         | C <sub>1</sub> H <sub>3</sub>                                                                                                                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure               |                                                                                                                                                                                                                           |
| Molecular weight        | 163.5                                                                                                                                                                                                                     |
| Molecular formula       | C <sub>5</sub> H <sub>9</sub> NO <sub>3</sub> S                                                                                                                                                                           |
| Chemical name           | (2R)-2-acetamido-3-sulfanylpropanic acid                                                                                                                                                                                  |
| Description             | It is a white with light yellow cast powder has a pKa of 9.5 at 30 °C. N- acetylcysteine is derived from the sulfur-containing amino acid                                                                                 |
| Adverse effects         | Rash, urticaria, itchiness, anaphylaxis reaction, hypotension,<br>wheezing, shortness of breath, lower rates of anaphylactoid<br>reaction, stomatitis and rhinorrhea                                                      |
| Pharmacodynamic         | Acetylcysteine serves a prodrug to L- cysteine. Acetylcysteine<br>also known as <i>N</i> -acetylcysteine or <i>N</i> -acetyl-L-cysteine (NAC) is a<br>medication use treatment of paracetamol overdose<br>(acetaminophen) |
| Solubility              | Soluble in water and alcohol. Insoluble in chloroform and ether                                                                                                                                                           |
| Route of administration | By oral, inhalation and injection.                                                                                                                                                                                        |
| Uses                    | Mucolytic theraphy, hemorrhagic cystitis, nephroprotective agent, obstructive lung disease and psychiatry                                                                                                                 |
| ATC Code                | R05CB01(WHO)S01×A08(WHO)V03B23                                                                                                                                                                                            |
| Bioavailability         | 10% (oral)                                                                                                                                                                                                                |
| Protein binding         | 50 to 83%                                                                                                                                                                                                                 |

## DRUG PROFILE OF ACETYLCYSTEINE

| Metabolism           | Liver                                                             |
|----------------------|-------------------------------------------------------------------|
| Biological half life | 5-6 hours                                                         |
| CAS number           | 616-91-1                                                          |
|                      | Solution for inhalation – inhaled mucolytic therapy or ingested   |
|                      | for nephroprotective effect                                       |
|                      | Intravenous injection – treatment of acetaminophen overdose       |
| Dosage form          | Oral solution – various indications.                              |
|                      | Ocular solution - for mucolytic therapy.                          |
| Sensitivity          | Anaphylactoid reactions                                           |
| reaction             | other allergic reactions                                          |
|                      | Generalized urticaria reported rarely                             |
| Warning              | Encephalopathy due to hepatic failure, respiratory effects,       |
|                      | observes asthmatic patients closely. When administered intra      |
|                      | veneous caution in patients with asthma or history of             |
|                      | bronchospasm.                                                     |
| Pharmacokinetics     | Extensively liver metabolized, CYP450 a minimal. Urine excretion  |
|                      | 22-30%, half-life of 5.6 hours in adults and 11 hours in neonates |

## DRUG PROFILE OF TAURINE

| Structure         | H OS<br>ON H 2                                                                                                                                                                                                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical name     | 2- amino ethane-1-sulphonic acid                                                                                                                                                                                                    |
| Molecular formula | C <sub>2</sub> H <sub>7</sub> NO <sub>3</sub> S                                                                                                                                                                                     |
| molecular weight  | 125.14                                                                                                                                                                                                                              |
| density           | 1.734g/cm <sup>3</sup>                                                                                                                                                                                                              |
| Melting point     | 305.11°C                                                                                                                                                                                                                            |
| Therapeutic uses  | Treatment of cardiac and metabolic disease                                                                                                                                                                                          |
| Brand name        | Bestoxol, Genferon and Taufon                                                                                                                                                                                                       |
| Biological role   | Congication of bile acids, antioxidation, osmoregulation,<br>membrane stabilitilization, modulation of calcium signaling,<br>cardiovascular function and skeletal muscle function.                                                  |
| Solubility        | Soluble in water                                                                                                                                                                                                                    |
| Shelf life        | Shelf-life of 36 months at 25°C 100 Shelf-life was measured<br>under accelerated conditions at 40°C and no loss was observed<br>for six months parts of 95% alcohol dissolves 0.004 parts at<br>17°C; insoluble in absolute alcohol |
| Mechanism         | Reduces oxidative stress on cardiac and muscle tissue in the presence oxidative stress can protect against damage from ischemia-reperfusion injury in cardiac tissue.                                                               |



## **MATERIAL AND METHODS**

### **REQUIRED INSTRUMENT AND REAGENT**

The following table lists the instruments that were used in this study.

| S.N<br>o | Name of the<br>Instrument | Ref. Number        | Make                | Model       |
|----------|---------------------------|--------------------|---------------------|-------------|
| 1.       | Electronic balance        | I/RD/OEB/EB/0<br>1 | Adventurer<br>OHAUS | AR2140      |
| 2.       | HPLC                      | I/RD/HPC/03        | Shimadzu            | LC-2010C HT |
| 3.       | HPLC                      | I/RD/HPC/03        | Agilent             | 1260 Series |

Materials

The following table lists the materials that were used in this study.

| S.N | Name                                    | Grade | Supplier | Lot No or  | Potency  | Expiry   |
|-----|-----------------------------------------|-------|----------|------------|----------|----------|
| ο   |                                         |       |          | B.No       | / Purity |          |
| 1.  | Potassiumdihydroge<br>n ortho phosphate | AR    | Rankem   | J037C16    | 100.0%   | Feb 20   |
| 2.  | Phosphoric acid                         | AR    | Rankem   | G025J15    | 88.0%    | Sep 18   |
| 3.  | Sodium<br>metabisulphite                | AR    | Rankem   | J042F09    | 95.0%    | Jun 18   |
| 4.  | Sodium acetate<br>anhydrous             | AR    | Fisher   | 22217301-7 | 98.0%    | Jan 2018 |
| 5.  | Sodium acetate<br>anhydrous             | AR    | Rankem   | G517L18    | 98.0%    | Oct 2017 |
| 6.  | Triethylamine                           | AR    | Rankem   | R013H14    | 99.5%    | Aug 2019 |

|     | 1                   | [    | 1      |                 |       | 1        |
|-----|---------------------|------|--------|-----------------|-------|----------|
| 7.  | Tetrahydrofuran     | HPLC | Fisher | 4568920815      | 99.8% | Jul 2020 |
| 8.  | Glacial acetic acid | AR   | Rankem | W015E13         | 99.8% | May 2018 |
| 9.  | Boric acid          | AR   | Rankem | N009L12         | 99.5% | Jan 2018 |
| 10. | O-Phthaldehyde      | AR   | SRL    | 8740689         | 99.0% | May 2021 |
| 11. | Sodium hydroxide    | AR   | Fisher | 2611860815      | 98.0% | Jul 2020 |
| 12. | Potassium hydroxide | AR   | Rankem | P14C100872      | 85.0% | Feb 2019 |
| 13. | Mercapto ethanol    | AR   | Loba   | D257F1253       | 95.0% | Oct 2018 |
| 14. | Methanol            | HPLC | Fisher | 1572151116      | 99.9% | Oct 2021 |
| 15. | Acetonitrile        | HPLC | Finar  | 2124611248<br>2 | 99.9% | Jan 2022 |
|     |                     |      |        |                 |       |          |

### Working standard

The following table lists the standards that were used in this study.

| S.No | Name           | Grade | Lot No./B.No | Potency/Purity | Date of expiry |
|------|----------------|-------|--------------|----------------|----------------|
| 1.   | Acetylcysteine | USP   | WS023/10     | 99.67%         | 14/09/2017     |
| 2.   | Taurine        | USP   | WS075/09     | 99.80%         | 14/09/2017     |
|      |                |       |              |                |                |

### Column details

The following table lists the column that was used in this study.

| Column | Ref. Number | I.D. Number | Make                   | Specification                                                       |
|--------|-------------|-------------|------------------------|---------------------------------------------------------------------|
| 1.     | RD/COL/76   | K63402      | Nacalai<br>Tesque,Inc. | Cosmosil,5C <sub>18</sub> -MS-II<br>(250 X 4.6 mm, 5µm)             |
| 2.     | RD/COL/58   | H15-005968  | Phenomene<br>x         | Phenomenex, Hyperclone ODS (C <sub>18</sub> ),120A 250 X 4.6mm, 5µm |



### ANALYTICAL METHOD DEVELOPMENT

### Introduction

Analytical method development work is carried out to ensure that the API used and dosage forms that are developed and manufactured for human consumption are meeting the regulated quality norms before starting the analytical reference will be taken based on PDP/Pharmacopoeia /tech peak/PMF and tentative specification.

For chromatographic method development following points shall be considered

- a) Literature review
- b) Chemical structure and nature of component
- c) Solubility of component
- d) Any other relevant

### Method development of HPLC

The following parameters are usually considered during method development by HPLC

- Selection of mobile phase
- Selection of stationary phase
- Selection of pH
- Selection of other parameters

### Selection of mobile phase

### Mobile phase A

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 1000 mL of water. Add 0.18 mL of triethylamine and adjust the pH to 7.2 using dilute acetic acid and then add 3.0 mL of tetrahydrofuran. Mix well, filter and degas.

### Mobile phase B

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 200mL of water. Adjust the pH to 7.2 using dilute acetic acid and then add 400 mL of acetonitrile and 400 mL of methanol. Mix well, filter and degas. Mobile phase A and mobile phase B mix with 50:50 give satisfactory result of taurine. Various mobile phase systems containing phosphate buffer and pH was adjusted to 3 with phosphoric acid, that it was observed resolution was satisfactory gives satisfactory result and two well resolved peaks for acetylcysteine and taurine were recorded.

### Effect of pH

It was observed that the retention of the analyte increase with pH and decrease with in pH it was also observed that the shape of peak becomes in basic pH from the chromatographic conditions, it was that the pH 3 is suitable for acetylcysteine and pH 7.2 is suitable for taurine.

### Selection of phase

On the basis of HPLC mode and number of carbon atom present in molecule  $C_{18}$ bonded stationary phase was tried. Cosmosil,  $C_{18}$ , 250 X 4.6 mm, 5 µm or equivalent, Phenomenex, Hyperclone ODS ( $C_{18}$ ), 120A 250 X 4,6mm, 5µm for this two stationary phase was selected as it gives good result in case of system suitability parameter i.e. resolution, USP tangent, USP tailing.

### Selection of other parameter

Other parameter like mobile phase, flow rate, column, temperature and wavelength of detector can be selected on the basis of chemical properties of components present in the sample sensitivity and system suitability requirement of the analytical method.

### **TRIAL METHODS**

| Initial condition were from taurine in tablet dosage form |  |
|-----------------------------------------------------------|--|
|-----------------------------------------------------------|--|

| Parameter | eter Trial method 1 Trial method 2 |                                 | Trial method 3                     |  |
|-----------|------------------------------------|---------------------------------|------------------------------------|--|
| Flow rate | 1 mL/ mins                         | 1 mL/ mins                      | 1 mL/ mins                         |  |
| Mobile    | Mobile phase A and                 | Mobile phase A and B            | Mobile phase A and B               |  |
| phase     | B (40:60)                          | (30:70)                         | (50:50)                            |  |
| Buffer pH | 7.2                                | 7.2                             | 7.2                                |  |
| Diluent   | Mix equal volume                   | Mix equal volume of             | Mix equal volume of                |  |
|           | of mobile phase A                  | mobile phase A and B            | mobile phase A and B               |  |
|           | and B                              |                                 |                                    |  |
| Column    | Cosmosil,C <sub>18</sub> ,250 X    | Cosmosil,C <sub>18</sub> ,250 X | Cosmosil,C <sub>18</sub> ,250×4.6m |  |
|           | 4.6 mm,5 µm or                     | 4.6 mm, 5 µm or                 | m5µm or equivalent                 |  |
|           | equivalent                         | equivalent                      |                                    |  |

### Preparation of mobile phase

### Mobile phase A

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 1000 mL of water. Add 0.18 mL of triethylamine and adjust the pH to 7.2 using dilute acetic acid and then add 3.0 mL of tetrahydrofuran. Mix well, filter and degas.

### Mobile phase B

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 200 mL of water. Adjust the pH to 7.2 using dilute acetic acid and then add 400 mL of acetonitrile and 400 mL of methanol. Mix well, filter and degas.

# Standard solution

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well. Dilute 5 mL of this solution to 50 mL with the diluent.

# **Test solution**

Weigh and crush 20 tablets to a fine powder. Weigh accurately about 420mg of powdered tablet into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluent.

Separately inject  $10\mu$ L of standard and test solution into the chromatogram and measure the response for taurine.

# Conclusion

Trial method 1: Peak was not split so the column was not suitable.

Trial method 2: Peak was not split so the column was not suitable.

Trial method 3: The peak was well separated and this method has satisfactory resolution. Therefore this method was suitable for analysis.

# **OPTIMIZED METHOD**

Initial condition were from taurine in tablet dosage form

## Preparation of mobile phase

#### Mobile phase A

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 1000 mL of water. Add 0.18 mL of triethylamine and adjust the pH to 7.2 using dilute acetic acid and then add 3.0 mL of tetrahydrofuran. Mix well, filter and degas.

#### Mobile phase B

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 200 mL of water. Adjust the pH to 7.2 using dilute acetic acid and then add 400 mL of acetonitrile and 400 mL of methanol. Mix well, filter and degas.

#### **Chromatographic conditions**

| Column               | : Cosmosil, C <sub>18</sub> , 250 X 4.6 mm, 5 $\mu$ m or equivalent  |  |
|----------------------|----------------------------------------------------------------------|--|
| Flow rate            | : 1.0 mL / min                                                       |  |
| Detection wavelength | : 338 nm                                                             |  |
| Injection volume     | : 10 $\mu$ L (Online derivatisation method)                          |  |
|                      | Borate buffer: OPA reagent: Sample / Standard                        |  |
|                      | In the ratio 5: 3: 3 (Use injector program)                          |  |
| Oven temperature     | : 40°C                                                               |  |
| Mobile phase         | : Mobile phase A: Mobile phase B (50: 50)                            |  |
| Diluent              | : Mix each 200 mL of mobile phase A and B in a 500 mL stopper flask. |  |

# Standard solution

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well. Dilute 5 mL of this solution to 50 mL with the diluent.

#### **Test solution**

Weigh and crush 20 tablets to a fine powder. Weigh accurately about 420mg of powdered tablet into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluent.

Separately inject  $10\mu L$  of standard and test solution into the chromatogram and measure the response for taurine.

# Conclusion

The peak was well separated and this method has satisfactory resolution. Therefore this method was suitable for analysis.

# System stability testing

It is an integral of many analytical procedures. This based on the concept that the equipment electronics analytical operation and samples.

# **Specification limit**

98% to 102% w/w of the label claim.

# **TRIAL METHODS**

Initial condition were from acetylcysteine in tablet dosage form

| Parameter       | Trial method 1                                                 | Trial method 2                                            | Trial method 3                                            |
|-----------------|----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Flow rate       | 1 mL/ mins                                                     | 1 mL/ mins                                                | 1 mL/ mins                                                |
| Mobile<br>phase | 100% buffer                                                    | 100% buffer                                               | 100% buffer                                               |
| Buffer pH       | 7.2                                                            | 4.5                                                       | 3                                                         |
| Diluent         | Sodium<br>metabisulfite(6.8g/L)                                | Sodium<br>metabisulfite(6.8g/L)                           | Sodium<br>metabisulfite(6.8g/L)                           |
| Column          | Cosmosil,C <sub>18</sub> ,250X4.<br>6 mm, 5µm or<br>equivalent | Cosmosil,C <sub>18</sub> ,250X4.6<br>mm 5µm or equivalent | Cosmosil,C <sub>18</sub> ,250X4.6<br>mm 5µm or equivalent |

# Buffer preparation

Dissolve 6.8g of monobasic potassium phosphate in 1000mL of water, filter and degas. Adjust the pH to 4.5 with phosphoric acid.

# Sodium metabisulfite solution

Weigh accurately about 500 mg of sodium metabisulfite and dissolve in 1000mL of water.

# Standard solution

Weigh accurately about 50 mg of acetylcysteine working standard in 100 mL volumetric flask, add 50 mL of sodium metabisulfite solution, dissolve and make up the volume with sodium metabisulfite solution.

# Test solution

Weigh and powder 20 tablets. Weigh accurately about 275 mg of powdered tablets into a clean, 100mL volumetric flask. Add 50mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100mL with sodium metabisulfite solution, mix well and filter. Use the filtrate.

# Conclusion

Trial method 1: The peak was not split so the column was not suitable.

Trial method 2: The peak was not split so the column was not suitable.

Trial method 3: The peak was well separated and this method has satisfactory resolution. Therefore this method was suitable for analysis.

# **OPTIMIZED METHOD**

Initial condition were from acetylcysteine in tablet dosage form

#### Chromatographic conditions

| Column               | : Cosmosil, C <sub>18</sub> , 250 X 4.6 mm, 5 $\mu$ m or equivalent |
|----------------------|---------------------------------------------------------------------|
| Flow rate            | : 1.0 mL / min                                                      |
| Detection wavelength | : 214 nm                                                            |
| Injection volume     | : 10 μL                                                             |
| Oven temperature     | : 30°C                                                              |
| Mobile phase         | : 100% Buffer                                                       |

#### **Buffer preparation**

Dissolve 6.8g of monobasic potassium phosphate in 1000mL of water, filter and degas. Adjust the pH to 3.0 with phosphoric acid.

#### Sodium metabisulfite solution

Weigh accurately about 500 mg of sodium metabisulfite and dissolve in 1000mL of water.

# Standard solution

Weigh accurately about 50 mg of acetylcysteine working standard in 100 mL volumetric flask, add 50 mL of sodium metabisulfite solution, dissolve and make up the volume with sodium metabisulfite solution.

# **Test solution**

Weigh and powder 20 tablets. Weigh accurately about 275 mg of powdered tablets into a clean, 100mL volumetric flask. Add 50mL of sodium metabisulfite solution

and sonicate for 60 minutes. Make up the volume to 100mL with sodium metabisulfite solution, mix well and filter. Use the filtrate.

# Conclusion

The peak was well separated and these methods have satisfactory resolution. Therefore this method was suitable for analysis.

# System stability testing

It is an integral of many analytical procedures. This based on the concept that the equipment electronics analytical operation and samples.

# **Specification limit**

98% to 102%w/w of the label claim.



# ACETYLCYSTEINE

#### Reference

USP and ICH Guidelines

## **Chromatographic conditions**

| Column               | : Cosmosil, $C_{18}$ , 250 X 4.6 mm, 5 $\mu m$ or equivalent |
|----------------------|--------------------------------------------------------------|
| Flow rate            | : 1.0 mL / min                                               |
| Detection wavelength | : 214 nm                                                     |
| Injection volume     | : 10 μL                                                      |
| Oven temperature     | : 30°C                                                       |
| Mobile phase         | : 100% Buffer                                                |

## **Buffer preparation**

Dissolve 6.8g of monobasic potassium phosphate in 1000mL of water, filter and degas. Adjust the pH to 3.0 with phosphoric acid.

#### Sodium metabisulfite solution

Weigh accurately about 500 mg of sodium metabisulfite and dissolve in 1000mL of water.

#### **Standard solution**

Weigh accurately about 50 mg of acetylcysteine working standard in 100 mL volumetric flask, add 50 mL of sodium metabisulfite solution, dissolve and make up the volume with sodium metabisulfite solution.

#### **Test solution**

Weigh and powder 20 tablets. Weigh accurately about 275 mg of powdered tablets into a clean, 100mL volumetric flask. Add 50mL of sodium metabisulfite solution

and sonicate for 60 minutes. Make up the volume to 100mL with sodium metabisulfite solution, mix well and filter. Use the filtrate.

# Procedure

Separately inject the standard solution (6 injections) and test solution (2 injections) into the chromatograph and record the major responses. Ensure the following system suitability parameter.

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

#### Calculation

# % Assay of acetylcysteine

Area of sample X Standard wt (mg) X 100 X Purity of std. X

Avg wt. of tablet (mg) X 100

= -----

Area of standard X 100 X Sample wt (mg) X 100 X 150

= ----- % of acetylcysteine

# Validation program and acceptance criteria

# Specificity

Analyze the *placebo* (excipients with taurine) and acetylcysteine separately.

# **Placebo** solution

Weigh accurately about 225.0 mg of *placebo* into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: 2.25 mg/mL of *placebo*).

## Standard solution

Weigh accurately about 50 mg of acetylcysteine working standard in 100 mL volumetric flask, add 50 mL of sodium metabisulfite solution, dissolve and make up the volume with sodium metabisulfite solution (concentration: 0.50 mg/mL of acetylcysteine).

## Standard + *placebo* solution

Weigh accurately about 225mg of *placebo* and 50mg of acetylcysteine working standard into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: 2.25 mg/mL of *placebo* and 0.50 mg/mL of acetylcysteine).

#### Procedure

Prepare the above solution and inject each solution as per the test method and report the results.

#### Acceptance criteria

The *placebo* chromatogram should not show any peak at the retention time of acetylcysteine.

# System precision

# Standard solution

Prepare the concentration of acetylcysteine 0.50 mg/mL.

#### Procedure

Inject the standard solution (6 injections). Ensure the following system suitability criteria

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

# Linearity and Range

## Level - I (50%):

Prepare the concentration of 0.25mg/mL of acetylcysteine.

# Level - II (80%):

Prepare the concentration of 0.40mg/mL of acetylcysteine.

# Level - III (100%):

Prepare the concentration of 0.50mg/mL of acetylcysteine.

# Level - IV (120%):

Prepare the concentration of 0.60mg/mL of acetylcysteine.

# Level - V (150%):

Prepare the concentration of 0.75mg/mL of acetylcysteine.

# Procedure

Prepare the above solutions ranging from 50% to 150% and inject each level in duplicate. Perform the correlation co-efficient by covering at least five points and report the linearity as the range for determining the assay.

#### Acceptance criteria

The plot of concentration versus peak area should be linear with a correlation coefficient not less than 0.995.

# Accuracy

# Level - I (50%) - 1:

Weigh accurately about 225 mg of *placebo* and 25 mg of acetylcysteine working standard into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: 2.25 mg/mL of *placebo* and 0.25 mg/mL of acetylcysteine).

# Level - I (50%) - 2:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.25 mg/mL of acetylcysteine.

## Level - I (50%) - 3:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.25 mg/mL of acetylcysteine.

# Level - II (100%) - 1:

Weigh accurately about 225.0 mg of *placebo* and 50 mg of acetylcysteine working standard into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: 2.25 mg/mL of *placebo* and 0.50 mg/mL of acetylcysteine).

# Level - II (100%) - 2:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.50 mg/mL of acetylcysteine.

# Level - II (100%) - 3:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.50 mg/mL of acetylcysteine.

#### Level - III (150%) - 1:

Weigh accurately about 225 mg of *placebo* and 75 mg of acetylcysteine working standard into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: 2.25 mg/mL of *placebo* and 0.75 mg/mL of acetylcysteine).

## Level - III (150%) - 2:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.75 mg/mL of acetylcysteine.

#### Level - III (150%) - 3:

Prepare the concentration 2.25 mg/mL of *placebo* and 0.75 mg/mL of acetylcysteine.

#### Procedure

Prepare the above solutions in the range of from 50%, 100% and 150% and inject. Each solution in duplicate as per the test method. Calculate the recovery in each level by calculating the measured concentration against theoretical concentration.

#### Acceptance criteria

The recovery should be in the range of 98.0-102.0%.

#### **Method precision**

The system precision test as per the test methods.

#### **Test solution**

Weigh and powder 20 tablets. Weigh accurately about 275mg of powdered tablets into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: equivalent to

0.50 mg/mL of acetylcysteine). Prepare the equivalent concentration of 0.50 mg/mL of acetylcysteine test solution in 6 times.

# Procedure

Prepare the test solution of tablet dosage form as per the test method and inject each solution. Calculate the precision of the method by calculating % assay of each solution against standard solution. Report the % RSD of all individual assay values.

# Acceptance criteria

The percentage relative standard deviation for the assay values should be less than 2.

# Ruggedness (Intermediate precision)

The ruggedness of the method is to be performing by analyzing the test solution of tablet dosage form with the following varying parameters.

| Parameter                | Set I          | Set II         |
|--------------------------|----------------|----------------|
| Instrument to instrument | Instrument - 1 | Instrument - 2 |
| Column to column         | Column – 1     | Column - 2     |
| Reagent to reagent       | Reagent – 1    | Reagent - 2    |
| Analyst to analyst       | Analyst – 1    | Analyst - 2    |
| Day to day               | Day – 1        | Day - 2        |

# Standard solution

Proceed the system precision test as per the test methods.

# Test solution - 1

Weigh and powder 20 tablets. Weigh accurately about 275 mg of powdered tablets into a clean, 100 mL volumetric flask. Add 50 mL of sodium metabisulfite solution and sonicate for 60 minutes. Make up the volume to 100 mL with sodium metabisulfite solution, mix well and filter. Use the filtrate (concentration: equivalent to

0.50 mg/mL of acetylcysteine). Prepare the equivalent concentration of 0.50 mg/mL of acetylcysteine test solution in 6 times.

## Procedure

Prepare the test solution of tablet dosage form by different analyst with different reagent on different day as per the test method. Inject each solution with different instrument using different column. Calculate the ruggedness of the method by calculating % assay of each solution against standard solution. Report the overall % RSD of all individual assay values in set-I and set–II.

#### Acceptance criteria

The overall % RSD should not be more than 2.0%.

## Robustness

The robustness of the method is to be determined by analyzing the standard solution six times with varying HPLC conditions as described below:

| Parameter / Condition   | Actual           | Low              | High             |
|-------------------------|------------------|------------------|------------------|
| Flow rate               | 1.00 mL/min      | 0.90 mL/min      | 1.10 mL/min      |
| Mobile phase            | 100% Buffer      | 100% Buffer      | 100% Buffer      |
|                         | conc.: 6.8 g / L | conc.: 6.7 g / L | conc.: 6.9 g / L |
| Buffer Ph               | 3.0              | 2.9              | 3.1              |
| Column oven temperature | 30°C             | 28°C             | 32°C             |

# Acceptance criteria

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

## Solution stability

Measure the stability of the tablet dosage form test solution against 100% of the standard concentration by keeping the solution up to 48 hours at 15°C. Inject the sample at different time intervals (e.g. Initial, 6,12,18,24,36 and 48 hours) and calculate the percentage relative standard deviation of acetylcysteine in tablet dosage form at different interval of time.

## Acceptance criteria

The overall % RSD should not be more than 2.0%.

## TAURINE

#### Reference

USP and ICH Guidelines

#### **Chromatographic conditions**

| Column               | : Cosmosil, C <sub>18</sub> , 250 X 4.6 mm, 5 $\mu$ m or equivalent |  |
|----------------------|---------------------------------------------------------------------|--|
| Flow rate            | : 1.0 mL / min                                                      |  |
| Detection wavelength | : 338 nm                                                            |  |
| Injection volume     | : 10 $\mu$ L (Online derivatisation method)                         |  |
|                      | Borate buffer: OPA reagent: Sample / Standard                       |  |
|                      | In the ratio 5: 3: 3 (Use injector program)                         |  |
| Oven temperature     | : 40°C                                                              |  |
| Mobile phase         | : Mobile phase A: Mobile phase B (50: 50)                           |  |
| Diluent              | : Mix each 200mL of mobile phase A and B in a 500mL stopper flask.  |  |

# Preparation of mobile phase

#### Mobile phase A

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 1000mL of water. Add 0.18mL of triethylamine and adjust the pH to 7.2 using dilute acetic acid and then add 3mL of tetrahydrofuran. Mix well, filter and degas.

#### Mobile phase B

Weigh accurately about 2.72 g of anhydrous sodium acetate and dissolve it in 200mL of water. Adjust the pH to 7.2 using dilute acetic acid and then add 400mL of acetonitrile and 400mL of methanol. Mix well, filter and degas.

# Preparation of derivatisation reagents

# 45% solution of potassium hydroxide

Weigh accurately 4.5 g of potassium hydroxide pellets and dissolve in 10mL of water.

# 40% solution of sodium hydroxide

Weigh accurately 4 g of sodium hydroxide pellets and dissolve in 10mL of water.

# O-phthalaldehyde (OPA) reagent

Weigh accurately about 2.47 g of boric acid into 100mL volumetric flask and add 75mL of water. Shake well to dissolve and adjust the pH of this solution to  $10.4 \pm 0.1$  with a 45% solution of potassium hydroxide. Make up the volume to 100mL with water.

Weigh accurately about 1.0 g of O- phthalaldehyde in a clean 250 mL beaker and add 5mL of methanol. Sonicate to dissolve and add 95 mL of borate buffer and 2 mL of mercapto ethanol and adjust the pH of this solution to  $10.4 \pm 0.1$  with a 40% solution of sodium hydroxide.

# Borate buffer pH 10.4

Weigh accurately about 2.47 g of boric acid into 100 mL volumetric flask and add 75mL of water. Shake well to dissolve and adjust the pH of this solution to  $10.4 \pm 0.1$  with a 40 % solution of sodium hydroxide. Make up the volume to 100 mL with water.

# Standard solution

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well. Dilute 5 mL of this solution to 50 mL with the diluent.

# Test solution

Weigh and crush 20 tablets to a fine powder. Weigh accurately about 420mg of powdered tablet into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluent.

## Procedure

Separately inject the standard solution (6 injections) and test solution (2 injections) into the chromatograph and record the major responses. Ensure the following system suitability parameter.

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

Calculate the % assay of the taurine using the following expression.

# % Assay of taurine

Area of sample X Standard wt (mg) X 5 X 50 X 50 X Purity of std. X

Avg wt. of tablet (mg) X 100

= -----

Area of standard X 50 X 50 X Sample wt (mg) X 5 X 100 X 500

= ----- % of taurine

# Validation program and acceptance criteria

# Specificity

Analyze the *placebo* (excipients with acetylcysteine) and taurine separately.

# **Placebo** solution

Weigh accurately about 167 mg of *placebo* into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the

diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluents (concentration 0.33 mg/mL of *placebo*).

## Standard solution (taurine)

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well. Dilute 5 mL of this solution to 50 mL with the diluents (concentration 0.50 mg/mL of taurine).

#### Standard + *placebo* solution

Weigh accurately about 167 mg of *placebo* and 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluents (concentration 0.33 mg/mL of *placebo* and 0.50 mg/mL of taurine).

#### Procedure

Prepare the above solution and inject each solution as per the test method and report the results.

#### Acceptance criteria

The *placebo* chromatogram should not show any peak at the retention time of taurine.

#### System precision

# Standard solution

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well. Dilute 5 mL of this solution to 50 mL with the diluent (concentration: 0.50 mg/mL of taurine).

## Procedure

Inject the standard solution (6 injections). Ensure the following system suitability criteria.

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

## Linearity and range

#### Standard stock solution

Weigh accurately about 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent and mix well.

# Level - I (50%):

Dilute 2.5 mL of standard stock solution to 50 mL with the diluents (concentration: 0.25 mg/mL of taurine).

#### Level - II (80%):

Dilute 4.0 mL of standard stock solution to 50 mL with the diluents (concentration: 0.40 mg/mL of taurine).

# Level - III (100%):

Dilute 5.0 mL of standard stock solution to 50 mL with the diluents (concentration: 0.50 mg/mL of taurine).

# Level - IV (120%):

Dilute 6.0 mL of standard stock solution to 50 mL with the diluent (concentration: 0.60 mg/mL of taurine).

# Level - V (150%

Dilute 7.5 mL of standard stock solution to 50 mL with the diluent (concentration: 0.75 mg/mL of taurine).

# Procedure

Prepare the above solutions ranging from 50% to 150% and inject each level in duplicate. Perform the correlation co-efficient by covering at least five points and report the linearity as the range for determining the assay.

# Acceptance criteria

Linear with a correlation coefficient NLT 0.995.

# Accuracy

# Level - I (50%) - 1:

Weigh accurately about 167 mg of *placebo* and 125 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluents (concentration: 0.33 mg/mL of *placebo* and 0.25 mg/mL of taurine).

# Level - I (50%) - 2:

Prepare the concentration 0.33 mg/mL of *placebo* and 0.25 mg/mL of taurine.

# Level - I (50%) - 3:

Prepare the concentration 0.33 mg/mL of *placebo* and 0.25 mg/mL of taurine.

# Level - II (100%) - 1:

Weigh accurately about 167 mg of *placebo* and 250 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL

of the filtrate to 50 mL with the diluent (concentration: 0.33 mg/mL of *placebo* and 0.50 mg/mL of taurine).

# Level - II (100%) - 2:

Prepare the concentration 0.33 mg/mL of *placebo* and 0.50 mg/mL of taurine.

# Level - II (100%) - 3:

Prepare the concentration 0.33 mg/mL of *placebo* and 0.50 mg/mL of taurine.

# Level - III (150%) - 1:

Weigh accurately about 167 mg of *placebo* and 375 mg of taurine working standard into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluents (concentration: 0.33 mg/mL of Placebo and 0.75 mg/mL of taurine).

# Level - III (150%) - 2:

Prepare the concentration of 0.33 mg/mL of *placebo* and 0.75 mg/mL of taurine.

# Level - III (150%) - 3:

Prepare the concentration of 0.33 mg/mL of placebo and 0.75 mg/mL of taurine.

# Procedure

Prepare the above solutions in the range of from 50%, 100% and 150% and inject each solution in duplicate as per the test method. Calculate the recovery in each level by calculating the measured concentration against theoretical concentration.

# Acceptance criteria

The recovery should be in the range of 98.0-102.0%.

# Method precision

# Standard solution

Proceed the system precision test as per the test methods.

# **Test solution**

Weigh and crush 20 tablets to a fine powder. Weigh accurately about 420 mg of powdered tablet into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluent (concentration: equivalent to 0.50 mg/mL of taurine). Prepare the equivalent concentration 0.50 mg/mL of taurine test solution in 6 times.

# Procedure

Prepare the test solution of tablet dosage form as per the test method and inject each solution. Calculate the precision of the method by calculating % assay of each solution against standard solution. Report the % RSD of all individual assay values.

# Acceptance criteria

The percentage relative standard deviation for the assay values should be less than 2.0.

# **Ruggedness (Intermediate precision)**

The ruggedness of the method is to be performing by analyzing the test solution of tablet dosage form with the following varying parameters.

| Parameter                | Set I          | Set II         |
|--------------------------|----------------|----------------|
| Instrument to instrument | Instrument – 1 | Instrument - 2 |
| Column to column         | Column – 1     | Column - 2     |
| Reagent to reagent       | Reagent – 1    | Reagent - 2    |
| Analyst to analyst       | Analyst – 1    | Analyst - 2    |
| Day to day               | Day – 1        | Day - 2        |

# Standard solution

Proceed the system precision test as per the test method.

# **Test solution**

Weigh and crush 20 tablets to a fine powder. Weigh accurately about 420 mg of powdered tablet into clean, 50 mL volumetric flask. Add 30 mL of diluent and sonicate for 10 minutes. Make up the volume to 50 mL with the diluent, mix well and filter. Dilute 5 mL of the filtrate to 50 mL with the diluent (concentration equivalent to 0.50 mg/mL of taurine). Prepare the equivalent concentration of 0.50 mg/mL of taurine test solution in 6 times.

# Procedure

Prepare the test solution of tablet dosage form by different analyst with different reagent on different day as per the test method. Inject each solution with different instrument using different column, different reagent, different analyst and different days. Calculate the ruggedness of the method by calculating % assay of each solution against standard solution. Report the overall % RSD of all individual assay values in set-I and set–II.

# Acceptance criteria

The overall % RSD should not be more than 2.0%.

# Robustness

The robustness of the method is to be determined by analyzing the standard solution six times with varying HPLC conditions as described below.

| Parameter / Condition      | Actual                             | Low                                | High                               |  |
|----------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Flow rate                  | 1.00 mL/min                        | 0.90 mL/min                        | 1.10 mL/min                        |  |
| Mobile phase               | Mobile phase A :<br>Mobile phase B | Mobile phase A :<br>Mobile phase B | Mobile phase A :<br>Mobile phase B |  |
|                            | 50 : 50                            | 52 : 48                            | 48 : 52                            |  |
| Buffer pH                  | 7.20                               | 7.10                               | 7.30                               |  |
| Column oven<br>temperature | 40°C                               | 38°C                               | 42°C                               |  |

# Acceptance criteria

| System suitability parameter           | Accepted criteria          |
|----------------------------------------|----------------------------|
| Tailing factor (standard solution)     | NMT 2.0                    |
| Column effiencency (standard solution) | NLT 2000 theoretical plate |
| Relative standard deviation            | NMT 2.0                    |

# Solution stability

Measure the stability of the tablet dosage form test solution against 100% of the standard concentration by keeping the solution up to 48 hours at 15°C. Inject the sample at different time intervals (eg: Initial, 6 hours, 12 hours, 18 hours and 24 hours) and calculate the percentage relative standard deviation of taurine in tablet dosage form at different interval of time.



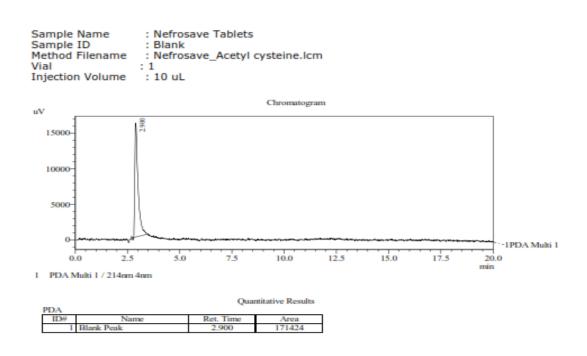
# **RESULTS AND DISCUSSION**

#### **RESULTS AND DISCUSSION**

#### Specificity

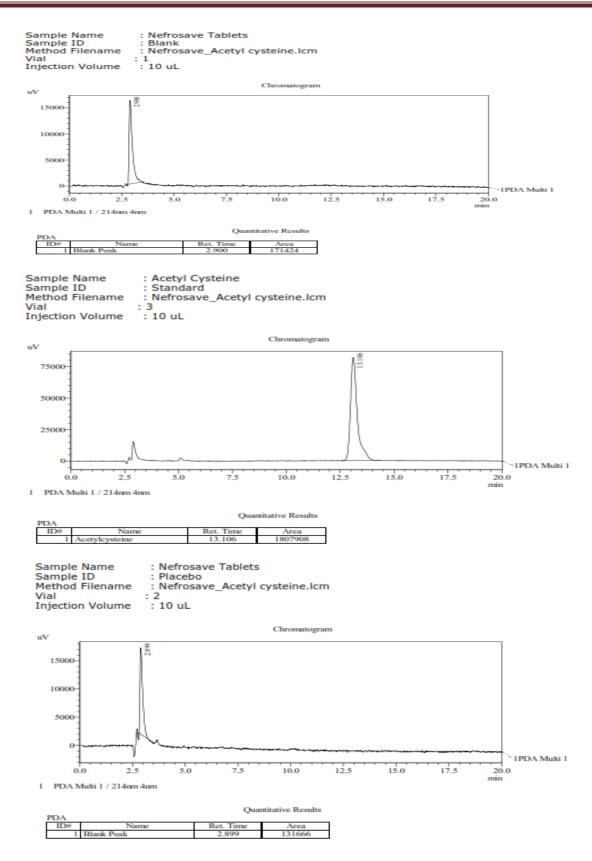
*Placebo* solution was prepared separately at a concentration of 2.25 mg/mL of excipients blend. A solution of *placebo* was spiked with the acetylcysteine at its working concentration. The solution was analyzed as per the RP-HPLC method described. Table 1 summarizes the retention time (RT), relative retention time (RRT) values obtained for *placebo* and acetylcysteine.

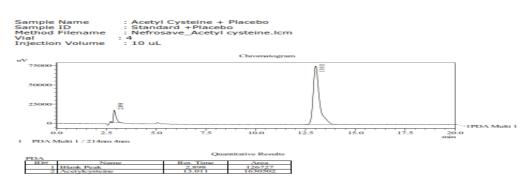
#### Acceptance criteria


The *placebo* chromatogram should not show any peak at the retention time of acetylcysteine.

# Table 1: Summary of retention time and relative retention time values for placebo andacetylcysteine


| Peak name      | Retention time (mins) | Relative retention time |
|----------------|-----------------------|-------------------------|
| Blank peak     | 2.90                  | 0.22                    |
| Acetylcysteine | 13.01                 | 1.00                    |


No peak was observed at the retention time of acetylcysteine in the chromatogram of


#### placebo



Department of Pharmaceutical Analysis



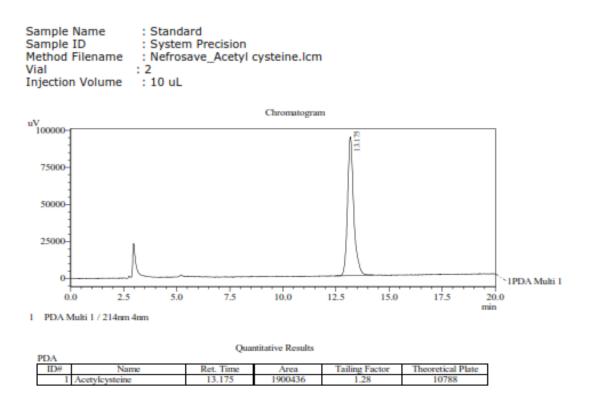




## System precision

A standard solution of 0.50 mg/mL of acetylcysteine was prepared and analyzed as per the method. Table 2: summarizes system suitability results.

## Acceptance criteria


(i) The tailing factor for the acetylcysteine peak should not more than 2.0 in standard solution.

(ii) The number of theoretical plates for the acetylcysteine peak should not less than 2000 in standard solution.

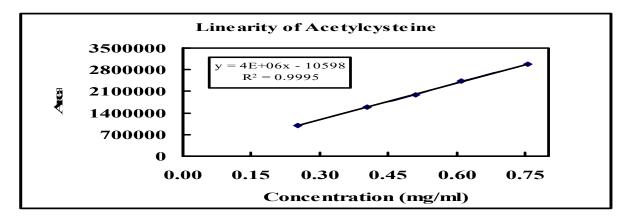
# Table 2: summary of retention time, % RSD of peak area, tailing factor andtheoretical plates of the acetylcysteine peak

| S.No | Retention<br>time<br>(Minutes) | Area    | Tailing<br>factor | Theoretica<br>I plates | Average | %<br>RSD |  |
|------|--------------------------------|---------|-------------------|------------------------|---------|----------|--|
| 1    | 13.18                          | 1900436 | 1.29              | _                      |         |          |  |
| 2    | 13.18                          | 1890556 |                   |                        |         |          |  |
| 3    | 13.19                          | 1884890 |                   |                        |         |          |  |
| 4    | 13.18                          | 1892288 |                   | 10788                  | 1891268 | 0.27     |  |
| 5    | 13.23                          | 1891080 |                   |                        |         |          |  |
| 6    | 13.24                          | 1888358 |                   |                        |         |          |  |

The percentage relative standard deviation of peak area of acetylcysteine was 0.27 with the tailing factor and theoretical plates of 1.29 and 10788 respectively.



#### Linearity and range


The linearity of the HPLC method was demonstrated for acetylcysteine ranging from 0.2500 mg/mL to 0.7500 mg/mL, which is equivalent to 50% to 150% of the acetylcysteine working strength. Five standard solutions at the concentrations within the mentioned range were prepared and analyzed as per the method. The linearity results obtained are shown in Table 3. Figure 1 shows the line of best fit for concentration versus peak area of acetylcysteine.

#### Acceptance criteria

The plot of concentration versus peak area should be linear with a correlation coefficient ( $R^2$ ) not less than 0.995.

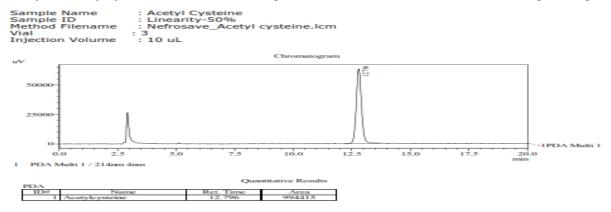
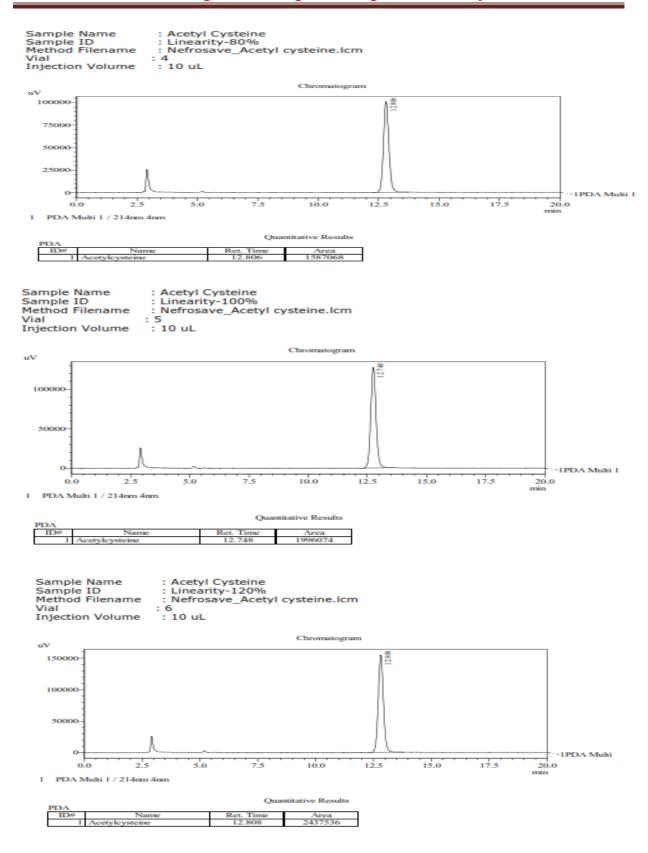
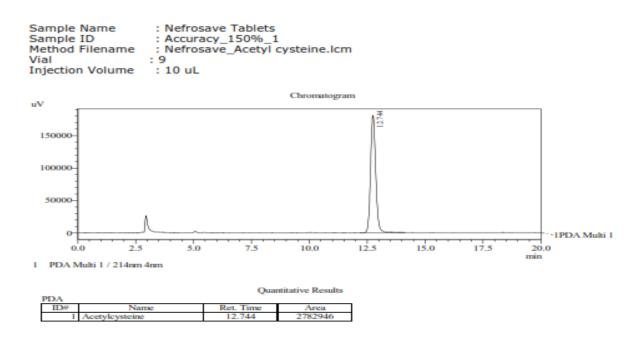

| Level | % of acetylcysteine | Concentration(mg/mL)    | Peak area |
|-------|---------------------|-------------------------|-----------|
| 50%   | 0.251               | 50.2                    | 993424    |
| 80%   | 0.403               | 80.6                    | 1583987   |
| 100%  | 0.508               | 101.6                   | 1996797   |
| 120%  | 0.608               | 121.6                   | 2436183   |
| 150%  | 0.754               | 150.8                   | 2980211   |
|       |                     | Correlation coefficient | 0.9995    |

 Table 3: Linearity of acetylcysteine





# Figure 1: Linearity graph for acetylcysteine

Thus, the HPLC method for the estimation of acetylcysteine in tablet dosage form was shown to be linear in the range of 50% to 150% of the working concentration with a correlation coefficient of 0.9995. The range of the HPLC method for determining the assay of acetylcysteine in tablet dosage form is 50% to 150% of the working strength.



Department of Pharmaceutical Analysis

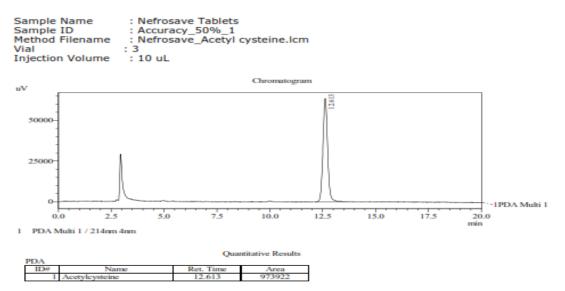




## Accuracy

The accuracy of the method was determined by using three solutions containing *placebo* spiked with acetylcysteine at approximately 50%, 100% and 150% of its working strength. Each level was analyzed. The percentage recovery results obtained are listed in Table 4.

#### Acceptance criteria


The recovery should be in the range of 98.0% - 102.0%.

| Level | %acetylcysteine<br>working<br>strength | Theoretical<br>conc.(mg/mL) | Measured<br>conc.(mg/mL) | %<br>recovery |
|-------|----------------------------------------|-----------------------------|--------------------------|---------------|
|       | 51.0                                   | 0.25500                     | 0.25822                  | 101.26        |
| 50%   | 51.4                                   | 0.25700                     | 0.25852                  | 100.59        |
|       | 50.8                                   | 0.25400                     | 0.25772                  | 101.46        |
|       | 99.8                                   | 0.49900                     | 0.50264                  | 100.73        |
| 100%  | 100.2                                  | 0.50100                     | 0.50134                  | 100.07        |
|       | 100.4                                  | 0.50200                     | 0.49767                  | 99.14         |
|       | 149.4                                  | 0.74700                     | 0.74422                  | 99.63         |
| 150%  | 149.0                                  | 0.74500                     | 0.73956                  | 99.27         |
|       | 150.2                                  | 0.75100                     | 0.74264                  | 98.89         |

# Table 4: Accuracy of acetylcysteine

The percentage recovery values were in the range of 98.89%- 101.46% which is

within the acceptance criteria.

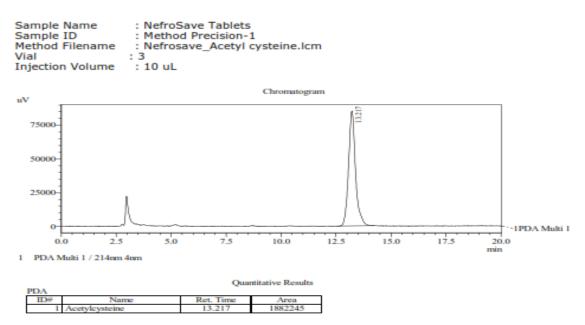




#### **Method precision**

The method precision was performed by analyzing a sample solution of tablet dosage form (six replicate sample preparation). Table 5 summarizes the results of precision for the method.

## Acceptance criteria


The percentage relative standard deviation for the assay values should be less than 2.0.

| Sample | Level   | % Assay |
|--------|---------|---------|
| 1      | 100%    | 99.92   |
| 2      | 100%    | 100.03  |
| 3      | 100%    | 99.01   |
| 4      | 100%    | 99.58   |
| 5      | 100%    | 101.03  |
| 6      | 100%    | 100.15  |
|        | Average | 99.95   |
|        | % RSD   | 0.67    |

# Table 5: Summary of results for precision of the method

The %RSD for the assay values of acetylcysteine in tablet dosage form was

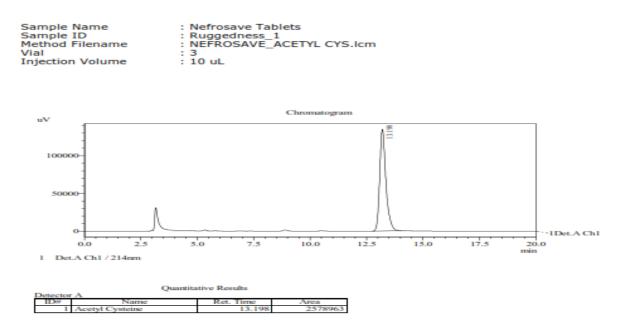
#### 0.67 %



## **Ruggedness (Intermediate precision)**

The ruggedness of the method was performed by analyzing a sample solution of tablet dosage form as per the test method (six replicate samples preparation) and injected each solution in duplicate using different instrument, column, reagent, and analyst on different days. The results of set I were compared with the results of set II. Table 6 shows the ruggedness of the method.

## Acceptance criteria


The overall % RSD should not be more than 2.0%

| Sample          | % Assay (a | icetylcysteine) |
|-----------------|------------|-----------------|
|                 | Set - I    | Set - II        |
| 1               | 99.92      | 100.85          |
| 2               | 100.03     | 99.23           |
| 3               | 99.01      | 99.95           |
| 4               | 99.58      | 99.71           |
| 5               | 101.03     | 101.19          |
| 6               | 100.15     | 99.73           |
| Average         | 99.95      | 100.11          |
| % RSD           | 0.67       | 0.75            |
| Overall average | 100.03     |                 |
| Overall % RSD   | (          | 0.68            |
| Set             | Set I      | Set II          |

## Table 6: summary of results for ruggedness

| Instrument | I/RD/HPC/04                       | I/RD/HPC/03                       |
|------------|-----------------------------------|-----------------------------------|
|            | Cosmosil, 5C <sub>18</sub> -MS-II | Cosmosil, 5C <sub>18</sub> -MS-II |
| Column     | (250 X 4.6 mm, 5µm),<br>RD/COL/77 | (250 X 4.6 mm, 5µm),<br>RD/COL/76 |
| Reagent    | Potassium dihydrogen              | Potassium dihydrogen              |
| Neayent    | orthophosphate (Rankem)           | orthophosphate (Finar)            |
| Analyst    | A.Baskar Palraj                   | S.Vijay                           |
| Day        | 28/02/2017                        | 03/03/2017                        |

The above result indicates that the test method is rugged for instrument to instrument, column to column, reagent to reagent, analyst to analyst and day to day variation. The overall % RSD for the assay value of acetylcysteine in tablet dosage form was 0.68.



#### Robustness

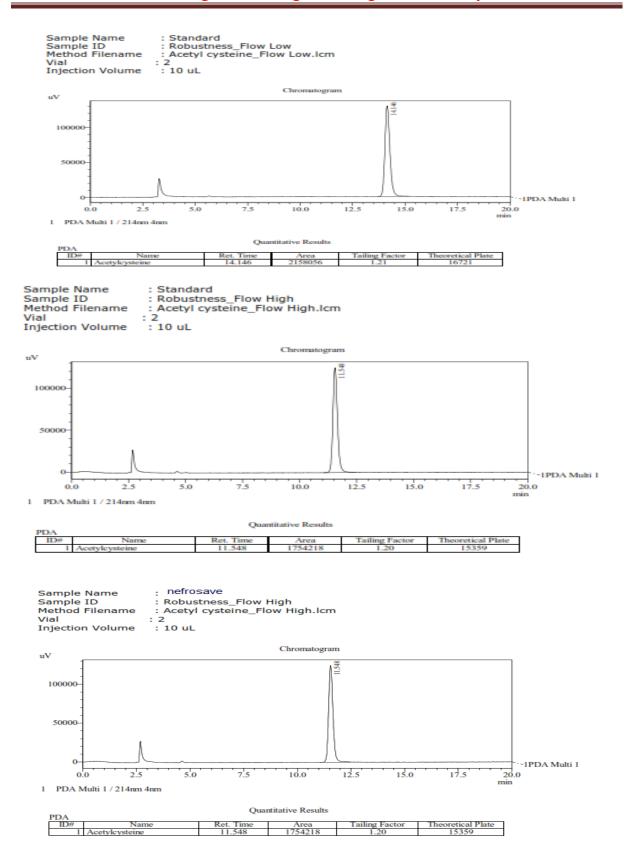
The following table (Table 7) shows the parameters of the method that were altered to test the robustness of the method. System suitability test was carried out to asses if these changes had a significant effect on the chromatography.

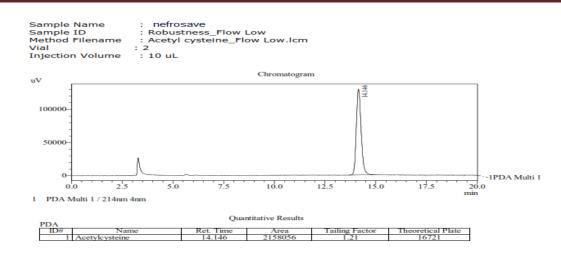
| Parameter / Condition   | Actual           | Low              | High             |
|-------------------------|------------------|------------------|------------------|
| Flow rate               | 1.00 mL/min      | 0.90 mL/min      | 1.10 mL/min      |
| Mobile phase            | 100% Buffer      | 100% Buffer      | 100% Buffer      |
| '                       | Conc.: 6.8 g / L | Conc.: 6.7 g / L | Conc.: 6.9 g / L |
| Buffer pH               | 3.0              | 2.9              | 3.1              |
| Column oven temperature | 30°C             | 28°C             | 32°C             |

#### Table 7: Parameters altered for robustness test

The acetylcysteine results obtained for robustness tests are summarized in Table 8.

## Acceptance criteria

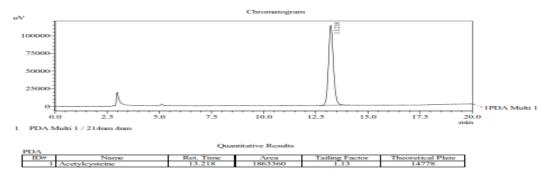

(i) The tailing factor for the acetylcysteine peaks should not more than 2.0 in standard solution.

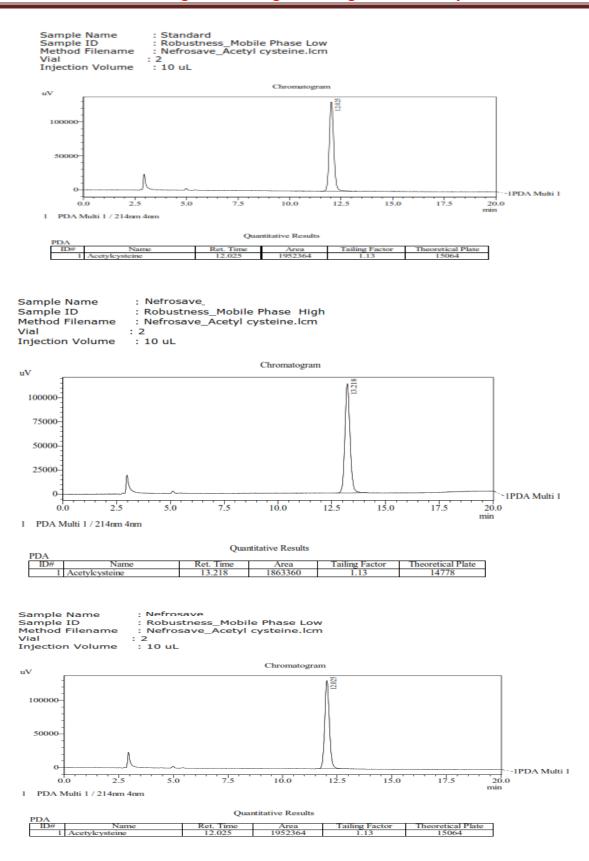

(ii) The number of theoretical plates for the acetylcysteine peaks should not less than 2000 in standard solution.

(iii) The relative standard deviation for the peak area of acetylcysteine should not be more than 2.0% in standard solution.

| Table 8: Summary of robustness results of acetylcysteine (Flow) |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |

| Flow               | Actual          | Low             | High            |
|--------------------|-----------------|-----------------|-----------------|
| Retention time     | 13. 18-13.24    | 14.14-14.18     | 11.55-11.65     |
| (min)              |                 |                 |                 |
| Area               | 1888358-1900436 | 2145603-2153669 | 1733324-1754218 |
| Tailing factor     | 1.29            | 1.21            | 1.20            |
| Theoretical plates | 10788           | 16721           | 15359           |
| Average (Area)     | 1891268         | 2152542         | 1740558         |
| %RSD (Area)        | 0.27            | 0.24            | 0.41            |



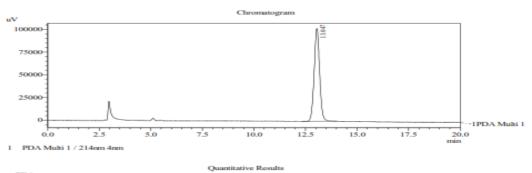

## Table 9: Summary of robustness results of acetylcysteine (Mobile phase)

| Mobile phase       | Actual      | Low             | High            |
|--------------------|-------------|-----------------|-----------------|
| Retention time     | 13.18_13.24 | 11.99-12.05     | 13.25-13.30     |
| (min)              |             |                 |                 |
| Area               | 1888358-    | 1948798-1975414 | 1852245-1863360 |
|                    | 1900436     |                 |                 |
| Tailing factor     | 1.29        | 1.131           | 1.20            |
| Theoretical plates | 10788       | 15064           | 15359           |
| Average (Area)     | 1891268     | 1962783         | 1858564         |
| %RSD (Area)        | 0.27        | 0.57            | 0.24            |

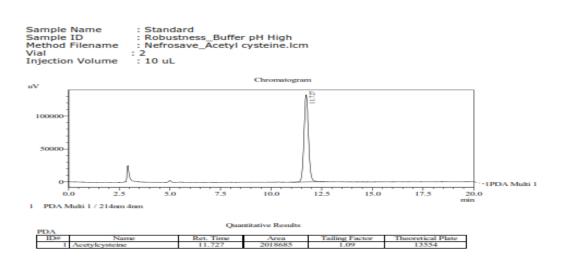
Sample Name Sample ID Method Filename Vial Injection Volume : Standard : Robustness\_Mobile Phase High : Nefrosave\_Acetyl cysteine.lcm : 2 : 10 uL






# Table10: Summary of robustness results of acetylcysteine (Buffer pH)

| Buffer pH            | Actual                                                                  | Low             | High            |
|----------------------|-------------------------------------------------------------------------|-----------------|-----------------|
| Retention time (min) | 13.18-13.24                                                             | 12.97-13.05     | 11.66-11.75     |
| Area                 | 1892288-1900436                                                         | 1879427-1885303 | 2018685-2034826 |
| Tailing factor       | 1.29                                                                    | 1.06            | 1.09            |
| Theoretical plates   | 10788                                                                   | 11501           | 13554           |
| Average (Area)       | 1891268                                                                 | 1890268         | 2024317         |
| %RSD (Area)          | 0.27                                                                    | 0.41            | 0.30            |
| Sample ID            | : Standard<br>: Robustness_Buffer pH Lov<br>: Nefrosave_Acetyl cysteiny |                 |                 |


Method Filename Vial Injection Volume

: Nefrosave\_Acetyl cysteine.lcm : 2 : 10 uL





ID. Tailing Factor 1.06 Name Theoretical Plate 11501





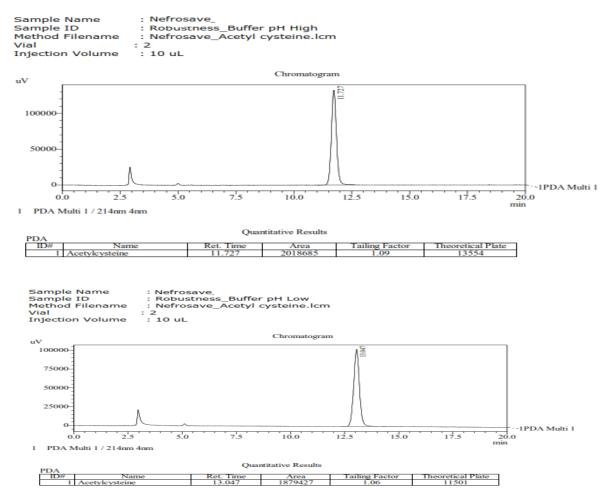
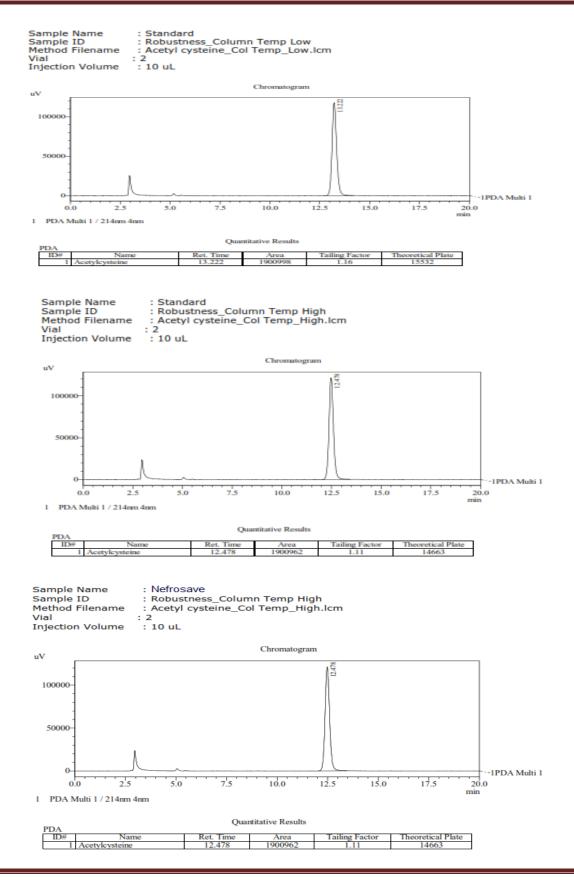
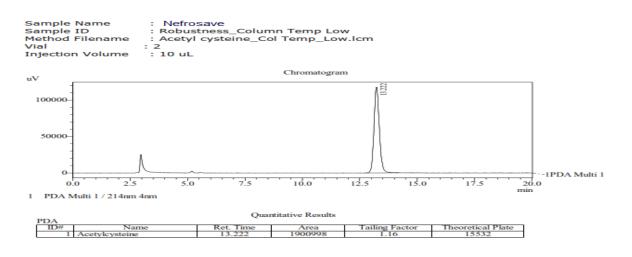





Table 11: Summary of robustness results of acetylcysteine (Column temperature)

| Column               | Actual          | Low             | High            |
|----------------------|-----------------|-----------------|-----------------|
| temperature          |                 |                 |                 |
| Retention time (min) | 13.18-13.24     | 13.20-13.22     | 12.48-12.49     |
| Area                 | 1888358-1900436 | 1893207-1900998 | 1896528-1900962 |
| Tailing factor       | 1.29            | 1.16            | 1.12            |
| Theoretical plates   | 10788           | 15532           | 1 4663          |
| Average (Area)       | 1891268         | 1895568         | 1899345         |
| %RSD (Area)          | 0.27            | 0.18            | 0.09            |

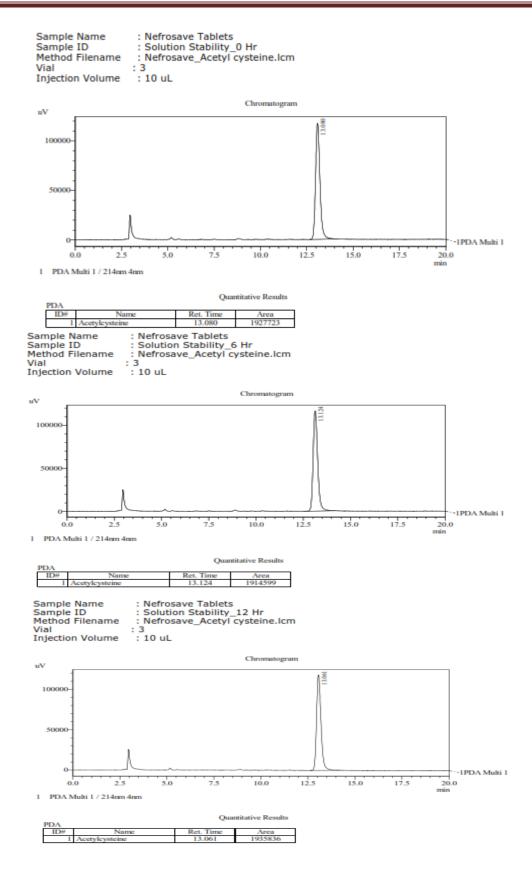


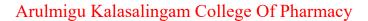
Department of Pharmaceutical Analysis



#### Solution stability

A solution of tablet dosage form at 100% of working concentration was kept at 15°C. The solution stability was monitored at different time interval (Initial, 6 hours, 12 hours, 24 hours, 36 hours and 48 hours). The results are summarized in Table 12.


#### Acceptance criteria


Record the results and assign the stability of solutions based on the experimental data. The relative standard deviation of assay results should not vary by more than 2.0% for a stable solution.

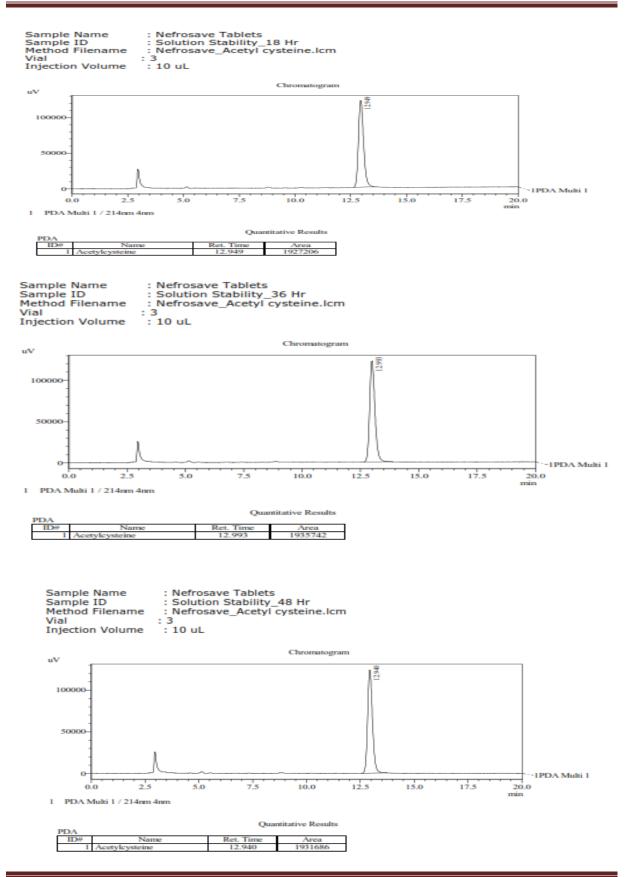

| Time Intervals<br>( hours) | Initial | 6      | 12     | 18     | 24     | 36     | 48    | %<br>RSD |
|----------------------------|---------|--------|--------|--------|--------|--------|-------|----------|
| %<br>acetylcysteine        | 100.43  | 100.07 | 101.15 | 100.63 | 100.55 | 100.95 | 100.7 | 0.35     |

Table 12: summary of solution stability results

The assay values of acetylcysteine in tablet dosage form was in the range of 100.07% to 101.15%. The %RSD between the assay results from the initial to 48hours was 0.35, which is within the acceptance limit of 2.0%. Therefore, the tablet dosage form sample solutions are stable up to 48 hours and 15°C.







Department of Pharmaceutical Analysis

| S.No | Parameters         | Observation                      | Acceptance criteria             |  |
|------|--------------------|----------------------------------|---------------------------------|--|
| 1    | Specificity        | No peak was observed at the      | The <i>placebo</i>              |  |
|      | Placebo            | retention time of acetylcysteine | chromatogram should not         |  |
|      | Interference       | in the chromatogram of           | show any peak at the            |  |
|      |                    | placebo                          | retention time of               |  |
|      |                    |                                  | acetylcysteine.                 |  |
| 2    | System precision   | 1.29                             | Tailing factor: NMT 2.0         |  |
|      |                    | 10788                            | Theoretical plates :NLT         |  |
|      |                    |                                  | 2000                            |  |
|      |                    | 0.27                             | % RSD: NMT 2.0                  |  |
| 3    | Linearity & range  | 0.9998                           | Correlation coefficient:        |  |
|      |                    | 0.9990                           | NLT 0.995                       |  |
| 4    | Accuracy           | 98.89 – 101.46<br>%              | 98.0 – 102.0%                   |  |
| 5    | Method precision   | 0.67                             | % RSD : NMT 2.0                 |  |
|      |                    |                                  | (Assay)                         |  |
| 6    | Ruggedness         | 0.68                             | Overall % RSD NMT 2.0           |  |
|      |                    |                                  | (Assay)                         |  |
| 7    | Robustness         | 1.06 – 1.29                      | Tailing factor: NMT 2.0         |  |
|      |                    | 10788 – 16721                    | Theoretical plates: NLT<br>2000 |  |
|      |                    | 0.09 – 0.57                      | % RSD: NMT 2.0                  |  |
| 8    | Solution stability | 0.35                             | %RSD NMT : 2.0                  |  |
|      |                    |                                  | (Assay)                         |  |

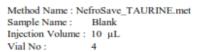
## SUMMARY REPORT OF ACETYLCYSTEINE

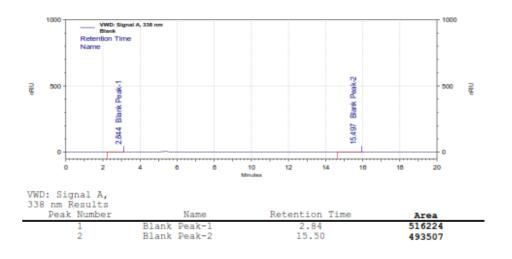
The results obtained in this study demonstrate that the estimation of acetylcysteine in tablet dosage form by HPLC method described is specific, linear, accurate, precise, ruggedness and robust. Therefore, the method is suitable for its intended use.

## Specificity of taurine

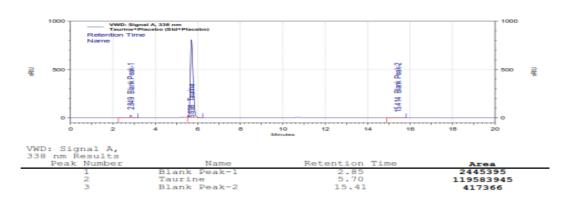
*Placebo* solution was prepared separately at a concentration of 0.33 mg/mL of excipients blend. A solution of *placebo* was spiked with the taurine at its working concentration. The solution was analyzed as per the RP-HPLC method described.

Table 1 summarizes the retention time (RT), relative retention time (RRT) values obtained for *placebo* and taurine.

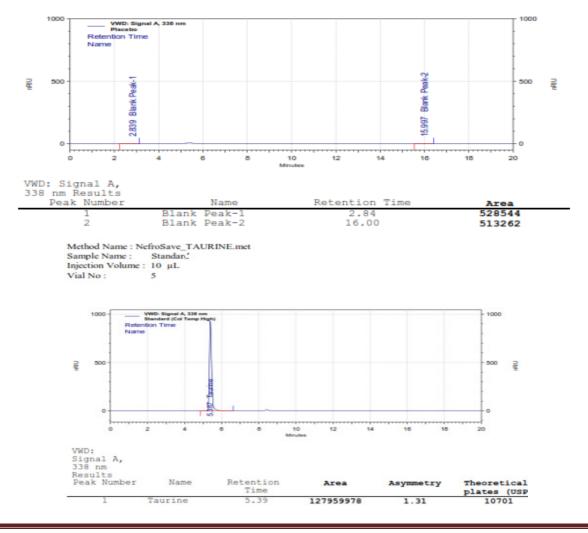

## Acceptance criteria


The *placebo* chromatogram should not show any peak at the retention time of taurine.

# Table 1: Summary of retention time and relative retention time values forplacebo peak of taurine


| Peak name    | Retention time (minutes) | Relative retention time |
|--------------|--------------------------|-------------------------|
| Blank peak-1 | 2.85                     | 0.50                    |
| Blank peak-2 | 15.41                    | 2.70                    |
| Taurine      | 5.70                     | 1.00                    |

No peak was observed at the retention time of taurine in the chromatogram of *placebo*.






Method Name : NefroSave\_TAURINE.met Sample Name : Taurine+Placebo (Std+Placebo) Injection Volume : 10 µL Vial No : 7



Method Name : NefroSave\_TAURINE.met Sample Name : Placebo Injection Volume : 10 µL Vial No : 5



Department of Pharmaceutical Analysis

## System precision

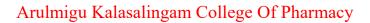
A standard solution of 0.50 mg/mL of taurine was prepared and analyzed as per the method. Table 2 summarizes system suitability results.

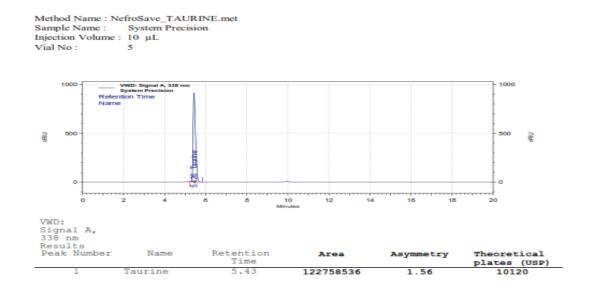
## Acceptance criteria

(i) The tailing factor for the taurine peak should not more than 2.0 in standard solution.

(ii) The number of theoretical plates for the taurine peak should not less than 2000 in standard solution.

(ii) The relative standard deviation for the peak area of taurine should not be more than 2.0% in standard solution.


# Table 2: Summary of retention time, % RSD of peak area, tailing factor


#### and

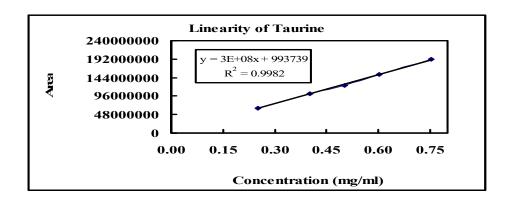
| S.No | Retention time<br>(Minutes) | Area      | Tailing factor | Theoretical plates |
|------|-----------------------------|-----------|----------------|--------------------|
| 1    | 5.43                        | 122758536 |                |                    |
| 2    | 5.44                        | 124554851 |                |                    |
| 3    | 5.42                        | 123150389 |                |                    |
| 4    | 5.41                        | 123847876 | 1.56           | 10120              |
| 5    | 5.40                        | 123295736 |                |                    |
| 6    | 5.42                        | 123710604 |                |                    |
|      | Average                     | 123552999 |                |                    |
|      | % RSD                       | 0.51      |                |                    |

# theoretical plates of the taurine peak

The percentage relative standard deviation of peak area of taurine was 0.51 with the tailing factor and theoretical plates of 1.56 and 10120 respectively.

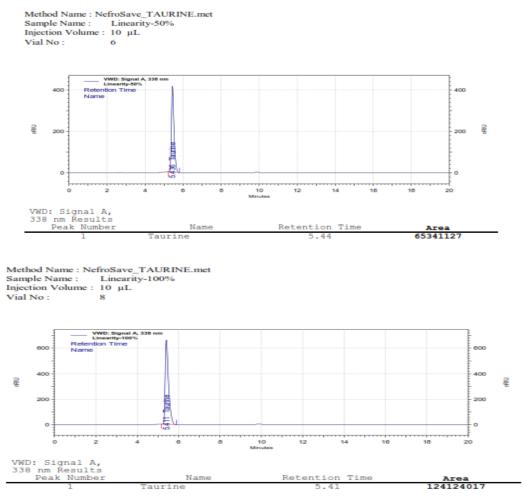


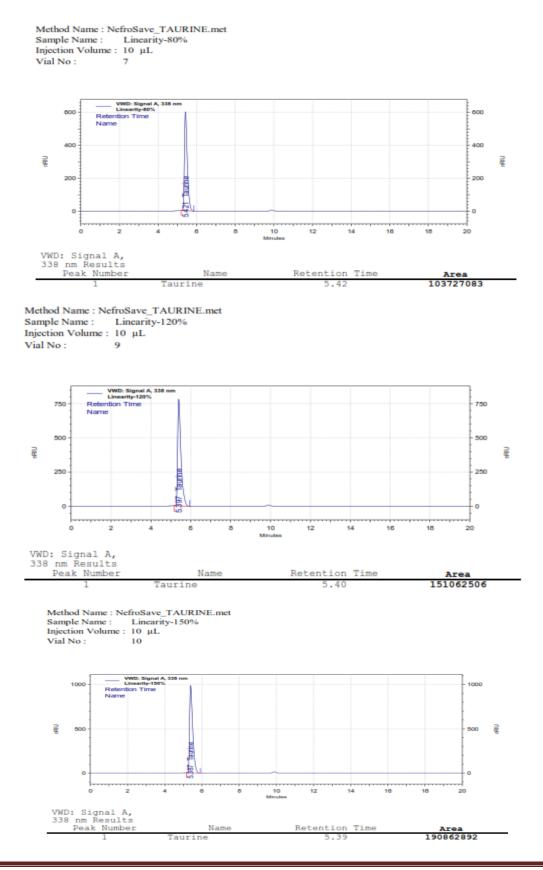



## Linearity and range

The linearity of the HPLC method was demonstrated for taurine ranging from 0.2500 mg/mL to 0.7500 mg/mL, which is equivalent to 50% to 150% of the taurine working strength. Five standard solutions at the concentrations within the mentioned range were prepared and analyzed as per the method. The linearity results obtained are shown in Table 3. Figure 1 shows the line of best fit for concentration versus peak area of taurine.

#### Acceptance criteria


The plot of concentration versus peak area should be linear with a correlation coefficient  $(R^2)$  not less than 0.995.


| Level | % of taurine | Concentration (mg/mL)   | Peak<br>area |
|-------|--------------|-------------------------|--------------|
| 50%   | 50.12        | 0.25060                 | 65341127     |
| 80%   | 80.19        | 0.40096                 | 10372708     |
| 100%  | 100.24       | 0.50120                 | 12412401     |
| 120%  | 120.29       | 0.60144                 | 15106250     |
| 150%  | 150.36       | 0.75180                 | 19086289     |
|       |              | correlation coefficient | 0.9982       |



# Figure 2: Linearity graph for taurine

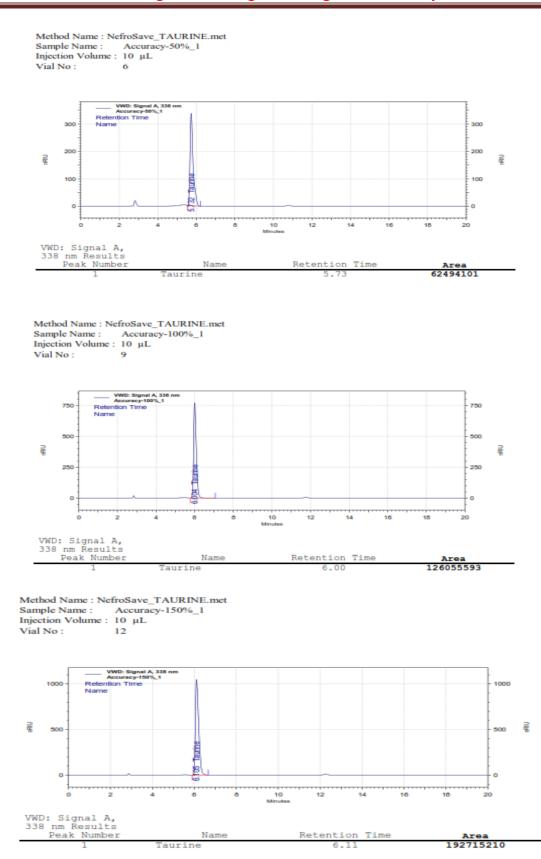
Thus, the HPLC method for the estimation of taurine in tablet dosage form was shown to be linear in the range of 50% to 150% of the working concentration with a correlation coefficient of 0.9982. The range of the HPLC method for determining the assay of taurine in tablet dosage form is 50% to 150% of the working strength.





## Accuracy

The accuracy of the method was determined by using three solutions containing *placebo* spiked with taurine at approximately 50%, 100% and 150% of its working strength. Each level was analyzed. The percentage recovery results obtained are listed in Table 4.


#### Acceptance criteria

The recovery should be in the range of 98.0% - 102.0%.

| Level | % Taurine<br>working<br>strength | Theoretical<br>conc.(mg/mL) | Measured<br>conc.(mg/mL) | % recovery |
|-------|----------------------------------|-----------------------------|--------------------------|------------|
|       | 50.04                            | 0.25020                     | 0.25045                  | 100.10     |
| 50%   | 50.24                            | 0.25120                     | 0.25414                  | 101.17     |
|       | 50.08                            | 0.25040                     | 0.25204                  | 100.65     |
|       | 100.04                           | 0.50020                     | 0.50262                  | 100.48     |
| 100%  | 99.96                            | 0.49980                     | 0.49656                  | 99.35      |
|       | 100.08                           | 0.50040                     | 0.49598                  | 99.12      |
|       | 150.48                           | 0.75240                     | 0.76501                  | 101.68     |
| 150%  | 150.20                           | 0.75100                     | 0.75375                  | 100.37     |
|       | 150.08                           | 0.75040                     | 0.75919                  | 101.17     |

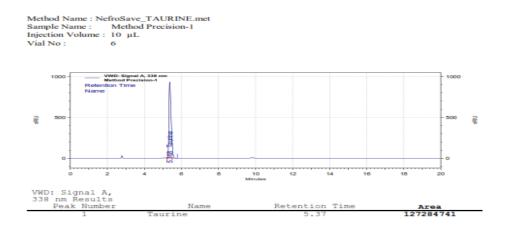
## Table 4: Accuracy of taurine

The percentage recovery values were in the range of 99.12%- 101.68% which is within the acceptance criteria.



## Method precision

The method precision was performed by analyzing a sample solution of tablet dosage form (B.No: D0349) as per the test method (six replicate sample preparation). Table 5 summarizes the results of precision for the method.


## Acceptance criteria

The percentage relative standard deviation for the assay values should be less than 2.0.

| Sample | Level   | % Assay (taurine) |  |
|--------|---------|-------------------|--|
| 1      | 100%    | 100.48            |  |
| 2      | 100%    | 101.63            |  |
| 3      | 100%    | 101.42            |  |
| 4      | 100%    | 101.09            |  |
| 5 100% |         | 101.52            |  |
| 6      | 100%    | 101.75            |  |
|        | Average | 101.32            |  |
|        | % RSD   | 0.46              |  |

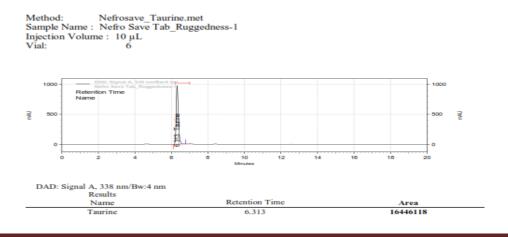
## Table 5: Summary of results for precision of the method

The %RSD for the assay values of taurine in tablet dosage form was 0.46.



## **Ruggedness (Intermediate precision)**

The ruggedness of the method was performed by analyzing a sample solution of tablet dosage form as per the test method (six replicate sample preparation) and injected each solution in duplicate using different instrument, column, reagent, and analyst on different days. The results of set I were compared with the results of set II. Table 6 shows the ruggedness of the method.


#### Acceptance criteria

The overall % RSD should not be more than 2.0%.

| Sample | % Assay (taurine) |          |  |  |
|--------|-------------------|----------|--|--|
|        | Set - I           | Set - II |  |  |
| 1      | 100.48            | 100.33   |  |  |
| 2      | 101.63            | 101.40   |  |  |
| 3      | 101.42            | 99.31    |  |  |
| 4      | 101.09            | 99.18    |  |  |
| 5      | 101.52            | 100.28   |  |  |

| 6             | 101.75                           | 99.77                      |  |  |
|---------------|----------------------------------|----------------------------|--|--|
| Average       | 101.32                           | 100.05                     |  |  |
| % RSD         | 0.46                             | 0.82                       |  |  |
| Overall       |                                  |                            |  |  |
| average       | 100.68                           |                            |  |  |
| Overall % RSD |                                  | 0.91                       |  |  |
| Set           | Set I                            | Set II                     |  |  |
| Instrument    | I/RD/HPC/01                      | I/RD/HPC/02                |  |  |
|               | Cosmosil,5C <sub>18</sub> -MS-II | Phenomenex, Hyperclone-ODS |  |  |
| Column        | (250 X 4.6 mm, 5µm),             | 250 X 4.6mm, 5µm           |  |  |
|               | RD/COL/79                        | Column ID : RD/COL/58      |  |  |
|               | Sodium acetate anhydrous         | Sodium acetate anhydrous   |  |  |
| Reagent       | (Fisher) Methanol (Fisher)       | (Rankem) Methanol (Finar)  |  |  |
|               | Acetonitrile (Finar)             | Acetonitrile (Advent)      |  |  |
| Analyst       | A.Baskar Palraj                  | R.Chitra                   |  |  |
| Day           | 01/03/2017                       | 07/03/2017                 |  |  |
|               |                                  |                            |  |  |

The above result indicates that the test method is rugged for instrument to instrument, column to column, reagent to reagent, analyst to analyst and day to day variation. The overall % RSD for the assay value of taurine in tablet dosage form was 0.91.



## Robustness

The following table (Table 7) shows the parameters of the method that were altered to test the robustness of the method. System suitability test was carried out to asses if these changes had a significant effect on the chromatography.

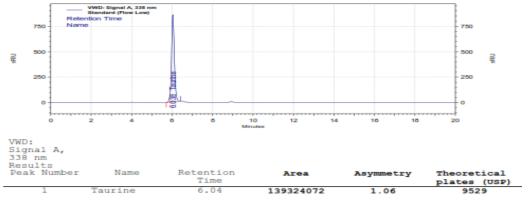
| Parameter / Condition      | Actual                                           | Low                                              | High                                          |
|----------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Flow rate                  | 1.00 mL/min                                      | 0.90 mL/min                                      | 1.10 mL/min                                   |
| Mobile phase               | Mobile phase A<br>: Mobile phase<br>B<br>50 : 50 | Mobile phase A<br>: Mobile phase<br>B<br>52 : 48 | Mobile phase A :<br>Mobile phase B<br>48 : 52 |
| Buffer pH                  | 7.20                                             | 7.10                                             | 7.30                                          |
| Column oven<br>temperature | 40°C                                             | 38°C                                             | 42°C                                          |

 Table 7: Parameters altered for robustness test

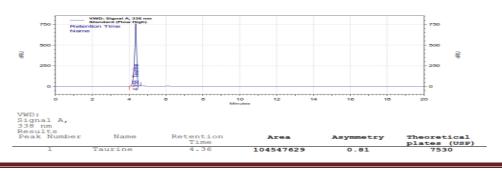
## Acceptance criteria

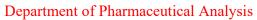
(i) The tailing factor for the taurine peaks should not more than 2.0 in standard solution.

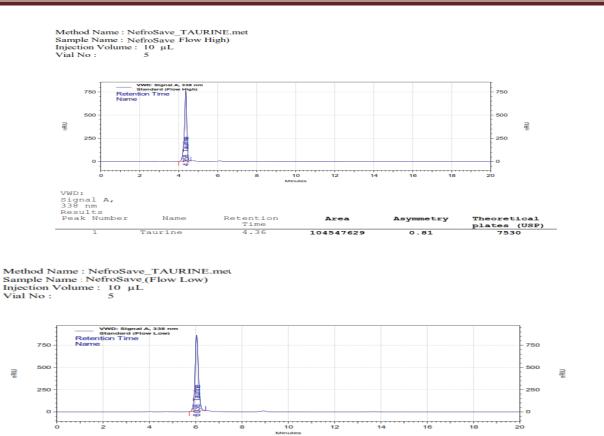
(ii) The number of theoretical plates for the taurine peaks should not less than 2000 in standard solution.


(iii) The relative standard deviation for the peak area of taurine should not be more than 2.0% in standard solution.

The taurine results obtained for robustness tests are summarized in table 8


| Flow           | Actual      | Low         | High            |
|----------------|-------------|-------------|-----------------|
| Retention time | 13.18-13.24 | 14.14-14.18 | 11.55-11.65     |
| (min)          |             |             |                 |
| Area           | 1888358-    | 2145603-    | 1733324-1754218 |
|                | 1900436     | 2153669     |                 |
| Tailing factor | 1.29        | 1.21        | 1.20            |
| Theoretical    | 10788       | 16721       | 15359           |
| plates         |             |             |                 |
| Average (Area) | 1891268     | 2152542     | 1740558         |
|                |             |             |                 |
| %RSD (Area)    | 0.27        | 0.24        | 0.41            |

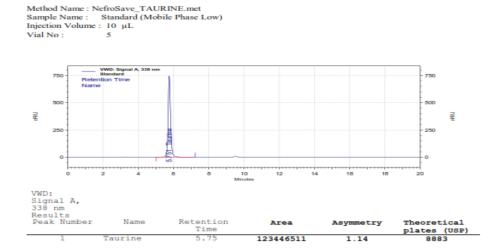

## Table 8: Summary of robustness results of taurine (Flow)


Method Name : NefroSave\_TAURINE.met Sample Name : Standard (Flow Low) Injection Volume : 10 μL Vial No : 5

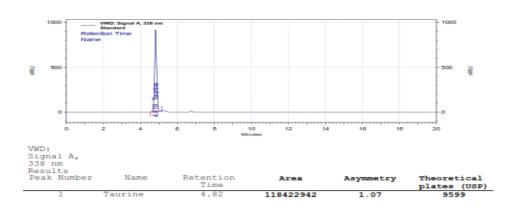




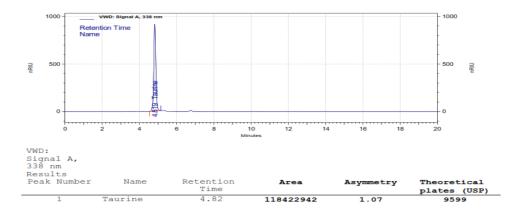


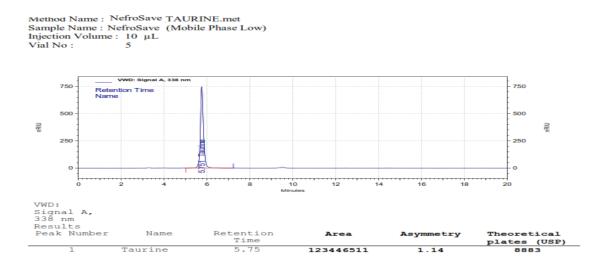






| VWD:<br>Signal A,<br>338 nm<br>Results |         |                   |           |           |                             |
|----------------------------------------|---------|-------------------|-----------|-----------|-----------------------------|
| Peak Number                            | Name    | Retention<br>Time | Area      | Asymmetry | Theoretical<br>plates (USP) |
| 1                                      | Taurine | 6.04              | 139324072 | 1.06      | 9529                        |

## Table 9: Summary of robustness results of taurine (Mobile phase)

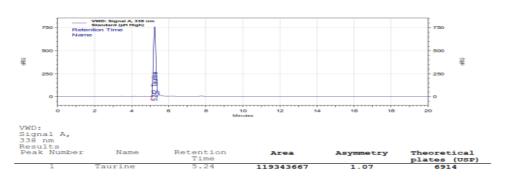

| Mobile phase       | Actual      | Low         | High        |
|--------------------|-------------|-------------|-------------|
| Retention time     | 13.18-13.24 | 11.99-12.05 | 13.25-13.30 |
| (min)              |             |             |             |
| Area               | 1888358-    | 1948798-    | 1852245-    |
|                    | 1900436     | 1975414     | 1863360     |
| Tailing factor     | 1.29        | 1.131       | 1.20        |
| Theoretical plates | 10788       | 15064       | 15359       |
| Average (Area)     | 1891268     | 1962783     | 1858564     |
| %RSD (Area)        | 0.27        | 0.57        | 0.24        |

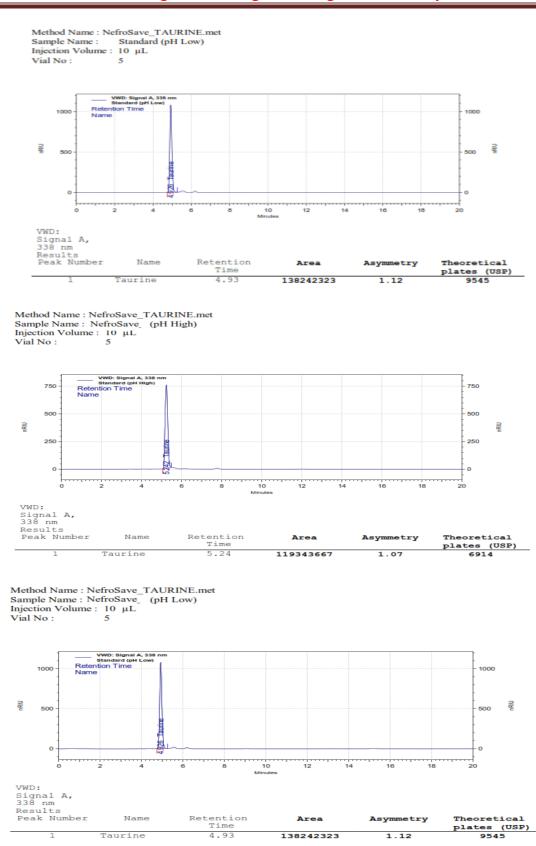



Method Name : NefroSave\_TAURINE.met Sample Name : Standard (Mobile Phase High) Injection Volume : 10 µL Vial No : 5



Method Name : NefroSave\_TAURINE.met Sample Name : NefroSave (Mobile Phase High) Injection Volume : 10 µL Vial No : 5



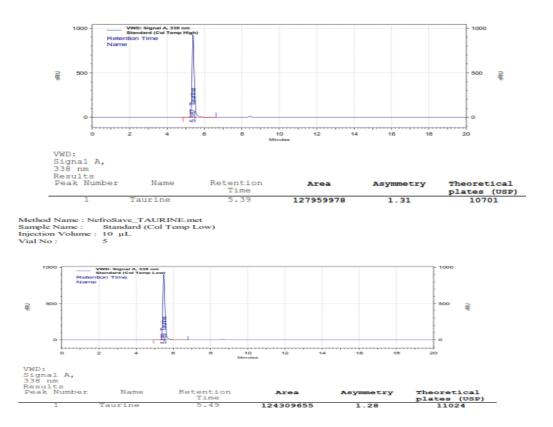



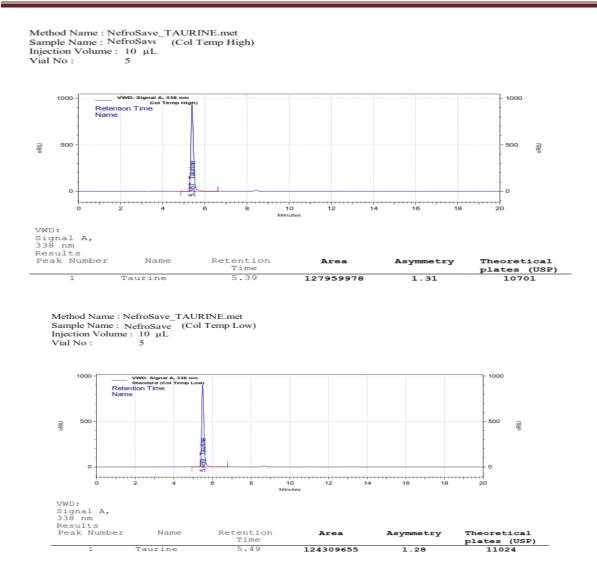

#### Table10: Summary of robustness results of taurine (Buffer pH)

| Buffer pH               | Actual          | Low             | High            |
|-------------------------|-----------------|-----------------|-----------------|
| Retention time<br>(min) | 13.18-13.24     | 12.97-13.05     | 11.66-11.75     |
| Area                    | 1892288-1900436 | 1879427-1885303 | 2018685-2034826 |
| Tailing factor          | 1.29            | 1.06            | 1.09            |
| Theoretical plates      | 10788           | 11501           | 13554           |
| Average (Area)          | 1891268         | 1890268         | 2024317         |
| %RSD (Area)             | 0.27            | 0.41            | 0.30            |

Method Name : NefroSave\_TAURINE.met Sample Name : Standard (pH High) Injection Volume : 10 µL Vial No : 5







Department of Pharmaceutical Analysis

| Table 11: Summar | y of robustness | results of taurin | ie (Column | temperature) |
|------------------|-----------------|-------------------|------------|--------------|
|------------------|-----------------|-------------------|------------|--------------|

| Column               | Actual          | Low             | High            |
|----------------------|-----------------|-----------------|-----------------|
| temperature          |                 |                 |                 |
| Retention time (min) | 13.18-13.24     | 13.20-13.22     | 12.48-12.49     |
| Area                 | 1888358-1900436 | 1893207-1900998 | 1896528-1900962 |
| Tailing factor       | 1.29            | 1.16            | 1.12            |
| Theoretical plates   | 10788           | 15532           | 1 4663          |
| Average (Area)       | 1891268         | 1895568         | 1899345         |
| %RSD (Area)          | 0.27            | 0.18            | 0.09            |

Method Name : NefroSave\_TAURINE.met Sample Name : Standard (Col Temp High) Injection Volume : 10 µL Vial No : 5

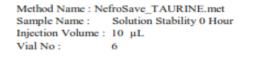


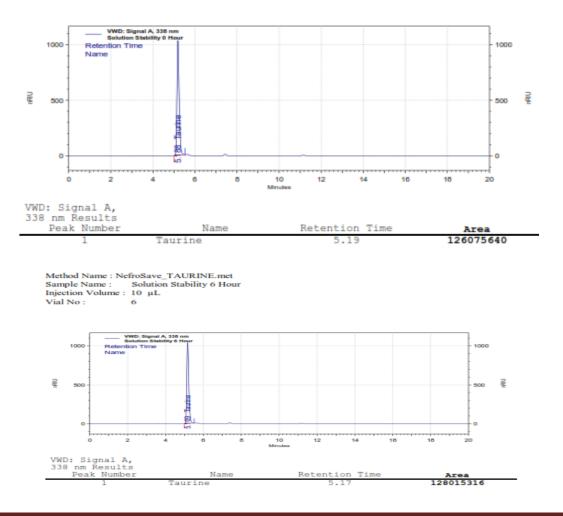


#### Solution stability

A solution of tablet dosage form at 100% of working concentration was kept at 15°C. The solution stability was monitored at different time interval (Initial, 6 hours, 12 hours, and 24 hours). The results are summarized in Table 12.

#### Acceptance criteria


Record the results and assign the stability of solutions based on the experimental data. The relative standard deviation of assay results should not more than 2.0% for a stable solution.


|  | Arulmigu | Kalasalingam | College | Of Pharmacy |
|--|----------|--------------|---------|-------------|
|--|----------|--------------|---------|-------------|

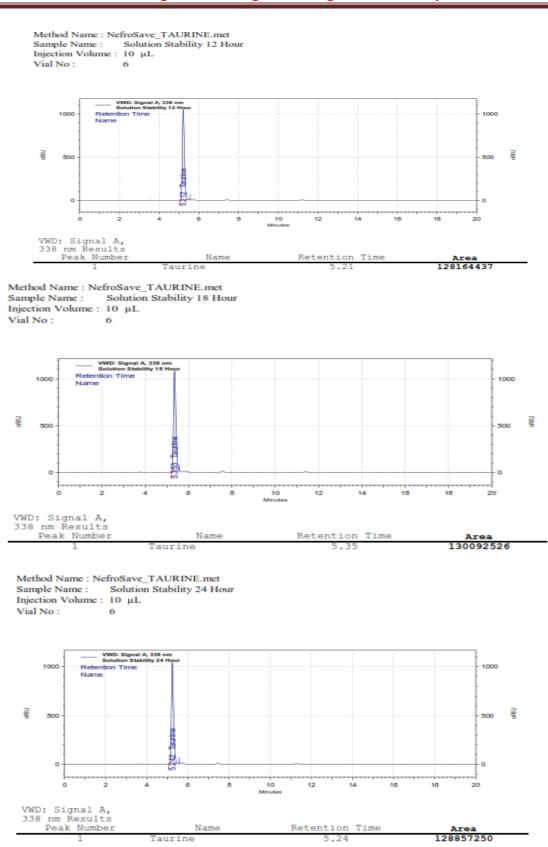

| Time Intervals<br>( hours) | Initial | 6      | 12     | 18     | 24     | %<br>RSD |
|----------------------------|---------|--------|--------|--------|--------|----------|
| % taurine                  | 100.17  | 100.49 | 101.18 | 103.06 | 102.56 | 1.25     |

Table 12: Summary of solution stability results

The assay value of taurine in tablet dosage form was in the range of 100.17% to 103.06%. The % RSD between the assay results from the initial to 24 hours was 1.25, which is within the acceptance limit of 2.0%. Therefore, the tablet dosage form sample solutions are stable up to 24 hours at 15°C.





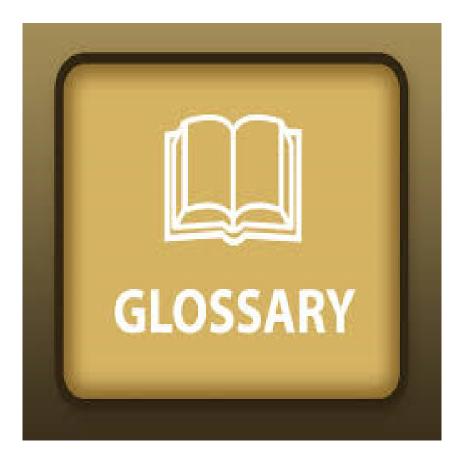


| S. | Demonstere   | Observation                      | Acceptance criteria        |  |  |
|----|--------------|----------------------------------|----------------------------|--|--|
| No | Parameters   | Observation                      | Acceptance criteria        |  |  |
| 1  | Specificity  | No peak was observed at the      | The placebo                |  |  |
|    | Placebo      | retention time of taurine in the | chromatogram should not    |  |  |
|    | interference | chromatogram of <i>Placebo</i>   | show any peak at the       |  |  |
|    |              |                                  | retention time of taurine. |  |  |
| 2  | System       | 1.56                             | Tailing factor: NMT 2.0    |  |  |
|    | precision    | 10100                            |                            |  |  |
|    |              | 10120                            | Theoretical plates: NLT    |  |  |
|    |              |                                  | 2000                       |  |  |
|    |              | 0.51                             | % RSD: NMT 2.0             |  |  |
| 3  | Linearity &  | 0.0000                           | correlation coefficient:   |  |  |
|    | range        | 0.9982                           | NLT 0.995                  |  |  |
| 4  | Accuracy     | 99.12 – 101.68 %                 | 98.0 – 102.0%              |  |  |
| 5  | Method       | 0.46                             | % RSD : NMT: 2.0           |  |  |
|    | precision    |                                  | (Assay)                    |  |  |
| 6  | Ruggednes    | 0.91                             | Overall % RSD NMT 2.0      |  |  |
|    | S            |                                  |                            |  |  |
| 7  | Robustness   | 0.81 – 1.56                      | Tailing factor: NMT 2.0    |  |  |
|    |              | 6914 – 11024                     | Theoretical plates: NLT    |  |  |
|    |              | 6914 – 11024                     | 2000                       |  |  |
|    |              | 0.51 – 1.89                      | % RSD: NMT 2.0             |  |  |
| 8  | Solution     | 1.25                             |                            |  |  |
|    | stability    |                                  | %RSD NMT : 2.0 (Assay)     |  |  |

# SUMMARY REPORT OF TAURINE

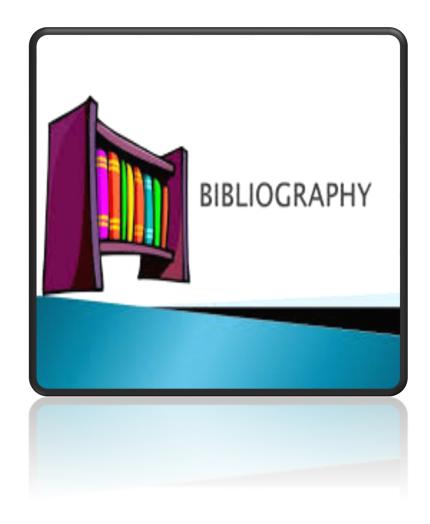
The results obtained in this study demonstrate that the estimation of taurine in tablet dosage form by RP-HPLC method described is specific, linear, accurate, precise, rugged and robust. Therefore, the method is suitable for its intended use.




## CONCLUSION OF ACETYLCYSTEINE

- Cosmosil, C<sub>18</sub>, 250×4.6mm 5µm or equivalent as the stationary phase. Mobile phase is sodium metabisulphite solution adjusts the pH 3 using ortho phosphoric acid and flow rate 1 mL/ mins.
- Specificity no peak was observed at the retention time of acetylcysteine in the chromatogram of *placebo*.
- > System precision shows %RSD value obtained was below 1.
- ➢ Retention time of acetylcysteine is 13.01.
- Correlation of coefficient for acetylcysteine is tailing factor of acetylcysteine is 0.9998.
- Quantitative estimation of acetylcysteine gives accuracy lies between which 98.89 101.46%
- By using to system to system suitability and analyst to analyst variability all the parameters met the system suitability.
- > Percentage purity of acetylcysteine is 99.67%.

## **CONCLUSION OF TAURINE**


- Cosmosil, C<sub>18</sub>, 250×4.6mm5µm or equivalent as the stationary phase. Mobile phase is equally mix the Mobile phase A and B. pH 7.2 and flow rate 1 mL/ mins.
- Specificity no peak was observed at the retention time of taurine in the chromatogram of *placebo*.
- > System precision shows %RSD value obtained was below 1.
- > Retention time of taurine is 5.41.
- > Correlation of coefficient for taurine is tailing factor of taurine is 1.56.
- Quantitative estimation of taurine gives accuracy lies between which 99.12 101.68 %
- > By using to system to system suitability and analyst to analyst variability all the parameters met the system suitability.
- > Percentage purity of taurine is 99.80%.
- The results obtained in this study demonstrate that the estimation of taurine in tablet dosage form by RP-HPLC method described is specific, linear, accurate, precise, rugged and robust.

The method is suitable for its intended use.



# GLOSSARY

- USP United States Pharmacopeia
- NMT Not More Than
- NLT- Not Less Than
- **RRT-** Relative Retention Time
- **RSD-** Relative Standard Deviation
- **RT-** Retention Time
- **HPLC-** High Performance Liquid Chromatography
- **RP-HPLC-** Reverse Phase –High performance
- Liquid Chromatography
- %- Percentage
- Mg Millie gram
- mL- Mille litter
- pH- Potential hydrogen
- Mins- minutes
- $(\mathbf{R})^2$  correlation coefficient



## BIBLIOGRAPHY

- Tietz PS, Thistle JL. Development and validation of a method for measuring the glycine and taurine conjugates of bile acids in bile by high-performance liquid chromatography, Journal of Chromatography Biomedical Science and Applications, 1984; 336(1): 249-259.
- Sanaa S, Rajania A, Sumedha N, Pravin P, Shripad N. Development and validation of RP-HPLC method for the estimation of acetylcysteine in wet cough syrup, International Journal of Drug Development & Research, 2012; 4(2): 284-293.
- Heyden Y, Mangelings D, Van J, Spapen H. Development and validation of an HPLC method with post-column derivatisation for assay of N-acetylcysteine in plasma." Acta Chromatographica, 2004; 14: 149-164.
- 4. Begum A. Development and validation of acetylcysteine and taurine in tablet dosage form by RP-HPLC, International Journal of Universal Pharmacy and Bio Sciences, 2014; 3(5): 11-24.
- Maslarska1 V, Peikova L. Reverse phase high performance liquid chromatographic method for the simultaneous estimation of acetylcysteine and ascorbic acid in sachets, International Journal of Pharmacy, 2014; 4(2): 214-219.
- Illaria palmi, Roberta. Development and validation of a high-performance liquid e-mass spectrometry assay for methylxanthines and taurine in dietary supplements, Journal of Chromatography Biomedical Science and Applications, (2014); 2(1): 18-25.
- 7. Geetha Susmita A, Aruna G. Simultaneous estimation of acebrophylline and acetylcysteine in tablet dosage form by RP-HPLC method, Asian J. Pharm. 2015; 5(3): 143-150.
- Laxman M. Prajapati, Amit K. Q-absorbance ratio method for simultaneous estimation of acetylcysteine and acebrophylline, World Journal of Pharmaceutical Research, 2015; 4(5): 1808-1816.

- Nitin S, Jadhav KG, Lalitha. Validated RP-HPLC method development for the simultaneous estimation of acetylcysteine and acebrofylline in capsule formulation, Journal of Biomedical and Pharmaceutical Research, 2014; 2(5): 10-16.
- Shukla Khushboo N, Padmavathi P, Prabhu. Development of new analytical methods and their validation for the determination of N-acetylcysteine in bulk and marketed formulations International Journal of Pharma Sciences and Research, 2015; 6(2): 4-9.
- 11. ICH (Q2 (R1); Validation of Analytical Procedures: Text and methodology. International Conference on Harmonization, Geneva, 2005.
- 12. ICH, Q6A; Specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical Substances, Geneva, 1999.
- FDA, Guidance for Industry on analytical procedures and methods validation chemistry, Manufacturing, and Controls Documentation (draft), Rockville, MD, 2000.
- Vedang Kinjawadekar, Snehalatha Boddu and Ojaswi Ghadge. A novel stability indicating RP-HPLC method for the simultaneous estimation of N-acetylcysteine and ambroxol in combined tablet dosage form, International Journal of Pharmaceutical Sciences and Research, 2015; 4(1): 90-95.
- Nalluri Naga Jyothi, Syed Imam Pasha. Development and validation of a new RP-HPLC method for simultaneous estimation of N-acetylcysteine and L – arginine in combined dosage form, Oriental journal of Chemistry, 2015; 3(4): 122-147.
- 16. https://www.researchgate.net/
- 17. http://en.wikipedia.org/wiki/Acetylcysteine.
- 18. Ravi Shankar. Text book of pharmaceutical analysis.
- 19. http://www.chemicalbook.com/Search\_EN.aspx?keyword=n-acetylcysteine.
- 20. ICH validation of analytical procedures: Text and, methodology Q2 (R1), 2005.
- 21. https://en.wikipedia.org/wiki/Taurine.