A HISTOPATHOLOGICAL STUDY OF MALIGNANT ROUND BLUE CELL TUMORS WITH IMMUNOHISTOCHEMICAL EVALUATION

DISSERTATION SUBMITTED FOR M.D BRANCH III (PATHOLOGY) MARCH - 2011

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY
CHENNAI – TAMILNADU
Department of Pathology,
Madurai Medical College and
Government Rajaji Hospital,
Madurai.

CERTIFICATE

This is to certify that the dissertation entitled “A Histopathological study of Malignant Round Blue Cell Tumors with Immunohistochemical Evaluation” submitted by Dr. K.Viswanathan to the Faculty of Pathology, The Tamilnadu Dr. M.G.R. Medical university, Chennai in partial fulfilment of the requirement for the award of M.D. Degree in Pathology is a bonafide work carried out by him during the period June 2008 - May 2010 under my direct supervision and guidance.

Place: Madurai
Date: 08.12.2010

Professor and Head,
Department of Pathology,
Madurai Medical College,
Madurai.
ACKNOWLEDGEMENT

I express my sincere thanks to The Dean, Madurai Medical College, Medical Superintendent, Government Rajaji Hospital, Madurai and the ethical committee for permitting me to carry out this study.

I wish to express my heartfelt thanks to the respected Professor Mrs. Dr. Usha Ravikumar, M.D., Professor and Head of the Department of Pathology, Madurai Medical College, Madurai for her valuable suggestions, constant encouragement and able guidance throughout this work.

I am greatly indebted to our Former Professor Dr. D. Gomathinayagam, M.D., for his sincere help and guidance during the early period of this study.

I express my gratitude to all the Associate Professors, Assistant Professors and Tutors for their valuable suggestions and guidance in this work.

I thank the entire technical staff for teaching me the practical aspects of pathology with patience.

I thank the Chairman Meenakshi Mission Hospital, Madurai for permitting me to utilise the material from the hospital.

I thank all my friends in the department of pathology and in other departments of Madurai Medical College for their help and guidance.
CONTENTS

<table>
<thead>
<tr>
<th>S.No</th>
<th>TITLE</th>
<th>PAGE No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>AIM OF THE STUDY</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>REVIEW OF LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MATERIAL AND METHODS</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>OBSERVATION AND RESULTS</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>DISCUSSION</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>SUMMARY AND CONCLUSION</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>ANNEXURE I - PROFORMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNEXURE II - STAINING TECHNIQUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNEXURE III - BIBLIOGRAPHY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNEXURE IV - MASTER CHART</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNEXURE V – ETHICAL COMMITTEE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPROVAL FORM</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Malignant Round Blue Cell Tumors comprise a diverse group of diagnostically challenging primitive (or) undifferentiated neoplasms which composed of small cells with uniform round nuclei and scanty cytoplasm have been referred as small-cell, round-cell, or blue cell tumors. “Round” refers to uniform shape of the nuclei, “blue” to colour of the nuclei on routine hematoxylin and eosin staining and “small” to the relative lack of cytoplasm. The “small cells” of small cell tumors are larger than most inflammatory cells. The tumors included in this category of neoplasms are as follows.

1. Non Hodgkin’s Lymphoma
2. Ewing’s sarcoma /Primitive neuroectodermal tumor (PNET)
3. Embryonal and Alveolar Rhabdomyosarcoma
4. Wilm’s tumor
5. Neuroblastoma
6. Desmoplastic Small Round Cell Tumor (DSRCT)
7. Mesenchymal Chondrosarcoma
8. Small cell Osteosarcoma
9. Small cell carcinoma
10. Malignant Rhabdoid tumor
11. Myxoid Chondrosarcoma
12. Poorly differentiated synovial sarcoma

13. Round cell Liposarcoma

14. Epithelioid sarcoma with rhabdoid phenotype

15. Retinoblastoma

16. Medulloblastoma

Immunohistochemistry (IHC) and molecular diagnostics have greatly improved our ability to differentiate the various tumors and classify some of these tumors10, 81. Use of the special diagnostic techniques have become increasingly important in diagnosis, evaluation of recurrent or metastatic disease, and in some cases for prognostic classification. These are always to be interpreted after careful evaluation of the light microscopic findings. However, the more we use these tools diagnostically, the more it becomes apparent that these special techniques have pitfalls of their own43,56. Finally, additional techniques such as flow cytometry, electron microscopy and molecular analysis may be required for final confirmation of the diagnosis (or) to provide prognostic information52,53.
AIM OF THE STUDY

1. To find out the incidence of Malignant Round Blue Cell Tumors in and around Madurai.
2. To know the age and sex incidence of Malignant Round Blue Cell Tumors.
3. To correlate the clinical and histopathological features of Malignant Round Blue Cell Tumors.
4. To study the role of special stains in selected cases.
5. To confirm the histopathological diagnosis by Immunohistochemistry wherever necessary.
6. To classify the Malignant Round Blue Cell Tumors by Immunohistochemistry
7. To aid the clinicians for the management of the patients.
REVIEW OF LITERATURE

Nomenclature

Neoplasia means new growth. The term ‘Tumor’ is originally applied to the swelling caused by inflammation, but the non neoplastic usage of tumor has almost vanished. The term tumor is now equated with neoplasm. Oncology (Greek oncos=tumor) is the study of tumors or neoplasm.

The eminent British Oncologist Willis has come closest: “A neoplasm is an abnormal mass of tissue, the growth of which exceeds and is uncoordinated with that of the normal tissues and persists in the same excessive manner after cessation of the stimuli which evoked the change”83.

Neoplasms are generally divided into

1. Benign
2. Malignant

Benign tumors

In which both microscopic and gross characteristics are considered relatively innocent. It will remain localized. It cannot spread to other sites, and it is generally amenable to surgical removal.
Malignant tumors

These are collectively referred to as cancers, derived from Latin word for ‘crab’, because they adhere to any part that they seize on in an obstinate manner. Malignant tumors invade and destroy adjacent structures and spread to distant sites (metastasize) to cause death83.

Definition of small round cell tumors

“Denny” defined the characteristics of round blue cell tumors. Malignant Round Blue Cell Tumors can be defined in terms of clinical and pathological features i.e. the routine histological, immunohistochemical and ultrastructural features and by genetic markers. Although microarray analyses can discriminate between types of these tumors, a competent pathologist can do it with equal accuracy by using routine histological and ancillary morphologic techniques18.

Malignant Round Blue Cell Tumors – Table -1

Basic conventional spectrum

1. Neuroblastoma (NB)
2. Ewing’s sarcoma / peripheral (primitive) neuroectodermal tumor (ES/PNET)
3. Rhabdomyosarcoma (RMS)
4. Non Hodgkin’s lymphoma (NHL)
Extended spectrum

1. Desmoplastic small round cell tumor (DSRCT)
2. Small cell undifferentiated Osteosarcoma (UOS)
3. Small cell Hepatoblastoma
4. Wilm’s tumor (WT)
5. Small cell variant of synovial peripheral nerve sheath tumors (MPNST)
6. Small cell variant of synovial sarcoma (SS)
7. Undifferentiated Small Round cell Tumor (SRCT).

Accurate diagnosis of the tumor type is necessary for selection of appropriate treatment protocol73. The clinical scenario, primary site, metastatic pattern, gross and microscopic findings are useful to conclude the diagnosis whereas other features such as immunohistochemistry, electron microscopy and genetic features provide definitive criteria for the diagnosis26,27. Treatment modality varies with each tumor type, so accurate diagnosis of the tumor type is mandatory. For example, a therapeutic protocol for Ewing’s sarcoma is chemotherapy and local radiotherapy whereas surgery is not mandatory. The Neuroblastoma can be cured by surgical excision35,48.
Table-2

Classification of small round cell tumors

<table>
<thead>
<tr>
<th>Traditional</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ewing’s sarcoma</td>
<td>1. pPNET (Bone and soft tissue)</td>
</tr>
<tr>
<td>2. Neuroblastoma</td>
<td>a. Ewing’s sarcoma</td>
</tr>
<tr>
<td>3. Rhabdomyosarcoma</td>
<td>b. Peripheral neuroepithelioma</td>
</tr>
<tr>
<td>4. Lymphoma</td>
<td>c. ‘Askin’ tumor of chest wall</td>
</tr>
<tr>
<td></td>
<td>d. PNET of bone</td>
</tr>
<tr>
<td></td>
<td>e. Extra osseous Ewing’s (Neural)</td>
</tr>
<tr>
<td>2. Round cell bone tumors</td>
<td></td>
</tr>
<tr>
<td>a. Small cell Osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>b. Mesenchymal Chondrosarcoma</td>
<td></td>
</tr>
<tr>
<td>c. Primitive sarcoma of bone</td>
<td></td>
</tr>
<tr>
<td>3. Round cell soft tissue sarcoma</td>
<td></td>
</tr>
<tr>
<td>a. Poorly differentiated Rhabdomyosarcoma</td>
<td></td>
</tr>
<tr>
<td>b. Extra osseous Ewing’s (non neural)</td>
<td></td>
</tr>
<tr>
<td>4. Metastatic Neuroblastoma</td>
<td></td>
</tr>
<tr>
<td>5. Extra nodal lymphoma</td>
<td></td>
</tr>
</tbody>
</table>
ANALYSIS OF INDIVIDUAL TUMOR

CHARACTERISTIC

HISTORICAL PERSPECTIVE

Non Hodgkin’s Lymphoma

In 1858 Rudolph Virchow, a great German pathologist described lymphoma as a primary malignant neoplasm of the lymphoid tissue, which includes Hodgkin’s lymphoma (HL) and Non Hodgkin’s lymphoma (NHL)\(^{11}\). In 1863, he described lymphoma as malignant tumor derived from lymphoid cells known as “Lymphosarcoma”.

In 1871, Billroth used the term “Malignant lymphoma”. In 1893 Dreshfeld and Kundrat made the first attempt to delineate subcategories of lymphoma. In 1908, Sternberg described an aggressive mediastinal tumor in young males, initially known as “Sternberg sarcoma” and later recognized as Lymphoblastic Lymphoma. In 1913 J.Ewings suggested that the tumor was derived from reticulum cells. In 1923 Evald introduced the term ‘Reticuloendotheliosis’ to represent hyperplasia of reticuloendothelial tissue\(^{11}\). In 1928, C.Oberling introduced the term ‘Reticulosarcoma’ for neoplasm derived from lymphoreticular system.
Ewing’s sarcoma / PNET

In 1921, James Ewing reported a tumor in radius which is composed of round cells and calling it as a “Diffuse endothelioma of bone” and proposing an endothelial derivation. In 1928, OBERLING introduced the term Ewing’s sarcoma, which was a non-committal name to the cell of origin. Seemayer et al described peripheral neuroectodermal tumors (PNETs) which were unrelated to peripheral (or) sympathetic nervous system.

In 1979 Askin et al described the “malignant small cell tumor of the thoracopulmonary region” (Askin tumor) having histological features similar to that of PNETs.

Identification of common cytogenetic abnormality t (11;22) q (24;12) in Ewing’s sarcoma and PNET favours the hypothesis that these two are histogenetically related. Ewing’s sarcoma and PNET collectively called as “Ewing Family of Tumors”, form a single neoplastic entity sharing common histological and molecular features, and differing only in their extent of cellular differentiation.

Rhabdomyosarcoma (RMS)

RMS was first described by Webber. Masson referred the RMS as “Rhabdopoietic sarcomas”. RMS is a malignant tumor of mesenchymal origin.
RMS is thought to arise from immature mesenchymal cells that are committed to skeletal muscle lineage. But these tumors can arise in tissues in which striated muscle is not normally found, e.g., urinary bladder14.

Wilm’s tumor

In 1814 Wilm’s tumor was reported by Rance. In 1899 the condition was named after Carl Max Wilhelm Wilms, a German doctor who was one of the first to study this disease. In 1964 Miller and Colleague reported an association between aniridia and Wilm’s tumor. Subsequently, a rare complex of developmental anomalies including aniridia, genitourinary malformation and mental retardation were identified and known as WAGR syndrome7.

The synonyms used for Wilm’s tumor includes nephroblastoma, embryoma, carcinosarcoma, adenosarcoma and adenomyosarcoma38.

Neuroblastoma

In 1864 Virchow first described its histological appearance and published an article entitled “Hyperplasia of the pineal and suprarenal glands” and he noted nodular distension of the suprarenal gland with three or more pea or cherry sized swelling which arose from the adrenal medulla23.

Virchow described large numbers of sympathetic cells apart from the usual elements of adrenal medulla and he classified these tumors with gliomas at that time23.
In 1901, W.Pepper reported a study of “congenital sarcoma of the liver and suprarenal gland”. These were probably the first patients with the disease type, now described as stage 4s Neuroblastoma.

In 1910 J.H.Wright first used the term Neuroblastoma. He noted that the migration of primitive nerve cells during embryogenesis explained the development of tumors of similar appearance in various sites of the body.

J.B.Beckwith and R.F.Martin defined a method of grading of tumors from 1 to 4 depending on the degree of differentiation, and equated lymphocyte infiltration of the neoplasm with a better prognosis. H.Shimada et al developed a grading system based on mitosis, karyorrhehexis index, amount of stroma and the patient’s age.

Mesenchymal Chondrosarcoma

This rare neoplasm was first described by Lichtenstein and Bernstein in 1959 as an unusual variant of Chondrosarcoma which usually affects bone and soft tissue.

Small cell Osteosarcoma

This tumor is a distinctive microscopic variant of Osteosarcoma, described in 1979, as a tumor simulating Ewing’s sarcoma. They appear to represent a definite histological entity and the prognosis may be worse for these lesions than conventional Osteosarcoma.
It is most important not to misdiagnose this tumor as Ewing’s sarcoma because it appears not to be radiosensitive. Radical surgery and modern adjuvant chemotherapy seem to offer the best chance of cure22,49.

Incidence of Malignant Round Blue Cell Tumors

In India lymphoma is the second most common childhood tumor after acute leukemia, but in developed countries central nervous (CNS) tumors are the second most common and lymphomas are in third place. In India the overall incidence of Non Hodgkin’s Lymphoma in males is 3.2% and 1.7% in females82.

Ewing’s sarcoma / PNET constitute around 6-10% of primary malignant bone tumors and is the second most common primary malignant bone tumor. Extra skeletal Ewing’s is the second most common pediatric soft tissue sarcoma61,71.

Rhabdomyosarcoma is the most common pediatric soft tissue sarcoma composed of 80-90% of reported cases74,76.

Wilm’s tumor affects 1 per 10,000 children worldwide before the age of 15, and ranks fifth in incidence among the solid tumors of the childhood, following central nervous tumor, lymphoma, Neuroblastoma and soft tissue sarcoma31,55,70.

12
Neuroblastoma is the most common extra cranial solid tumor in children, and the most frequently diagnosed tumor of infancy. It occurs at a rate of 1 per 10000 live births. It accounts for 7-8% of all paediatric malignant tumors70,79.

Age and sex

In children Non Hodgkin’s lymphoma is less common than Hodgkin’s lymphoma but it is reverse in adults82. Surveillance Epidemiology and End Results (National Cancer Institute.USA) showed 67 years as the median age at diagnosis of NHL. Non Hodgkin’s Lymphoma predominantly affects males with a male: female ratio of 1.4:180.

Wilkins et al states that Ewing’s sarcoma occurs between the age group of 5 to 20 years with a distinct male preponderance86. Carvajal R et al found that common age group for Ewing’s sarcoma / PNET is 10-20 years, with a slight male predominance6.

Embryonal type of Rhabdomyosarcoma (RMS) affects children commonly below 15 yrs. Alveolar RMS affects mainly those between the ages of 10-25 years74.

Michael et al found that RMS occurred in younger than 21 years in most of the patients51. Simona Ognjanovic et al found a male predominance in Rhabdomyosarcoma with a male: female ratio of 1.37:176.
Mir Mahmood Seyed Ahadi et al found that mean age at the time of diagnosis of Wilm’s tumor was 45.2 months (4 years) with a male: female ratio being 1.2:155.

Norman Breslow et al found that median age at diagnosis of Wilm’s tumor was 36.5 months and 42.5 months for males and females respectively with slight preponderance of females in the National Wilm’s tumor study registered between October 1969 and December 198557.

Neuroblastoma develops in younger age group than Rhabdomyosarcoma and ES/PNETs. 50% of cases are diagnosed by the age of 2 yrs and 90% by the age of 5 yrs. Peak age at diagnosis is 18 months74. Gregory Hale et al found a slight male predominance with a male to male female ratio of 1.3:128.

Desmoplastic small round cell tumor (DSRCT) occurs in the age group of 15-35 years38. Ordonez NG et al found a male preponderance with a male: female ratio of 4:159.

Small cell Osteosarcoma occurs between 10 to 25 years of age group and also in preschool children with slight male predominance (1.5:1)38. Extraskeletal Mesenchymal Chondrosarcoma occurs between the age group of 15-35 yrs of age with a female preponderance38,74.
Common locations of Malignant Round Blue Cell Tumors

Table-3

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Hodgkin lymphoma</td>
<td>Lymphnode</td>
</tr>
<tr>
<td>Ewing’s sarcoma / PNET</td>
<td>Bone, soft tissue</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>Soft tissue</td>
</tr>
<tr>
<td>Wilm’s tumor</td>
<td>Kidney</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Adrenals, Sympathetic nervous system</td>
</tr>
<tr>
<td>Desmoplastic small round cell tumor (DSRCT)</td>
<td>Retroperitoneum</td>
</tr>
<tr>
<td>Small cell Osteosarcoma</td>
<td>Bone</td>
</tr>
<tr>
<td>Extraskeletal Mesenchymal Chondrosarcoma</td>
<td>Soft tissue</td>
</tr>
</tbody>
</table>

Clinical features

Non Hodgkin’s Lymphoma (NHL)

NHLs present as enlarged non tender lymphnodes (often >2 cm) in more than two third of cases. The remaining one third of NHLs present with symptoms related to the extranodal site. Antoria M.S.Muller found that extra nodal NHL constitutes 20-30% of all NHL. Philip Saleem et al states that gastro intestinal NHL (49.5%) is the most common extra nodal site followed by Waldayer’s ring (19%), bone, skin, breast, ovary, thyroid and parotid.
Ewing’s sarcoma / PNET

These tumors clinically simulate osteomyelitis because of pain, fever and leukocytosis\(^4^9\). Kissane et al found that Ewing’s sarcoma has a predilection for lower segment of skeleton\(^4^1\).

Rhabdomyosarcoma (RMS)

Rhabdomyosarcoma arises from various anatomical sites. These tumors present as bulging, infiltrative, growing soft tissue masses that may be fungating, when they present in external locations such as conjunctiva and vagina\(^5\).

Agarwala et al found that most common site of Rhabdomyosarcoma is head and neck region followed by genitourinary tract and extremities\(^6^9\).

Wilm’s Tumor

Wilm’s tumor presented with abdominal mass, hematuria and pain. Hypertension is present in some cases\(^3^0,3^8\).

Conditions associated with increased risk of Wilm’s Tumor\(^6^5\)

- WAGR syndrome- Wilm’s tumor, aniridia, genito urinary anomalies, and mental retardation.
- Denys –Drash syndrome
- Familial Wilm’s Tumor
- Perlman syndrome
- WT 1 intron 9 splice mutation (Frasier syndrome)
- Beckwith-Wiedemann syndrome
Simpson–Golabi-Behmel syndrome
Isolated hemihypertrophy
Bloom syndrome
Trisomy 13, 18

Neuroblastoma

Neuroblastoma usually presents with abdominal mass, fever and weight loss\(^4^3\). DeLorimer et al, based on California Tumor Registry found that most common site of Neuroblastoma was retroperitoneum followed by mediastinum and cervical region. About half of the retroperitoneal tumors arise from the adrenals\(^1^7\).

Various clinical presentations of Neuroblastoma\(^3,5^5\)

1. Watery diarrhea (Kerner–Morrison syndrome)
2. Cushing’s syndrome
3. Heterochromia iridis & Horner’s syndrome
4. Opsoclonus / myoclonus – Dancing eye movements
5. Beckwith – Wiedemann syndrome
6. Hirschprung’s disease
7. Hypertension
8. Blue berry muffin baby – blue red cutaneous metastases
Common Metastatic sites of Malignant Round Blue Cell Tumors

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Metastatic Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHL</td>
<td>Generalised disease</td>
</tr>
<tr>
<td>Ewing’s sarcoma</td>
<td>Lungs, pleura, skull, Central nervous System, rarely lymph node</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>Soft tissue, serosal surfaces, lungs, bone marrow, lymph nodes</td>
</tr>
<tr>
<td>Wilm’s tumor</td>
<td>Lungs, liver, peritoneum, Regional lymph nodes</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Liver (Pepper syndrome)</td>
</tr>
<tr>
<td>DSRCT</td>
<td>Liver, pancreas, ovary</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>Bones, Lungs, pleura, heart</td>
</tr>
</tbody>
</table>

GROSS FEATURES

Non Hodgkin’s Lymphomas present with generalized lymphadenopathy and hepatosplenomegaly. Nodes are enlarged and have solid homogenous gray white appearance\(^{38,83}\).

Ewing’s sarcoma / PNET arise in the medullary cavity and transgress the cortex and periosteum producing soft tissue masses. The tumor is tan white (or) fish flesh like appearance and contains areas of hemorrhage and necrosis\(^{38,49}\).
Rhabdomyosarcomas exhibit different gross characters in different sites. In body cavities, they present as well circumscribed and multinodular polypoid growth with a glistening, gelatinous gray white surface. On cut section they show areas of hemorrhage or cystic change. In deep seated sites they are less well defined with infiltrative pattern of growth. Cut surface is firm and rubbery and have mottled gray white to pink tan appearance.

Wilm’s tumors are solitary, well circumscribed, rounded and soft in consistency with the cut surface predominantly solid and often exhibiting cystic change, hemorrhage and necrosis. Solid areas appear pale gray or tan with lobular pattern because of fibrous septation.

Neuroblastomas are lobulated masses with an average diameter of 6-8cm. They are surrounded by delicate membranous capsules. Cut surface shows soft, fleshy, gray, partially hemorrhagic tumor.

DSRCTs are solid, large multiobulated masses, on cross section show white (or) gray white appearance, with cystic change and necrosis.

Small cell Osteosarcoma grossly appears similar to that of conventional Osteosarcoma and present as bony hard to cystic, friable grayish white tumor with areas of hemorrhage.

Extra skeletal Mesenchymal Chondrosarcoma presents as a multiobulated circumscribed mass of variable size. Cut surface show mixture of fleshy gray white soft tissue with irregularly sized cartilage and bony tissue.
Methods in the diagnosis of Malignant Round Blue Cell Tumors62

Table-4

Light microscopy

Electron microscopy

Immunophenotyping (Paraffin sections)

Immunophenotyping (Monoclonal antibodies, frozen sections)

Methods using imprints

- PAS and special stains
- Immunophenotyping (Polyclonal and monoclonal antibodies)
- Interphase cytogenetics

Methods using viable tumor tissue

- Short term tissue culture
- Cytogenetics and molecular cytogenetics (FISH)
- Molecular genetic analysis

Biochemical analysis

- Neurotransmitter analysis (Homovanillic acid, vannillyl mandelic acid)

MICROSCOPIC FEATURES

In hematoxylin and eosin sections, diagnosis is by cytoplasmic and nuclear features with the pattern of arrangement including the intervening stromal cells.
NON HODGKINS LYMPHOMA (NHL)

Nodal

The lymph node structure shows total or partial effacement of architecture and composed of monotonus population of small lymphocytes with clumped chromatin, inconspicuous nucleoli and scanty cytoplasm\(^{38,77}\).

Extra nodal

NHL can also be seen in extra nodal sites in relation to mucosae or glandular epithelia, such as gastrointestinal tract, salivary glands, lacrimal glands, lung, thyroid, conjunctiva, bladder and skin\(^{8,38}\).

EWING’S SARCOMA / PNET

The tumor cells are small and uniform with indistinct cell borders resulting in a syncytial appearance. The tumor cells have scanty clear cytoplasm, round nuclei with frequent indentation and small nucleoli. They are arranged in solid sheets, around the blood vessels (Pseudo-rosette) and also as true rosettes\(^{38,77}\).

EMBRYONAL RHABDOMYOSARCOMA

This tumor is characterized by alternating densely packed hypercellular and loosely textured myxoid areas. The tumor cells are small round or spindle shaped with hyperchromatic nuclei, 1 or 2 nucleoli with indistinct cytoplasm.
There are variable amounts of large cells with abundant eosinophilic cytoplasm and round vesicular nuclei (Rhabdomyoblast)74.

BOTRYOID RHABDOMYOSARCOMA

This tumor is characterized by a subepithelial condensation of tumor cells separated from an intact surface epithelium by a zone of loose stroma (Nicholson’s cambium layer)38,74.

ALVEOLAR RHABDOMYOSARCOMA

The tumor cells are small, round to oval cells with scanty cytoplasm and round nuclei. The tumor cells are separated into nests by fibrous septa with central loss of cohesion and formation of irregular alveolar spaces74.

WILM’S TUMOR

This tumor usually presents with triphasic components and sometimes biphasic or monophasic. The triphasic components composed of combinations of epithelial, stromal and blastemal elements. Epithelial components are characterized by embryonic tubular structures resembling normal developing tubules and glomeruli. Mesenchymal elements are spindle shaped fibroblast like cells with a smooth muscle and skeletal muscle differentiation.

Blastemal components are cellular areas composed of small round to oval primitive cells with scanty cytoplasm, round to oval nuclei, coarse chromatin arranged in diffuse sheets and nests38, 77.

22
NEUROBLASTOMA

The tumor cells are small and regular with round deeply staining nuclei, slightly larger than lymphocytes. There is little cytoplasm with poorly defined cytoplasmic borders. The tumor cells are separated into small lobules by delicate fibrovascular septa. Homer-Wright rosettes are central fibrillary material surrounded by tumor cells and are seen in 1/4 to 1/3 of cases. Calcification may appear as a dust like basophilic stippling, as closely aggregated round concretions in a “chicken wire” fashion38, 74.

DESMOPLASTIC SMALL ROUND CELL TUMORS (DSRCTs)

DSRCTs composed of sharply outlined islands of tumor cells separated by abundant cellular stroma (desmoplastic). The tumor cells are small round, monotonus with scanty cytoplasm and hyperchromatic nuclei8, 38.

SMALL CELL OSTEOSARCOMA

The tumor cells are round to spindle shaped with scanty cytoplasm and round hyperchromatic nuclei arranged in diffuse sheets with intervening neoplastic osteoid22, 38, 49.

MESENCHMAL CHONDROSARCOMA

Tumor exhibits bimorphic pattern, composed of sheets of undifferentiated small, round to oval cells with islands of cartilaginous area. The cartilaginous foci are usually well defined with central calcification and ossification74.
MYXOID CHONDROSARCOMA

The tumor cells are round to elongated with uniform size and shape. They have deeply eosinophilic cytoplasm and small round hyperchromatic nuclei. They are arranged in anastamosing cords, strands and pseudoacinar pattern with the intervening stroma composed of mucoid material\(^{38, 74}\).

POORLY DIFFERENTIATED SYNOVIAL SARCOMA

These are highly cellular with numerous mitoses and necrosis. The tumor cells are darkly staining ovoid to round cells similar to that seen in other small round cell tumors\(^{74}\).

ROUND CELL LIPOSARCOMA

The tumor is characterized by small, round cells with acidophilic cytoplasm and round vesicular nuclei arranged in nests, sheets and pseudoglandular pattern with typical lipoblasts\(^{74}\).

MALIGNANT RHABDOID TUMOR

The tumor cells are round to oval with eosinophilic cytoplasm and round vesicular nuclei arranged in diffuse sheets, alveolar and trabecular pattern. The tumor cells have large cytoplasmic, eosinophilic hyaline globules displacing the nuclei laterally resulting in a plasmacytoid appearance\(^{38, 74}\).
CYTOLOGICAL FEATURES

Table-5

<table>
<thead>
<tr>
<th>Features</th>
<th>Tumor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform round cells</td>
<td>Ewing’s sarcoma, Neuroblastoma, Alveolar RMS</td>
</tr>
<tr>
<td>Spindle shaped (or) fusiform cells</td>
<td>Embryonal RMS, Ewing’s Sarcoma /PNET, Wilm’s tumor</td>
</tr>
<tr>
<td>Rim of basophilic cytoplasm</td>
<td>Burkitt’s NHL</td>
</tr>
<tr>
<td>Thin rim of clear cytoplasm due to prominent glycogen content</td>
<td>Ewing’s Sarcoma /PNET</td>
</tr>
<tr>
<td>Vacuoles in cytoplasm</td>
<td>Burkitt’s NHL</td>
</tr>
<tr>
<td>Convoluted nuclei</td>
<td>Lymphoblastic NHL</td>
</tr>
<tr>
<td>Peripheral nucleoli</td>
<td>Large cell NHL</td>
</tr>
<tr>
<td>Central prominent nucleoli</td>
<td>Immunoblastic NHL</td>
</tr>
<tr>
<td>Thin rim of cytoplasm with glycogen positivity</td>
<td>Rhabdomyosarcoma, Ewing’s Sarcoma /PNET</td>
</tr>
</tbody>
</table>

Presence of differentiating cells in the tumor tissue, which give an important clue to arrive at a diagnosis.

a) Ganglion cells: Cells with vesicular nucleus, small nucleolus and discernible cytoplasm in Neuroblastoma38, 74.

b) Rhabdomyoblasts and strap cells: These are spindle shaped cells with eosinophilic cytoplasm, one (or) two centrally placed nuclei, and prominent nucleoli with (or) without cross striations. This is one of the diagnostic clues for Rhabdomyosarcoma74.
c) Spider cells (or) multivacuolated cells: When the glycogen is removed during fixation, it results in large multivacuolated cells with narrow strands of cytoplasm connecting the center of the cell with its periphery. This is also seen in certain cases of Rhabdomyosarcoma\(^7\). The centrally located nuclei and the irregular shape of cytoplasmic vacuoles help to distinguish these cells from the more rounded lipid filled vacuoles of lipoblasts.

STROMAL CELLS IN SELECTIVE TUMORS

In certain Malignant Round Blue Cell Tumors, characteristic stromal background helps us to arrive at a diagnosis which is tabulated in the Table No.-6.

<table>
<thead>
<tr>
<th>Tumors</th>
<th>Characteristic background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroblastoma</td>
<td>Neurofibrillary background (Mats of neurophil, which are tangled networks of cell processes)</td>
</tr>
<tr>
<td>Ewing’s sarcoma/PNET</td>
<td>Bicellular strands of tissue separated by ‘filmy’ vascular stroma, referred as ‘filigree’ pattern</td>
</tr>
<tr>
<td>Desmoplastic Small Round Cell Tumor (DSRCT)</td>
<td>Nests of tumor cells surrounded by abundant fibrous connective tissue</td>
</tr>
<tr>
<td>Extraskeletal Mesenchymal Chondrosarcoma</td>
<td>Tumor cells admixed with cartilaginous tissue</td>
</tr>
<tr>
<td>Myxoid Chondrosarcoma</td>
<td>Myxoid background</td>
</tr>
<tr>
<td>Small cell Osteosarcoma</td>
<td>Malignant osteoid</td>
</tr>
</tbody>
</table>

Table No- 6
Radiographic findings in certain Malignant Round Blue Cell Tumors

NHL CT examination of the thorax and abdomen is a vital element in the assessment of extensions. For stage I or II lesions, MRI of the bone marrow, liver and spleen are done to confirm whether the lesions are localized12.

Ewing’s/PNET This tumor typically presents in diaphyseal or metadiaphyseal region of long bone. The lesion is intramedullary and is associated with cortical thickening and cyclical periosteal reaction, giving rise to the characteristic onion–skin appearance12,49.

Rhabdomyosarcoma Radiography is done to confirm the presence of mass whenever there is clinical suspicion. And it may identify calcification and adjacent skeletal involvement12.

Wilms tumor Intravenous pyelogram shows intrarenal mass that displaces and distorts the pelvis. Computed tomography (CT) and Magnetic resonance imaging (MRI) are used to define the tumor extent38.

27
Neuroblastoma - When it occur in the retroperitoneum, causes anterior, lateral and downward displacement of kidney without hydrenephrosis. 50% of Neuroblastoma show fine stippled calcification. Radiolabelled Metaiodobenzylguanidine (MIBG) is incorporated into catecholamine secreting cells to detect bone and soft tissue involvement.

Special stains

Reticulin stain shows fine branching Reticulin network with pericellular fibrils characteristic of Lymphoma.

Ewing’s sarcoma/PNET usually contains large amounts of cytoplasmic glycogen which is demonstrated by PAS (Periodic Acid Schiff’s) stain with diastase control.

IMMUNOCYTOCHEMISTRY IN DIAGNOSIS OF MALIGNANT ROUND BLUE CELL TUMORS

The development of sensitive reagents and detection systems, together with the introduction of heat-induced antigen retrieval, has rapidly entrenched immunohistochemistry as an indispensable adjunct to routine histological examination, contributing to diagnosis, prognosis and treatment.

Immunohistochemistry can be helpful in narrowing the differential diagnosis of small-round-cell tumors.
For example, the cell surface glycoprotein p30/32MIC2 is highly expressed in the Ewing family of tumors and also in Rhabdomyosarcoma and Non-Hodgkin's Lymphoma. Antibodies to desmin can be used to distinguish Rhabdomyosarcoma from Ewing's sarcoma, Neuroblastoma, and Lymphoma. Similarly, antibodies to leukocyte common antigen (LCA) can be used to separate hematolymphoid malignancies from the remainder of small-round-cell tumors. Nevertheless, there is no antibody specific for a single tumor type2, 5, 40, 50, 66, 72, 81.

Overlaps of mesenchymal, epithelial, and neural markers are present in a variety of tumors. Furthermore, reactivity to antibodies can vary depending on the preparation of the specimen, the antibody used, and the degree of tumor differentiation.

INITIAL ANTIBODY PANEL13

- Myogenin or Desmin
- NB84 or Neuron specific Enolase
- Leukocyte Common Antigen (LCA-CD 45)
- CD99
- Vimentin
- Cytokeratin

The immunocytochemical profiles of conventional and extended spectrums of Malignant Round Blue Cell Tumors and aberrant immunoreactivity of these tumors are presented in Table No.720, 21, 42, 46, 60.
ANTIBODIES AND IMMUNOREACTIVITY OF MALIGNANT ROUND BLUE CELL TUMORS10,13,26,29,38,49,77

Table No-8

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Tumors Typically Immunoreact with Antibody</th>
<th>Tumors may Immunoreact with Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte common Antigen</td>
<td>Lymphoma</td>
<td>Mesenchymal Chondrosarcoma</td>
</tr>
<tr>
<td>S-100 Protein</td>
<td>Neuroblastoma, MPNST, Ewing’s sarcoma /PNET</td>
<td>DSRCT, Hepatoblastoma, Wilms Tumor, Synovial sarcoma, Rhabdomyosarcoma Myofibroma, Mesenchymal Chondrosarcoma, small cell Osteosarcoma</td>
</tr>
<tr>
<td>NB84</td>
<td>Neuroblastoma</td>
<td>DSRCTs, Ewing’s sarcoma</td>
</tr>
<tr>
<td>Neuron specific Enolase</td>
<td>Neuroblastoma, DSRCT</td>
<td>Rhabdomyosarcoma, Ewing’s sarcoma</td>
</tr>
<tr>
<td>Myogenin</td>
<td>Rhabdomyosarcoma</td>
<td>DSRCTs, Wilm’s Tumor</td>
</tr>
<tr>
<td>Desmin</td>
<td>Rhabdomyosarcoma, DSRCT</td>
<td>Wilm’s Tumor / MPNST, Rhabdoid Tumor</td>
</tr>
<tr>
<td>Muscle specific Actin</td>
<td>Rhabdomyosarcoma</td>
<td>DSRCTs, Wilm’s tumor, Rhabdoid tumor, MPNST</td>
</tr>
<tr>
<td>CD99</td>
<td>Ewing’s Sarcoma /PNET</td>
<td>Leukemia, Lymphoma, RMS, DSRCTs, Synovial sarcoma, Mesenchymal Chondrosarcoma</td>
</tr>
<tr>
<td>Pancytokeratin</td>
<td>Synovial sarcoma, Hepatoblastoma, Carcinoma, Rhabdoid Tumor, Germ cell tumors, DSRCT</td>
<td>Ewing’s sarcoma, RMS, Leukemia, lymphoma</td>
</tr>
</tbody>
</table>
Antibody panels for defining origin of undifferentiated Malignant

Round Blue Cell Tumors

Myogenic: Desmin
Myogenin
Muscle Specific Actin

Neural: Chromogranin
NB84
Neuron specific enolase
S100

Lymphoid: Leukocyte Common Antigen
Myeloperoxidase protein

Germ Cell: Alpha fetoprotein
Pancytokeratin

Neural Crest: S100 Protein
HMB-45
CD99

Mesenchymal: Vimentin
Smooth muscle Actin

ELECTRON MICROSCOPIC FEATURES OF MALIGNANT ROUND BLUE CELL TUMORS.

Triche et al commented that "Overall, electron microscopy is probably the most universally useful of all diagnostic techniques other than light microscopy in round cell tumors." With these tumors, electron microscopy demonstrated itself to be more reliable than immunohistochemistry.
Electron microscopy offers not only greater sensitivity and specificity, but also greater versatility. The concept of replacing electron microscopy with a battery of immunostains has often been advocated as an economic measure.

Electron microscopic findings of certain tumors are tabulated in Table No-9.

Table No-9

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Cytoplasmic Glycogen</th>
<th>Basal lamina</th>
<th>Intercellular junctions</th>
<th>Myofilament</th>
<th>Neurosecretory granules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing’s sarcoma/PNET</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>NHL</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Presence of neurosecretory granules in Ewing’s sarcoma/PNET favours neuronal differentiation.

Alternative thin and thick bands of myofilaments are diagnostic of Rhabdomyosarcoma.

Wilm’s tumor shows triphasic components. Blastemal components have junctional complexes similar to other epithelial cells. A definite basement membrane was absent but numerous mitochondria, lipid droplets, granular endoplasmic reticulum and Golgi vesicles seen.
MOLECULAR PATHOLOGY OF MALIGNANT ROUND BLUE CELL TUMORS

Molecular markers have been increasingly used as a diagnostic tool as well as indicators for prognosis. However, accurate karyotyping of solid tumors is technically difficult, and successful cytogenetic analysis can be performed in only a subset of cases\(^8\)\(^1\). Despite the technical limitations, detection of a cytogenetic abnormality can be an important diagnostic aid in some childhood cancers\(^6\)\(^8\). For example, the t (11; 22)(q24;q12) translocation is frequently seen in the Ewing family of tumors, which includes Ewing's sarcoma, peripheral neuroectodermal tumors (PNET), and Askin's tumor. However, this translocation is not specific for the Ewing's family of tumors\(^6\)\(^4\),\(^5\)\(^8\).

Recent studies have demonstrated that the t(11;22) (q24;q12) translocation can be identified in some of the cases of Neuroblastoma and Rhabdomyosarcoma. Molecular markers that are used to diagnose Malignant Round Blue Cell Tumors are shown in Table No.10\(^9\),\(^3\)\(^4\),\(^4\)\(^4\)
MOLECULAR MARKERS USED IN DIAGNOSIS & PROGNOSIS
OF MALIGNANT ROUND BLUECELL TUMORS

Table No-10

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Marker</th>
<th>Locus/Translocation</th>
<th>Comments/Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>MYCN</td>
<td>2p24</td>
<td>Amplification (> 10 copies), poor prognosis, usually associated with high stage disease; PCR or southern blot.</td>
</tr>
<tr>
<td>NB</td>
<td>Del 1p</td>
<td>1p31-1p32</td>
<td>Associated with high stage disease; smaller deletion associated with more favourable outcome; PCR</td>
</tr>
<tr>
<td>ES/PNET</td>
<td>EWS/FLI-1</td>
<td>(11,22)(q24;q12)</td>
<td>Found in up to 90% cases; Types I and II fusion products most common; Type I more favourable; RT-PCR</td>
</tr>
<tr>
<td>ES/PNET</td>
<td>EWS/ERG</td>
<td>(21,22)(q22;q21)</td>
<td>Found in up to 5% of cases; RT-PCR</td>
</tr>
<tr>
<td>NHL, B-Cell type</td>
<td>IgH</td>
<td>14q32</td>
<td>Gene rearrangements identified in > 90% of cases; PCR or southern blot</td>
</tr>
<tr>
<td>NHL, T-Cell type</td>
<td>TCR or</td>
<td>7q34 or 7p15</td>
<td>Rearrangements identified in majority of cases; PCR or Southern blot</td>
</tr>
<tr>
<td>Wilms Tumor</td>
<td>WT1</td>
<td>11p13</td>
<td>Mutations occur in both sporadic and hereditary Wilms Tumors; PCR</td>
</tr>
<tr>
<td>Tumor</td>
<td>Marker</td>
<td>Locus/Translocation</td>
<td>Comments/Techniques</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>DSRCT</td>
<td>EWS/WT-1</td>
<td>(11;22) (q113; q12)</td>
<td>Only found in DSRCT; RT-PCR</td>
</tr>
<tr>
<td>Alveolar Rhabdomyosarcoma</td>
<td>PAX3/FKHR</td>
<td>(2; 13)(Q35; q14)</td>
<td>Found in up to 70% of cases; 20% cases have t(1;13)(p36;q14), PAX7/FKHR associated with better prognosis; RT-PCR</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>SYT/SSX</td>
<td>(X:18)(P11:Q11)</td>
<td>80% of cases; SYT/SSX1 in biphasic sarcomas. SYT/SSX2 in monophasic type associated with better prognosis: RT-PCR</td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

The present study had been carried out in the Department of Pathology, Madurai Medical College, Madurai for a period of 2 years from June 2008 to May 2010. The specimens were received from Government Rajaji Hospital and Meenakshi Mission Hospital which cater the health need of the people in and around Madurai.

The clinical details of the patients such as age, sex, symptoms, status of liver, spleen, peripheral smear findings and radiological findings were recorded with the informed consent. The working proforma was appended in annexure I.

The histopathology specimens were fixed in 10% formalin. The entire small biopsy specimens received were embedded. In large specimens, the gross characteristic of the tumor such as size, shape, cut surface, hemorrhage and necrosis were noted. Adequate bits were taken from different areas of the specimen. The tissues were processed, paraffin blocked, 5 micron thin sections were cut and stained with Hematoxylin and Eosin (H & E). Special stains such as PAS (Periodic Acid Schiff’s) and Reticulin were used as and when required. Immunohistochemical studies were done in relevant cases. The procedures are shown in Appendix –II. Photographs of the specimen and photomicrographs of the slides were taken whenever needed.
The results of histopathological study of H&E stained sections, special stains and Immunohistochemical results were entered in the proforma and master chart (Annexure IV). The Immunohistochemical marker study had enabled to categorize the Malignant Round Blue Cell Tumors and helped to achieve a more accurate and precise diagnosis there by aiding the clinicians for the management of these patients by more specific therapeutic protocols.

Data analysis was done with the help of computer using Epidemiological Information Package (EPI 2008) developed by Center for Disease Control, Atlanta. Using this software, frequencies, percentages, means and standard deviations were calculated.
OBSERVATION AND RESULTS

In the two year study period from June 2008 to May 2010, specimens were received for histopathological examination from Government Rajaji Hospital and Meenakshi Mission Hospital, Madurai.

Out of 17,782 cases from Government Rajaji Hospital 2826 were reported as malignant lesions and out of 7853 cases from Meenakshi Mission Hospital 2210 were reported as malignant lesions. Altogether 70 cases had been reported as Malignant Round Blue Cell Tumor with the incidence of 1.38 %.

Chart No. 1
Among the 70 cases of Malignant Round Blue Cell Tumors studied, Non Hodgkin’s Lymphoma was diagnosed in 36 (51.5%) cases, Ewing’s sarcoma/PNET in 10 (14.5%) cases, Wilm’s tumor and Rhabdomyosarcoma each in 7 (10% + 10%) cases and Neuroblastoma in 5 (7%) cases. The distributions of Malignant Round Blue Cell Tumors were represented by Chart No.1 and Table No.11.

Table No.11 Histopathological Diagnosis

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Hodgkin’s lymphoma</td>
<td>36</td>
<td>51.5</td>
</tr>
<tr>
<td>Ewing’s sarcoma / PNET</td>
<td>10</td>
<td>14.5</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Wilm’s tumor</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Desmoplastic Small Round Cell tumor</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Small cell Osteosarcoma</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Extraskeletal Mesenchymal</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Chondrosarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undifferentiated Malignant Round Blue Cell Tumor (MRBCT)</td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>
Age incidence

The mean age at diagnosis of Malignant Round Blue Cell Tumors has been tabulated in Table No 12.

Table No.12 : Mean Age at Diagnosis of Malignant Round Blue Cell Tumors

<table>
<thead>
<tr>
<th>HPE Diagnosis</th>
<th>Age in years</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHL (36)</td>
<td></td>
<td>44.9</td>
<td>23</td>
</tr>
<tr>
<td>Ewing’s Sarcoma (10)</td>
<td></td>
<td>21.3</td>
<td>12.9</td>
</tr>
<tr>
<td>Rhabdomyosarcoma (7)</td>
<td></td>
<td>16.9</td>
<td>12.3</td>
</tr>
<tr>
<td>Wilm’s Tumour (7)</td>
<td></td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Neuroblastoma (5)</td>
<td></td>
<td>13.9</td>
<td>21.3</td>
</tr>
<tr>
<td>Malignant round blue cell tumour (2)</td>
<td></td>
<td>30.3</td>
<td>39.2</td>
</tr>
<tr>
<td>(Undifferentiated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others(3)</td>
<td></td>
<td>12.8</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Non Hodgkin’s Lymphoma was diagnosed in youngest age of 4 years and oldest age of 92 years.

Ewing’s sarcoma/PNET was diagnosed at the youngest age of 8 years and oldest age of 48 years.

Embryonal Rhabdomyosarcoma was diagnosed at the youngest age of 3 months and oldest age of 21 years.

Wilm’s tumor was diagnosed at the youngest age of 6 months and oldest age of 12 years.

Neuroblastoma was diagnosed at the youngest age of 3 years and oldest age of 52 years.

Among the 36 cases of Non Hodgkin’s lymphoma, 5 cases were diagnosed in pediatric population and the rest 31 cases in adult population especially in patients above 40 years.

Out of 10 cases of Ewing’s sarcoma /PNET studied, 1 case was diagnosed in 8 year old child and rest of the cases were diagnosed in adolescent and adult age group.

All the 7 Wilm’s tumor cases were diagnosed in children only. All cases of Neuroblastoma occurred in children except one in adult.

4 cases of Embryonal Rhabdomyosarcoma were seen in children and the rest 3 in adults.
The age incidence of Malignant Round Blue Cell Tumors ranges from 3 months to 92 years in this study. The age incidences of Malignant Round Blue Cell Tumors are shown in Table No 13 and Chart No 2

Malignant Round Blue Cell Tumors in Children versus Adults

Table No -13

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Cases</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Children</td>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Non Hodgkin’s Lymphoma (36)</td>
<td>5</td>
<td>13.9</td>
<td>31</td>
</tr>
<tr>
<td>Ewing’s Sarcoma (10)</td>
<td>1</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Rhabdomyosarcoma (7)</td>
<td>4</td>
<td>57.1</td>
<td>3</td>
</tr>
<tr>
<td>Wilm’s tumor (7)</td>
<td>7</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Neuroblastoma (5)</td>
<td>4</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>Undifferentiated Malignant Round Blue Cell Tumors (2)</td>
<td>1</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Others (3)</td>
<td>1</td>
<td>33.3</td>
<td>2</td>
</tr>
<tr>
<td>Total (70)</td>
<td>23</td>
<td>32.9</td>
<td>47</td>
</tr>
</tbody>
</table>
It is observed from the study that Malignant Round Blue Cell Tumors are commonly seen in paediatric age group except Non Hodgkin’s Lymphoma which is common in adults.
Sex Incidence

Out of the 70 cases of Malignant Round Blue Cell Tumors, 45 cases occurred in males and 25 cases in females with the male to female ratio of (1.8:1) as illustrated in the Chart No 3.

Chart No -3

The incidence of various tumor types according to sex had been depicted in Table No-14 and Chart No-4. Non Hodgkin’s Lymphoma predominantly occurred in males with the male to female ratio of 2.3:1.
Sex incidence of individual tumor type

Table No-14

<table>
<thead>
<tr>
<th>HPE Diagnosis</th>
<th>Male</th>
<th></th>
<th>Female</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Non Hodgkin’s Lymphoma (36)</td>
<td>25</td>
<td>69.4</td>
<td>11</td>
<td>30.6</td>
</tr>
<tr>
<td>Ewing’s Sarcoma(10)</td>
<td>7</td>
<td>70</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Rhabdomyosarcoma (7)</td>
<td>4</td>
<td>57.1</td>
<td>3</td>
<td>42.9</td>
</tr>
<tr>
<td>Wilm’s tumor(7)</td>
<td>4</td>
<td>57.1</td>
<td>3</td>
<td>42.9</td>
</tr>
<tr>
<td>Neuroblastoma(5)</td>
<td>1</td>
<td>20</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Undifferentiated Malignant Round Blue Cell Tumor (2)</td>
<td>2</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others(3)</td>
<td>2</td>
<td>63.3</td>
<td>1</td>
<td>33.7</td>
</tr>
<tr>
<td>Total (70)</td>
<td>45</td>
<td>64.3</td>
<td>25</td>
<td>35.7</td>
</tr>
</tbody>
</table>

The three tumors, Ewing’s sarcoma / PNET, Wilm’s tumor and Rhabdomyosarcoma had a male predominance with the male to female ratio of 2.3:1, 1.3:1 and 1.3:1 respectively, whereas Neuroblastoma had a female preponderance with the male to female ratio of 1:4.
It was observed that the Malignant Round Blue Cell Tumors were common in males than females in this study.
CLINICAL PRESENTATION

Non Hodgkin’s Lymphoma (NHL)

Non Hodgkin’s lymphoma was reported in the Nodal (Fig1,2,3) as well as the extra nodal(Fig5,9,13) sites. 26 cases of nodal Non Hodgkin’s lymphoma presented with generalised lymphadenopathy and one case had leukemic dissemination as represented in Table No-15 and Chart No -5.

Clinical Presentation of Nodal Non Hodgkin’s Lymphoma

Table No-15

<table>
<thead>
<tr>
<th>Clinical Presentation</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphadenopathy</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>Spleenomegaly</td>
<td>2</td>
<td>7.7</td>
</tr>
<tr>
<td>Abdominal mass</td>
<td>7</td>
<td>26.9</td>
</tr>
<tr>
<td>Mediastinal mass</td>
<td>14</td>
<td>53.8</td>
</tr>
<tr>
<td>Leukemic dissemination</td>
<td>1</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Chart No: 5

Clinical Presentation of Nodal NHL of cases

- Lymphadenopathy: 26 cases
- Hepatomegaly: 2 cases
- Spleenomegaly: 1 case
- Abdominal mass: 2 cases
- Mediastinal mass: 14 cases
- Leukemic dissemination: 1 case

Legend:
- Lymphadenopathy
- Hepatomegaly
- Spleenomegaly
- Abdominal mass
- Mediastinal mass
- Leukemic dissemination
10 cases of Non Hodgkin’s Lymphoma occurred in different extra nodal sites (Fig 6,10,14) with varied clinical presentation depending upon the site of involvement which is shown in the (Table No. 16).

Table No-16

<table>
<thead>
<tr>
<th>S.No</th>
<th>Site</th>
<th>No of cases</th>
<th>Clinical presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parotid</td>
<td>2</td>
<td>Swelling in the parotid region</td>
</tr>
<tr>
<td>2</td>
<td>Stomach</td>
<td>3</td>
<td>Epigastric mass</td>
</tr>
<tr>
<td>3</td>
<td>Ileum & Colon</td>
<td>2</td>
<td>Right iliac fossa mass</td>
</tr>
<tr>
<td>4</td>
<td>Testis</td>
<td>1</td>
<td>Swelling in the scrotum</td>
</tr>
<tr>
<td>5</td>
<td>Tibia</td>
<td>1</td>
<td>Swelling above the ankle joint</td>
</tr>
<tr>
<td>6</td>
<td>Nasopharynx</td>
<td>1</td>
<td>Dysphagia & Swelling in the neck</td>
</tr>
</tbody>
</table>

Malignant Round Blue Cell Tumors other than NHL

These tumors presented as bony and soft tissue mass in various sites.
Ewing’s sarcoma / PNET

Out of 10 cases of Ewing’s sarcoma / PNET (Fig 15), 7 were observed in lower segment of the skeleton and the rest 3 in upper segment. The Table No 17 showed various anatomical distribution of these tumors.

Anatomical distribution of Ewing’s sarcoma

Table No: 17

<table>
<thead>
<tr>
<th>S.No.</th>
<th>No. of cases</th>
<th>Anatomical distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bone</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Iliac bone</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Tibia</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Femur</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Fibula</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Elbow</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Chest wall</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Axillary region</td>
</tr>
</tbody>
</table>

Wilm’s tumor

All the 7 cases presented with abdominal mass and were unilateral.
Rhabdomyosarcoma

The study revealed that Rhabdomyosarcoma (Fig 19) occurred mainly in Head and Neck region and also in other sites such as genitourinary tract and extremities as illustrated in Table No 18

Anatomic distribution of Rhabdomyosarcoma

<table>
<thead>
<tr>
<th>S.No.</th>
<th>No. of cases</th>
<th>Clinical presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Extremity</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Nasopharynx</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Genitourinary region</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Eye ball</td>
</tr>
</tbody>
</table>

Neuroblastoma

The study showed that Neuroblastoma(Fig29,30) most commonly presented as retroperitoneal mass rarely as presacral and nasal mass as shown in TableNo19.

Anatomic distribution of Neuroblastoma –Table No: 19

<table>
<thead>
<tr>
<th>S.No.</th>
<th>No. of cases</th>
<th>Clinical presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Retroperitoneal mass</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Presacral mass</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Nasal mass</td>
</tr>
</tbody>
</table>
Histopathology

70 cases of Malignant Round Blue Cell Tumors were taken for the study. All the sections were stained with hematoxylin and eosin (H & E) stain. Special stains such as Reticulin and PAS were done in relevant cases. Immunohistochemical marker study was also done in selective cases.

Hematoxylin and Eosin (H & E)

The sections stained with H&E were studied under light microscopy and the diagnosis was made based on the cellular morphology such as cytoplasmic and nuclear features, intervening stroma and pattern of arrangement of tumor cells.

The microscopic study showed 34 cases as NHL and 36 cases as Malignant Round Blue Cell Tumors other than NHL. Out of the 34 cases of NHL, 26 occurred in the nodal and the rest 8 in extranodal sites (Fig 7,11,14).

Among the 36 cases of Malignant Round Blue Cell Tumors other than Non Hodgkin’s Lymphoma constituted 8 cases of Rhabdomyosarcoma, 7 cases of Wilm’s tumor (Fig 25,26,27), 6 cases of Ewing’s sarcoma / PNET and 5 cases of Neuroblastoma. The study also showed one case in each of small cell Osteosarcoma(Fig32), Extra skeletal Mesenchymal Chondrosarcoma(Fig31) and Desmoplastic Small Round Cell Tumor (DSRCT)(Fig 33). Rest of the cases didn’t fit into any of the specific type and were categorized as Undifferentiated Malignant Round Blue Cell Tumors.
Special stains

Special stains such as Reticulin and Periodic Acid Schiff’s (PAS) were done in selective cases. Reticulin stain (Fig 4) was done for all the cases of nodal NHL which showed fine branching reticulin network with pericellular fibrils characteristic of Lymphoma. PAS stain (Fig 16) was done for 6 cases of Ewing’s sarcoma/PNET, which demonstrated abundant cytoplasmic glycogen positivity.

Immunohistochemistry (IHC)

Immunohistochemical marker study was done for all the cases of extra nodal NHL. Specific IHC marker study was done in randomly selected cases to confirm the H&E diagnosis. Panel of IHC marker study was done for all the cases of Undifferentiated Malignant Round Blue Cell Tumors as illustrated in Table No 20.

IHC marker study such as CD 45(Leukocyte common antigen-LCA) (Fig 8,12) was done for all the cases of extra nodal NHL, which showed membranous positivity thus confirming the H&E diagnosis. In addition cytokeratin was also done for gastro intestinal NHL to rule out the possibility of poorly differentiated carcinoma by its negative reaction.
Specific IHC marker study was done for randomly selected 8 cases of Malignant Round Blue Cell Tumors for further evaluation and confirmation. The study confirmed a case of Ewing’s sarcoma/PNET by its membranous positivity for CD99 (Fig17) and positivity for vimentin (Fig18). Two of the Wilm’s Tumor cases were confirmed with vimentin (Fig 28) positivity both in blastemal and stromal cells Neuroblastoma was confirmed with positivity for chromogranin (Fig 30) and S-100 in 3 of the cases.

Among the Rhabdomyosarcoma (Fig 20) cases subjected to IHC marker study, one was confirmed with desmin (Fig 21) positivity and another showed negativity for desmin. Hence this case was included in the Undifferentiated Malignant Round Blue Cell Tumors category and subjected to panel of IHC marker study.

Panel of IHC marker study was done for all the Undifferentiated Malignant Round Blue Cell Tumors. Vimentin and CD 99 were positive in 4 cases and proved to be Ewing’s sarcoma/PNET. Two cases showed CD 45 positivity and were included in extranodal Non Hodgkin’s Lymphoma category. The rest two cases (Fig 34) showed negativity for all the IHC markers in the primary antibody panel. The final results were tabulated in the Table No- 21.
The histopathological diagnosis based on H&E sections categorized the 70 cases of Malignant Round Blue Cell Tumors into 34 cases of NHL (26 nodal+ 8 extranodal) and 36 cases of Malignant Round Blue Cell Tumors other than NHL.

Among the 36 cases of Malignant Round Blue Cell Tumors other than NHL 2 cases had been diagnosed as NHL by Immunohistochemical marker study, thereby making a total of NHL as 36 cases. Two cases remained in the undifferentiated category even after Immunohistochemistry.
DISCUSSION

Malignant Round Blue Cell Tumors comprise a diverse group of diagnostically challenging primitive and undifferentiated neoplasms. Although classical histological features are highly suggestive of a tumor type, on occasion these tumors are indistinguishable by light microscopy, making a definitive diagnosis difficult. Accurate diagnosis of Malignant Round Blue Cell Tumors has become increasingly crucial, as disparate approaches to therapy are used for distinct tumor types.

Incidence

The incidence of Malignant Round Blue Cell Tumors in the present study is 1.38%. The 70 cases of Malignant Round Blue Cell Tumors were categorized into 36 cases of Non Hodgkin’s Lymphoma (NHL) and 34 cases of Malignant Round Blue Cell Tumors other than NHL.

Non Hodgkin’s lymphoma is the most common tumor, constituting 36 cases (51.5%). Ewing’s sarcoma / PNET constitute 10 cases (14.5%). Wilms tumor and Rhabdomyosarcoma each constitute 7 cases (10%+10%). Neuroblastoma constitutes 5 cases (7%).
Age

In this present study, the age of the patients with Malignant Round Blue Cell Tumors ranged between 3 months to 92 years, 23 cases in children with 32.9% of incidence and 47 cases in adults with 67.1% of incidence.

NHL is common in adults than in children with ratio of 4:1. The mean age at diagnosis of NHL is 44.9 years. Surveillance Epidemiology and End Results80 (National Cancer Institute, USA) showed 67 years as the median age at diagnosis of NHL.

Ewing’s/PNET is predominantly seen in adolescent age group, which is similar to the study conducted by Carvajal R et al6 in which common age group for Ewing’s sarcoma / PNET is 10-20 years.

In the present study, Rhabdomyosarcoma (RMS) (Fig 22,23) is common in children than adults. Most of the RMS cases are below 21 years with the mean age at diagnosis of 16.9 years. This study correlates well with the study conducted by Michael et al51 who also found that RMS occurred commonly in patients younger than 21 years.

This current study showed median age at diagnosis of Wilm’s tumor as 53 months (4.5 years). Mir Mahmood Seyed Ahadi et al55 found that mean age at the time of diagnosis as 45.2 months (4 years) which is slightly lower than that found in the present study. Norman Breslow et al57 found that median age at diagnosis of Wilm’s tumor is 39.5 months.
In this study, 80% cases of Neuroblastoma are seen under the age of 6 correlating with the study conducted by Stiller C A et al79 which also showed 80% of cases below the age of 4.

Sex

In the present study Malignant Round Blue Cell Tumors show a male: female ratio of 1.8:1.

This study shows a male preponderance of Non Hodgkin’s lymphoma with a male: female ratio of 2.2:1, which correlates with the Surveillance Epidemiology and End Results80 (National Cancer Institute, USA) which also shows a male preponderance with a male: female ratio of 1.4:1.

Carvajal R et al6 found slight male predominance of Ewing’s sarcoma/PNET. This current study correlates with the above study with a male: female ratio of 2.3:1.

Simona Ognjanovic et al76 found a male preponderance for Rhabdomyosarcoma with a male: female ratio of 1.37:1. This present study also shows a male preponderance with the male: female ratio of 1.3:1.

Mir Mahmood Seyed Ahadi et al55 found that Wilms’ tumor is common in males with a male: female ratio being 1.2:1. This present study correlates with the above study with a male: female ratio of 1.3:1.
Norman Breslow et al57 found that slight preponderance of females in the National Wilm’s tumor study registered between October 1969 and December 1985.

Gregory Hale et al28 found a male preponderance in Neuroblastoma with a male to female ratio of 1.3:1. In contrast, this present study shows distinct female preponderance with the male: female ratio being 1:4.

Site

In this study, extra nodal NHL constitutes about 27\% of the total NHL cases recorded. This can be compared with Antoria M.S.Muller et al4 who found that extra nodal NHL constitutes 20-30\% of all NHL in his study.

Sandeep Agarwala et al69 found that most common site of occurrence of Rhabdomyosarcoma is the head and neck region. This present study correlates with the above study.

Kissane et al41 found that Ewing’s sarcoma has a predilection for lower segment of skeleton as this current study.

Neuroblastoma commonly present as retroperitoneal mass which correlates with the study conducted by DeLorimer et al17 based on California Tumor Registry.
ROLE OF SPECIAL STAIN

Reticulin stain was done for all the cases of nodal lymphoma to confirm the effacement of architecture, which is characteristic of Lymphoma.

PAS stain was done to confirm for all the cases of the Ewing sarcoma/PNET to confirm the presence of glycogen in the cytoplasm. Although these two special stains are not specific for the diagnosis they had a limited role in categorizing the Malignant Round Blue Cell Tumors (MRBCT).

ROLE OF IMMUNOHISTOCHEMISTRY

Immunohistochemistry (IHC) must be interpreted in the context of light microscopic findings. In most of the cases, the combination of clinical and radiographic findings with light microscopic appearance is sufficient for the diagnosis. The decision about when to order immunohistochemistry depends upon the complexity of the tumor and the pathologist’s experience.

Beginning with the limited antibody panel, helps to refine the differential diagnosis and allows a more systematic use of financial and tissue resources. The panel used depends upon the laboratory resources and capabilities. If results are unexpected (or) contradictory, another more comprehensive panel may be used. The use of panel of IHC markers rather than over-reliance on a single antibody is an important diagnostic principle.
Immunohistochemistry was done for all the cases of extra nodal NHL. All these tumors show membranous positivity of CD45 (Leukocyte Common Antigen-LCA). Cytokeratin was done for gastrointestinal NHL which showed negative reaction thus ruling out the possibility of poorly differentiated carcinoma. So the accurate diagnosis was arrived for extra nodal NHL, which helped the patients to get a specific treatment.

Immunohistochemical marker study was also done for few randomly selected cases of Malignant Round Blue Cell Tumors other than NHL to confirm the H&E diagnosis. The results are shown in the Table No-22

<table>
<thead>
<tr>
<th>S.No</th>
<th>Diagnosis based on H &E</th>
<th>No of cases</th>
<th>IHC marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ewing’s sarcoma /PNET</td>
<td>1</td>
<td>CD 99+</td>
</tr>
<tr>
<td>2</td>
<td>Wilm’s tumor</td>
<td>2</td>
<td>Vimentin +</td>
</tr>
<tr>
<td>3</td>
<td>Neuroblastoma</td>
<td>3</td>
<td>Chromogranin +</td>
</tr>
<tr>
<td>4</td>
<td>Rhabdomyosarcoma</td>
<td>2</td>
<td>Desmin + in 1 case Desmin - in 1 case*</td>
</tr>
</tbody>
</table>

*This case was included in Undifferentiated Malignant Round Blue Cell Tumors and subjected to panel of IHC marker study.
The H&E diagnosis very well correlated with the IHC marker study in all the cases except one. This case was diagnosed as Rhabdomyosarcoma in H&E sections which showed negative reaction for desmin. Hence it is included in the undifferentiated category, which later on proved to be Non Hodgkin’s Lymphoma by its CD 45 positivity.

In undifferentiated Malignant Round Blue Cell Tumors, 4 cases showed membranous positivity for CD 99 and diffuse positivity for vimentin which helped to arrive at a specific diagnosis of Ewing’s sarcoma/ PNET. The close differential diagnosis for Ewing’s sarcoma/ PNET is Rhabdomyosarcoma, Lymphoma and small cell Osteosarcoma.

In the panel of IHC marker (Table No-20) study, negative reaction for desmin and CD 45 helped to exclude the Rhabdomyosarcoma and Lymphoma respectively, whereas the small cell Osteosarcoma is ruled out due to the absence of neoplastic osteoid in H&E sections.

One of the undifferentiated Malignant Round Blue Cell Tumors arising from the bone showed negative reaction for CD 99 and membranous positive reaction for CD 45. Hence this is included in the extra nodal NHL category.

Most of the Malignant Round Blue Cell Tumors are categorized into specific types which enables the patients to get appropriate treatment according to the final diagnosis.
Two of the undifferentiated Malignant Round Blue Cell Tumors showed negative reaction for all the IHC markers in the primary antibody panel and doesn’t fit into any of the specific category. So these two cases still remain in the category of Undifferentiated Malignant Round Blue Cell Tumors.

For evaluating these two cases, a more comprehensive panel of IHC markers may be employed to achieve a specific diagnosis. Techniques such as electron microscopy or molecular testing may be necessary to make a diagnosis in these cases. Even though IHC marker study is a valuable tool, but it has significant pitfalls in certain instances, such as inadequate fixation, over fixation, incomplete dehydration during processing or if the paraffin is too hot. These are the instances where antigen may be lost from the tissue and these technical factors are to be considered while interpreting IHC marker study.

For making the diagnosis of Malignant Round Blue Cell Tumors, the combination of clinical history, radiologic features and light microscopic appearance are sufficient in majority of patients. Immunohistochemistry can be employed wherever there is difficulty in making the diagnosis by H&E sections. The availability of more specific and more sensitive IHC markers has enabled to categorize these Malignant Round Blue Cell Tumors. Therapeutic modality varies with the individual tumor. So an exact diagnosis of Malignant Round Blue Cell Tumor is essential to enable the patients to get an appropriate management.
SUMMARY

1. This study was conducted in Madurai Medical College, Madurai from June 2008 to May 2010 with the materials received from Government Rajaji Hospital and Meenakshi Mission Hospital, Madurai during this period.

2. Among the 5036 malignant lesions, Malignant Round Blue Cell Tumors constitute about 70 cases with an incidence of 1.38%.

3. Non Hodgkin’s Lymphoma (NHL) is the most common type of tumor in this study which is about 51.5% (36 cases) and Malignant Round Blue Cell Tumors other than NHL constitute 48.5% (34 cases).

4. Extra nodal Non Hodgkin’s Lymphoma constitutes about 27% of all the cases of NHL.

5. Malignant Round Blue Cell Tumors other than NHL is common in children and adolescence whereas NHL is common in the older age group.

6. Malignant Round Blue Cell Tumors have a male preponderance with a male to female ratio of 1.8:1, except in Neuroblastoma which is common in females.

7. The common clinical presentation of NHL is lymph nodal enlargement
8. Ewing’s sarcoma/PNET affects lower segment of the skeleton whereas Rhabdomyosarcoma involves the head and neck region. Neuroblastoma usually presents as retroperitoneal mass.

9. Reticulin and PAS stains are supportive to the diagnosis of NHL and Ewing’s sarcoma/PNET respectively in the study.

10. The Immunohistochemistry has confirmed hematoxylin and eosin (H&E) based diagnosis in most of the cases.

11. The undifferentiated Malignant Round Blue Cell Tumors are categorized into specific types by Immunohistochemical marker study in most of the cases.

12. Specific diagnosis of the Malignant Round Blue Cell Tumors by immunohistochemical marker study enabled the patients to get appropriate treatment.
CONCLUSION

Malignant Round Blue Cell Tumors comprise a wide range of neoplasms varying considerably in regard to etiology, site of origin, involvement of skeletal system and prognosis. But on light microscopy, these tumors have the basic morphologic themes of small round blue cells. In the diagnosis of Malignant Round Blue Cell Tumors, clinical history, radiologic features, light microscopic findings and results of Immunohistochemistry are all taken into consideration. Immunohistochemical marker study has a great role of categorizing these tumors and accurate diagnosis is made possible which enable the patients to get the appropriate treatment.
ANNEXURE – I

PROFORMA

Name	:
Age / Sex	:
IP No.	:
Address	:

Complaints	:
H/o Present Illness	:
Family H/o	:
General Examination	:

| Nutrition |
| Stature |
| Pallor |
| Jaundice |
| Hepatomegaly |
| Spleenomegaly |
| Lymphadenopathy |
| Mediastinal Mass |
| Abdominal Mass |
Peripheral Smear Examination :

Radiological Examination :

Biochemical Examination :

Blood :

Urine :

Morbid Anatomy :

Macroscopy :

Microscopy :

H&E :

Special Stains :

Diagnosis

Immunohistochemistry :

Miscellaneous :

Final Diagnosis :
ANNEXURE - II

PROCEDURES

HEMATOXYLIN AND EOSIN\(^{29,37}\)

1. Deparaffinize sections, hydrate through graded alcohols to water.

2. Stain in Ehrlich’s Hematoxylin for 30 minutes

3. Wash well in tap water

4. Differentiate in 1% acid alcohol

5. Wash well in tap water until sections are again blue for 10-15 minutes

6. Stain in 1% eosin for 1 to 2 minutes

7. Wash in running tap water for 1 to 5 minutes

8. Dehydrate the alcohols clearly in Xylol and mount in DPX.
SPECIAL STAINS

Periodic Acid Schiff’s Stain (Glycogen in ES/PNET)

Method:

1. Dewax sections and bring to distilled water
2. Treat with periodic acid for 5 minutes
3. Wash well with several changes of distilled water
4. Cover with Schiff’s solution for 15 minutes
5. Wash in running tap water 5-10 minutes
6. Stain nuclei with Harris Hematoxylin. Differentiate as appropriate in acid alcohol and blueing in tap water for 5 minutes.
7. Wash in water
8. Rinse in absolute alcohol
9. Clear in Xylene and mount with DPX

RESULTS

Glycogen : Magenta
Nuclei : Blue
I. RETICULIN STAIN29,37

1. Bring sections to water.
2. Treat with potassium permanganate solution for 1-2 minutes.
3. Wash in water, bleach with the potassium metabisulphite solution. Wash well in water.
4. Treat with the iron alum solution for 1 minute. Wash well in tap and then distilled water.
5. Treat with ammoniacal silver solution for 1 minute.
6. Wash briefly in distilled water and reduce in 10% formalin for 3 minutes.
7. Wash, then tone in 0.2% gold chloride for up to 10 minutes.
8. Rinse in distilled water, then treat with the potassium metabisulphite solution for 1 minute.
9. Rinse with distilled water and fix with 5% hypo for 1-2 minutes.
10. Wash, dehydrate, clear, and mount in DPX.

Results:

<table>
<thead>
<tr>
<th>Reticulin fibers</th>
<th>............</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclei</td>
<td>............</td>
<td>grey</td>
</tr>
<tr>
<td>Collagen</td>
<td>............</td>
<td>grey-purple</td>
</tr>
</tbody>
</table>
IMMUNO HISTOCHEMICAL STAINING

1. Sections to alcohol.

2. Block endogenous peroxidase activity by incubating in hydrogen peroxide solution for 30 minutes.

3. Hydrate sections by passing through graded ethanol series and wash in running water for 15 minutes.

4. Incubate sections in the normal swine serum diluted in Tris/saline for 15 minutes.

5. Drain off excess Tris-buffered normal swine serum.

6. Incubate sections with primary antiserum diluted 1:2000, 1:1000, 1:250 and 1:100 in 1% normal swine serum for 30 minutes.

7. Jet wash off excess antiserum and then wash slides in Tris / saline for three 2 minutes changes.

8. Incubate sections in swine anti-rabbit IgG diluted 1:20 for 30 minutes.

9. Jet wash off excess antiserum and then wash slides for three 2 minutes changes.

10. Incubate sections in PAP complex diluted 1:60 in 1% normal swine serum in Tris / saline for 30 minutes.
11. Jet wash off excess complex and wash in Tris / saline for three 2 minutes changes.

12. Incubate sections in DAB medium for 5 minutes.

13. Wash sections in running water for 10 minutes.

14. Counterstain in alum hematoxylin, dehydrate, clear and mount.

Results:

<table>
<thead>
<tr>
<th>Reaction product</th>
<th>......</th>
<th>brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclei</td>
<td>......</td>
<td>blue</td>
</tr>
</tbody>
</table>
ANNEXURE - III

BIBLIOGRAPHY

7. Celebrating the centennial of Wilm’s “Die Mischgeschwulste der Niere”.
 The American Pediatric Society and The Society for Pediatric Research

8. Christopher D.M. Fletcher. Diagnostic Histopathology of Tumors. 3nd

 Williams and Wilkins. 2001.

12. Daniel Vanel, David Stark. Imaging strategies in oncology. Published by

 Churchill Livingstone.

14. David M Parham MD, Pathologic classification of Rhabdomyosarcomas and
 correlations with molecular studies. Modern pathology 2001; 14(5): 506-
 514.

15. David M. Parham, Dale A. Ellison. Rhabdomyosarcomas in adults and

48. Mark Bernstein, Heinrich Kovar, Michael Paulussen, R. Lor Randall, Andreas Schuck, Lisa A. Teot, Herbert Juergensg. Ewing’s sarcoma Family

66. Sabrina Rossi, Enrico Orvieto, Alberto Furalnetto, Licia Laurine, Vito Ningo and Angelo P Dei Tos. Utility of the Immunohistochemical detection

<table>
<thead>
<tr>
<th>S.No</th>
<th>OP/IP No</th>
<th>HP No</th>
<th>Age</th>
<th>Sex</th>
<th>Liver</th>
<th>Spleen</th>
<th>Adenopathy</th>
<th>Abdominal Mass</th>
<th>Mediastinal Mass</th>
<th>Peripheral smear</th>
<th>Histopathology</th>
<th>Special stain</th>
<th>IHC</th>
<th>Final Diagnosis by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48596</td>
<td>1956/08</td>
<td>3.5yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Neuroblastoma</td>
<td>chr +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50632</td>
<td>2161/08</td>
<td>60yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51948</td>
<td>2236/08</td>
<td>16 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Ewings sarcoma</td>
<td>PAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51090</td>
<td>2346/08</td>
<td>12 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5252</td>
<td>2675/08</td>
<td>41yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>68649</td>
<td>3223/08</td>
<td>26 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Intra abdominal desmoplastic tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67099</td>
<td>3283/08</td>
<td>5 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>35280</td>
<td>3434/08</td>
<td>9 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>82399</td>
<td>3967/08</td>
<td>48 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>83704</td>
<td>3973/08</td>
<td>13 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Ewings sarcoma</td>
<td>PAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>85837</td>
<td>3998/08</td>
<td>13 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Ewings sarcoma</td>
<td>CD 99 +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>84185</td>
<td>4012/08</td>
<td>11 yrs</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>86281</td>
<td>4482/08</td>
<td>15 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>PAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>96928</td>
<td>4670/08</td>
<td>4 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>106228</td>
<td>70/09</td>
<td>46 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>? CLL/ Lymphoma</td>
<td>NHL with leukemic dissemination</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>101628</td>
<td>117/09</td>
<td>58 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>CD 99, vimentin, desmin, chr, LCA -</td>
<td>Undifferentiated malignant round blue cell tumor</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>36768</td>
<td>1193/09</td>
<td>55yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31090</td>
<td>864/09</td>
<td>21 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>22394</td>
<td>865/09</td>
<td>3 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Neuroblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>39777</td>
<td>1267/09</td>
<td>55yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>49232</td>
<td>1665/09</td>
<td>23yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>53438</td>
<td>2092/09</td>
<td>8 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>PAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>68330</td>
<td>2774/09</td>
<td>52 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>62623</td>
<td>3001/09</td>
<td>8 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>82535</td>
<td>3169/09</td>
<td>3/12mon</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Embryonal rhabdomyosarcoma</td>
<td>desmin +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>OP/IP No</td>
<td>HP No</td>
<td>Age</td>
<td>Sex</td>
<td>Liver</td>
<td>Spleen</td>
<td>Adenopathy</td>
<td>Abdominal Mass</td>
<td>Mediastinal Mass</td>
<td>Peripheral smear</td>
<td>Histopathology</td>
<td>Special stain</td>
<td>IHC</td>
<td>Final Diagnosis by IHC</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>75350</td>
<td>3192/09</td>
<td>38yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>--</td>
<td>Extra skeletal mesenchymal chondrosarcoma</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>81871</td>
<td>3318/09</td>
<td>48yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>--</td>
<td>Ewings sarcoma/PNET PAS</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>92630</td>
<td>3697/09</td>
<td>6yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Rhabdomyosarcoma</td>
<td>TdT,CD3,CD45+ Desmin-- NHL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>94621</td>
<td>3733/09</td>
<td>6/12mon</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td>vimentin +</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>92905</td>
<td>3743/09</td>
<td>60yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>98298</td>
<td>3920/09</td>
<td>20 yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Ewings sarcoma</td>
<td>CD 99 +, vimentin+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>106526</td>
<td>255/10</td>
<td>56yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>Malignant round blue cell tumor</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>27290</td>
<td>1304/10</td>
<td>2 1/2 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>LCA +</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>22536</td>
<td>1546/10</td>
<td>92 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>Small cell osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5761</td>
<td>439/09</td>
<td>12yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Small cell osteosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>372587</td>
<td>2249/08</td>
<td>6mon</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td>chr--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>337846</td>
<td>2824/08</td>
<td>54yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>391309</td>
<td>3170/08</td>
<td>23yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>379428</td>
<td>2127/10</td>
<td>15 yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>Malignant round blue cell tumor</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>381465</td>
<td>2001/08</td>
<td>15yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>PNET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>381804</td>
<td>2056/08</td>
<td>52yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Offactory neuroblastoma</td>
<td>chr,S100+ ck--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>391882</td>
<td>2130/08</td>
<td>70yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>138828</td>
<td>2161/08</td>
<td>6yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Neuroblastoma</td>
<td>ck --,vimentin +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>141929</td>
<td>3591/08</td>
<td>25yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>CD 99,vimentin+ desmin,LCA--</td>
<td>Undifferentiated malignant round blue cell tumor</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>458851</td>
<td>238/09</td>
<td>35yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>LCA+</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>403046</td>
<td>322/09</td>
<td>45yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td>LCA+,ck--</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>387831</td>
<td>327/09</td>
<td>6yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>404170</td>
<td>488/09</td>
<td>60yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>405561</td>
<td>598/09</td>
<td>5yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Embryonal rhabdomyosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>408239</td>
<td>879/09</td>
<td>46yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>408921</td>
<td>922/09</td>
<td>63yrs</td>
<td>M</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>412055</td>
<td>1259/09</td>
<td>54yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td>ck--</td>
<td>LCA+</td>
</tr>
<tr>
<td>53</td>
<td>412205</td>
<td>1264/09</td>
<td>12yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>Embryonal rhabdomyosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>415344</td>
<td>2442/10</td>
<td>14yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>OP/IP No</td>
<td>HP No</td>
<td>Age</td>
<td>Sex</td>
<td>Liver</td>
<td>Spleen</td>
<td>Adenopathy</td>
<td>Abdominal Mass</td>
<td>Mediastinal Mass</td>
<td>Peripheral smear</td>
<td>Histopathology</td>
<td>Special stain</td>
<td>IHC</td>
<td>Final Diagnosis by IHC</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----</td>
<td>-------------------------</td>
</tr>
<tr>
<td>55</td>
<td>405661</td>
<td>1709/09</td>
<td>42yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>--</td>
<td>CD 99, vimentin, desmin,chr--</td>
<td>NHL</td>
</tr>
<tr>
<td>56</td>
<td>419067</td>
<td>1950/09</td>
<td>4yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>419608</td>
<td>1659/09</td>
<td>1yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Embryonal rhabdomyosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>420379</td>
<td>2089/09</td>
<td>21yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Embryonal rhabdomyosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>420853</td>
<td>2553/09</td>
<td>77yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>421283</td>
<td>2910/09</td>
<td>70yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>428986</td>
<td>3009/09</td>
<td>1yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Wilms tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>429796</td>
<td>3011/09</td>
<td>69yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>433310</td>
<td>3364/09</td>
<td>21yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Botryoid variant of embryonal RMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>435413</td>
<td>3547/09</td>
<td>60yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>435873</td>
<td>3593/09</td>
<td>20yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Alveolar Rhabdomyosarcoma</td>
<td>desmin+, vimentin,ck--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>437342</td>
<td>3725/09</td>
<td>63yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>438465</td>
<td>s432/10</td>
<td>40yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Malignant round blue cell tumor</td>
<td>CD99,CD100+, vimentin+patchy + desmin-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>439872</td>
<td>s638/10</td>
<td>68yrs</td>
<td>M</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>439965</td>
<td>s646/10</td>
<td>45yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>NHL</td>
<td>Reticulin</td>
<td>ck --,CD 45+</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>455364</td>
<td>G371/10</td>
<td>5yrs</td>
<td>F</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>N</td>
<td>Neuroblastoma</td>
<td>ck,desmin,chr--</td>
<td>Syn, Synaptophysin</td>
<td></td>
</tr>
<tr>
<td>CHR</td>
<td>Chromogranin</td>
<td>LCA</td>
<td>Leukocyte common antigen</td>
<td>CK</td>
<td>cytokeatin</td>
<td>SYN</td>
<td>Synaptophysin</td>
<td>--</td>
<td>Negative Finding</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finding
- Positive Finding
- Negative Finding
Fig. 1: NHL Lymph node: Cut surface is homogenous gray white (864/09)

Fig. 2: NHL Lymph node: Shows structure of lymph node with effacement of architecture H&EX100 (864/09)
Fig 3: NHL Lymph node: Shows monotonous proliferation of lymphocytes with scanty cytoplasm and regular round nuclei H&E X 400 (864/09)

Fig 4: NHL Lymph node shows loss of architecture with pericellular fibrils Reticulin X 400 (864/09)
Fig 5: NHL Parotid gland: Shows skin with underlying homogenous gray white mass (1546/10)

Fig 6: NHL Parotid gland: Shows diffuse arrangement of monotonous population of lymphoid cells H&E X 100(1546/10)
Fig 7: NHL Parotid gland: Shows salivary ducts surrounded by monotonous population of lymphoid cells H&E X 400(1546/10)

Fig 8: NHL Parotid gland: Lymphoid cells showing membranous positivity for CD 45 (LCA) IHC X400(1546/10)
Fig. 9: NHL Stomach: Cut surface shows homogenous gray white tumor involving more than 2/3 of stomach (2127/10)

Fig. 10: NHL stomach: Shows mucosal glands surrounded by monotonous population of lymphoid cells H&E X100 (2127/10)
Fig 11: NHL stomach: Shows mucosal glands infiltrated by lymphocytes (Lymphoepithelial lesion) H&E X400 (2127/10)

Fig 12: NHL stomach: Tumor cells show membranous positivity for CD 45 (LCA) inset shows negativity for cytokeratin X100 IHC (2127/10)
Fig 13: NHL small intestine: cut surface shows proliferative growth in distal end of ileum (2442/10)

Fig 14: NHL small Intestine: monotonous proliferation of lymphocytes. H&E X 100 inset-Tumor cells with scanty cytoplasm and round nuclei H&E X 400 (2442/10)
Fig 15: Ewing’s sarcoma/PNET: Uniform round blue cells arranged in lobules H&E X 100
Inset: Small round blue cells with rosette pattern H&E X 400 (3591/08)

Fig 16: Ewing’s sarcoma/PNET: Showing abundant cytoplasmic glycogen. PAS X400 (3591/08)
Fig 17: Ewing’s sarcoma/PNET: Shows membrane immunoreactivity for CD 99
IHC X100(3591/08)

Fig 18: Ewing’s sarcoma/PNET: Shows cytoplasmic positivity for vimentin
IHCX 400(3591/08)
Fig 19: Rhabdomyosarcoma: Shows structure of skin with underlying small round blue cells arranged in nests and diffuse sheets H&E X100 (3169/09)

Fig 20: Rhabdomyosarcoma: Shows primitive round to ovoid cells with scanty cytoplasm and round blue nuclei H&E X400 (3169/09)
Fig 21: Rhabdomyosarcoma: Tumor cells show diffuse cytoplasmic positivity for desmin IHC X 100 (3169/09)

Fig 22: Alveolar RMS: Cross section shows grayish white to tan in colour (3593/09)
Fig 23: Alveolar RMS: Shows aggregates of tumor cells separated by thick fibrous septa with alveolar pattern H&E X100 (3593/09)

Fig 24: Alveolar RMS: shows round blue cells with scanty cytoplasm and round nuclei H&E X 400 (3593/09)
Fig 25: Wilm's tumor: Shows more than 2/3 of kidney replaced by gray white tumor tissue with hemorrhagic areas (2346/08)

Fig 26: Wilm's tumor: shows combination of epithelial, blastemal and mesenchymal components H&E X100 (2346/08)
Fig 27: Wilm’s tumor: shows epithelial tubular formation, blastemal and mesenchymal components H&E X400 (2346/08)

Fig 28: Wilm’s tumor: shows cytoplasmic immunoreactivity for vimentin IHC X400 (2346/08)
Fig 29: Neuroblastoma: Tumor cells arranged in nests and separated by delicate fibrous septa H&E X 100 Inset shows uniform round blue cells with rosette formation(1956/08)

Fig 30: Neuroblastoma: Shows cytoplasmic granular positivity for chromogranin IHC X 100(1956/08)
Fig 31: Extra skeletal Mesenchymal Chondrosarcoma: Shows bimorphic pattern with cartilaginous area and small round blue cells H & E X100. Inset shows undifferentiated cells (3192/09)

Fig 32: Small cell Osteosarcoma: Shows neoplastic osteoid with nests of tumor cells H&E X100. Inset shows small round cells (439/09)
Fig 33: DSRCT: Shows nests small round cells surrounded by desmoplastic stroma H&E X100. Inset shows nests of small round blue cells (3223/08)

Fig 34: Undifferentiated Malignant Round Blue Cell Tumor: Shows negativity in all of the initial antibody markers IHC X 400 (1304/10)