AGGRESSIVE VERSUS EXPECTANT MANAGEMENT OF SEVERE PREECLAMPSIA REMOTE FROM TERM 28-34 WEEKS.

Dissertation submitted for

M.D. OBSTETRICS AND GYNAECOLOGY BRANCH II

MADRAS MEDICAL COLLEGE Chennai

THE TAMILNADU Dr. M.G.R. MEDICAL UNIVERSITY CHENNAI

February 2006
ACKNOWLEDGMENT

I sincerely thank Prof. Dr. KALAVATHY PONNIRAIVAN, B.Sc.M.D Dean, Madras Medical College and Research Institute, Chennai for granting me permission to do this study.

I express my sincere thanks to Prof. Dr. V. MADHINI, M.D., DGO., M.N.A.M.S., Director and Superintendent, Institute of OBSTETRICS AND GYNAECOLOGY, Egmore, Chennai, for forwarding my dissertation.

I thank Prof. Dr. CYNTHIA ALEXANDER, M.D., DGO., Deputy Superintendent of the Institute of OBSTETRICS AND GYNAECOLOGY, Egmore, Chennai, for her guidance and support.

I am grateful to Dr. SARASWATHY, M.D., DGO., Project Medical Officer for her guidance in fulfilling my work.

I am grateful to Prof. Dr. MOHANAMBAI, M.D., DGO., our Resident Medical Officer for her support.

I am thankful to all my Professors, Assistant Professors and my colleagues for their support. Above all, I am thankful to all the patients in the study.
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF THE LITERATURE</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>AIM OF THE STUDY</td>
<td>21</td>
</tr>
<tr>
<td>IV</td>
<td>MATERIALS AND METHODS</td>
<td>22</td>
</tr>
<tr>
<td>V</td>
<td>DATA ANALYSIS</td>
<td>30</td>
</tr>
<tr>
<td>VI</td>
<td>DISCUSSION</td>
<td>49</td>
</tr>
<tr>
<td>VII</td>
<td>SUMMARY</td>
<td>57</td>
</tr>
<tr>
<td>VIII</td>
<td>CONCLUSION</td>
<td>59</td>
</tr>
<tr>
<td>IX</td>
<td>ANNEXURES</td>
<td>60</td>
</tr>
</tbody>
</table>
INTRODUCTION

Preeclampsia is a multisystem disorder characterised by raised blood pressure and proteinuria. It complicates 5-8% of pregnancy and is a major cause of maternal and perinatal morbidity and mortality.

(ACOG 2002², Sibai et al 1997 (39))

Traditionally approach of balancing the interests of the mother with those of the fetus has been adopted in the management of preterm pregnancies with mild preeclampsia. Severe preeclampsia conversely has been delivered without delay regardless of fetal consideration.

With improved methods of monitoring maternal and fetal well being, several investigators begun to challenge the traditional view that women with severe preeclampsia need be delivered expeditiously.

Recent approach advocates conservative management in a selected group of women with severe preeclampsia remote from term with the aim of improving perinatal outcome without compromising maternal safety.
Preeclampsia is a clinical diagnosis encompassing three elements (committee on obstetric hypertension in pregnancy ACOG 1996)

1) New onset hypertension (defined according to the latest American college of obstetricians and gynecology bulletin simply as a blood pressure consistently more than 140/90 mm of Hg in previously normotensive women).

2) New onset proteinuria defined as more than 300mg /24hrs or >2+ on a clean catch dipstick in the absence of urinary infection)

3) New onset significant independent edema.

The diagnosis of PREECLAMPSIA should be made only after 20 weeks gestation

In the past it has been recommended that an increment of 30 mmHg systole or 15 mmHg diastolic blood pressure be used as a diagnostic criterion, even when absolute values were below 140/90 mmHg. This criterion is no longer recommended because evidence shows that women in this group are not likely to
Conventional mercury sphygmomanometry remains the gold standard for blood pressure measurement. Blood pressure should be measured with the women seated or at 45° recline, with her feet supported or on the ground, and her arm at the level of the heart. The right arm should be used with the cuff of the appropriate size. Electronic blood pressure monitors may underestimate the true pressure.

Nowadays it has been recommended that kortkoff phase V be used as a measure of diastolic pressure. (Brown et al 1998).

1. K4/K5 difference is smaller in hypertensive than in normotensive pregnant women.

2. K5 is closer to the actual intraarterial pressure, physiologically more accurate, is more reliably detected and is reproducible.

3. K4 has limited reproducibility (shennam et al 1996)

PREECLAMPSIA is classified as either “mild” or “severe”. There is no category of moderate Preeclampsia.
SEVERE PREECLAMPSIA (ACOG)

A diagnosis of severe Preeclampsia should be entertained in women with new onset proteinuric hypertension and one or more of the following complications

1) Symptoms of central nervous system dysfunction, (blurred vision, scotomata, altered mental status, severe headache.
2) Eclampsia (seizures and /or unexplained coma)
3) Symptoms of liver capsule distention (right upper quadrant or epigastric pain)
4) Severe elevations of blood pressure $\geq 160/110$ mmHg on 2 occasions at least 6hours apart.
5) Proteinuria ($>5g/24h$)
6) Oliguria or renal failure
7) Pulmonary edema
8) Cerebrovascular accident
9) Hepatocellular injury (serum transaminase levels >2times normal)
10) Thrombocytopenia (<100000 platelets /mm3)
11) Coagulopathy
12) HELLP (hemolysis, elevated liver enzymes, low platelets).

THEORIES ABOUT CAUSES OF PREECLAMPSIA

1. Immunological mechanism – BARDEQUEZ (3)

There is immunological resistance to invading trophoblast by maternal immune system. Blocking antibodies and T helper cells, interleukins, interferons, growth factors play a major role. This results in inadequate trophoblast invasion of myometrial spiral arterioles.

2. Genetic predisposition – CHESLEY & COOPER 1986 (6)

Susceptibility is by both single gene and multifactorial inheritance.

 a. Women with angiotensin gene variant T235 had increased incidence
 b. There is higher incidence of factor V Leiden mutation in preeclamptic patients

3. Increased pressor response to angiotensinogen II – ABDUL KAREEM 1961 (1)

4. Altered vasoactive factors: VOLHARDT 1918 (45)

 (A) Endothelin- 1. A potent vasoconstrictor produced by endothelium is increased.
 (B) NITRIC OXIDE:- A potent vasodilator is decreased. (Chang et al (5)
 (C) Reversal of PGI2 to TXA2 and vit.E ratio (Wang et al 1991 Walsh 1985(41))
Vasoactive maternal factor (VMF) has been imposed to cause the endothelial changes involved in the pathophysiology of PIH.

5. Oxidants and Antioxidants

Hubal et al (18) have confirmed that Preeclampsia may have its origin in a disturbed oxidation mechanism. Under normal conditions equilibrium is maintained by auto oxidants. With increase in severity of Preeclampsia there is increase in lipid peroxidase and reduction in auto oxidants. Vit E lipid peroxidase cause endothelial damage.

Deficiency in trophoblastic invasion of placental blood spiral arteries leads to poorly perfused fetoplacental unit. This results in secretion of plasminogen activator inhibitor, into the maternal circulation leading to activation of endothelial cells to promote coagulation and increased sensitivity to vasopressor agents.
Baker and coll 1995 have shown that VEGF levels are increased in serum of PE which may activate endothelial cells and release of inflammatory substances.

(Dekar & Sibai 1998(8)

7. Placental proteins:

Corticotropin releasing factor, HCG, Activin A, Inhibin A are said to play a role.

8. Dietary deficiency: DAWSON, KELLY & Coauthors

Mac Gillivray viewed the evidence for a role of dietary deficiency in pathology of PE. It was concluded that when concentration of calcium is low in extra cellular fluid, amount of ionic calcium entering cell wall increases making vascular smooth muscle more sensitive to excitation.

9. Hyperhomocystinemia: COLLER ET AL

Presence of infarcts retroplacentally is said to be cause of elevated levels of circulatory homocysteine. This is due to atherosis formed at placental site. Elevated levels damage endothelium by H2O2 generation depletes nitric oxide mediated detoxification of homocysteine. Elevated levels of factor V increase in prothrombin activation.
PATHOPHYSIOLOGY OF PREECLAMPSIA

PRIMARY LEVEL:

Changes that occur in placenta and placental vascular bed are the two lesions that involve spiral arterioles which are the end arteries supplying intravascular space (REDEMAN 1991(32))

a. Relative lack of trophoblastic infiltration of arterial walls during placentation (Bloen et al 1972)

b. Acute atherosis (Robertson et al 1963(33))

c. Magnitude of defective trophoblast invasion of spiral arterioles correlated with severity of hypertensive disorder.

d. Lipid accumulates first in myometrial cells and then in macrophages (Madzli & Collegues 2000(20))
SECONDARY LEVEL

I. Renal system

a) Decreased uric acid clearance, decreased glomerular function, decreased renal blood flow, proteinuria. Intrinsic renal changes caused by severe vasospasm

b) Renal pathology: Proteinuria reflects advanced disease associated with poor prognosis (Naeye & Friedman 1979) Glomerular endotheliosis (Sargo et al. 1959)

c) Urinary sediments reflects renal changes (Leduc et al. 1979)

d) Renal clearance of urate decreased (Chesley & Williams 1945)

e) Hypocalciuria (Taufield et al. 1987) because of increased tubular reabsorption

f) Hyperuricemia (Pollok et al. 1960)

g) Proteinuria (Meyer & Colleagues 1994) Trace or negative proteinuria had negative predictive value only 34% in hypertensive women 3+ or 4+ proteinuria were positively predictive of severe preeclampsia in only 36% of cases

II. Cardiovascular system:

a. Hemodynamic changes:

Increased arterial sensitivity to angiotensin II

Increased peripheral resistance

Decreased cardiac output
Increased BP

b. Blood volume

Hemo concentration

Blood volume decreased in women with homozygous for T 235 angiotensin genotype associated with preeclampsia (Silver & Associates 2001(35))

III. Coagulation system

a. Intravascular coagulation and less often erythrocyte destruction commonly in PE and especially eclampsia (Baker & Cunningham 1999)

b. PT, aPTT, plasma fibrinogen level are unnecessary in management of hypertensive disorder of pregnancy (Baker & Colleagues 1999)

c. Thrombin time somewhat prolonged in a third of cases

d. Thrombocytopenia results from platelet activation, consumption and increased platelet production. Platelet aggregation is decreased compared with the normal increase seen in pregnancy (Baker & Cunningham 1999)

e. Fragmentation hemolysis: (Sanchel Ramos 1994(34)) Increased RBC fluidity in women with HELLP

f. Antithrombin III lowered (Chang & Coworkers 1992(5))
g. Fibronectin elevated (Bru Baker & Colleagues 1992)

h. Thrombophilias: Clotting factors deficiencies or mutation associated with early onset of preeclampsia

IV. Hepatic system:

a) With severe preeclampsia there is elevation of liver enzymes (Combes & Adams 1972)

b) Increased hepatic artery resistance by Doppler sonography (Ooster Hof & Coworkers)

c) Periportal hemorrhagic necrosis in the periphery of liver (Barton & Colleagues)

V. Endocrine system

a. Increased plasma levels of renin

b. Angiotensin II and aldosterone are decreased (Weir & Colleagues)

c. Atrial natriuretic peptide is increased in women with preeclampsia (Cunningham & Lindheimer 1999(7))

VI. Fluid & Electrolyte system
a. Volume of extracellular fluid manifest as edema in women with severe preeclampsia has expanded beyond the normally increased volume that characterizes pregnancy

b. Electrolyte concentration do not differ appreciably in women with compared with those of normal pregnancy

TERTIARY LEVEL

Tertiary systemic effects of preeclampsia secondary to decompensation which presents as one of the following features

1. Eclampsia
2. Laryngeal edema
3. Cerebral hemorrhage
4. DIC
5. Corneal edema
6. HELLP syndrome
7. Retinal detachment
8. Renal cortical necrosis
9. Pulmonary edema

10. ARDS

11. Hepatic rupture

PREDISPPOSING FACTORS OF PREECLAMPSIA

1. **Age:**

 Young primi < 20 years

 All patients > 30 years **Bobrowski & Bottoms 1995**

 showed increased incidence of HT & PIH > 35 years

2. **Parity:**

 Primi have incidence of 11.9% and multi have 4.7% **Clinical obs and gyn.**

 The incidence is 24% in new paternity multipara because of shorter period of

 Sperm exposure preceding conception
3. Race

Davis in 1970 found an increased incidence in muslims, jews & arabs. Africoamerican ethnicity is quoted to have increased incidence by Sibai 1997, Walker 2000

4. Social status:

Women of low social economic status are reported to have greater incidence of PIH, PE, Eclampsia. But Duffer & Mac Gillivray –1968 found that difference between social classes are small if allowance are made for age, parity and levels of antenatal and intrapartum care. Baird and colleagues 1969 said that incidence was not different among five socioeconomic status.

5. Previous H/O preeclampsia

a. The risk of preeclampsia in subsequent pregnancies is higher when it is severe earlier and associated with low birth weight

b. Risk increases on increasing maternal age and interval between pregnancies.

Sibai et al studied subsequent pregnancy outcome in women with severe PE in first pregnancy

Risk of developing eclampsia - 1.4%
Preeclampsia - 45.5 %
Abruption - 2.5%
Perinatal mortality - 5.9%

Norwegian study showed risk of 13.1% of PE in second pregnancy.

6. Family history:
Severe preeclampsia, eclampsia have a familial tendency. There is three fold increase of preeclampsia and four fold increases severe PE. Chesley et al (6) found 26% incidence of PE in daughters. Lie et al found odds ratio 2.23 in sisters especially full sisters.

<table>
<thead>
<tr>
<th>Risk</th>
<th>Over all</th>
<th>Mother with PE</th>
<th>Sisters with PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullipara</td>
<td>5-6%</td>
<td>20-25%</td>
<td>35-40%</td>
</tr>
<tr>
<td>Multipara</td>
<td>0.25-5%</td>
<td>1-2%</td>
<td>2-4%</td>
</tr>
</tbody>
</table>

7. Pregnancy associated: Early onset

a. Twin gestation: Four fold increased risk Incidence of PE 25.3% this is due to hyperplacentosis with increased placental hormone secretion relative placental ischemia or immunological reaction to the large placental mass
b. **Molar pregnancy**: Confined to large rapidly growing moles in which the incidence of PE is 70% (Page 1939(29)). With small slowly growing moles there is no increased incidence of PE.

c. **Hydrops fetalis**: Increased incidence due to hyperplacentosis.

d. **Congenital malformations**: In pregnancies complicated by triploidy, the risk of developing PE or hypertension in second trimester is 35% due to placentomegaly.

8. Urinary tract infection:

UTI resulting in an increased production of inflammatory products, cytokines, free radical species and proteolytic enzymes causes endothelial dysfunction (Schieve et al)

9. Underlying disorders:

a. **Chronic hypertension** is encountered in approximately 30 – 40% of early onset severe PE.

b. Underlying **renal disorder**: 20% have superimposed PE

c. **Obesity, insulin resistance & diabetes** Stone et al – BMI is an independent risk factor of severe PE
i. Obesity correlated with hypertension by expanded blood volume, Cardiac output to meet the increased metabolic demands.

ii. Obesity- dyslipidemia- delivery of free fatty acids to tissue, higher cholesterol / TG ratio, insulin resistance & hyperinsulinemia.

iii. Adipocytes release TNF alpha thereby involved in aggravating cytokine mediated oxidative stress.

iv. Insulin resistance/ hyperinsulinemia associated with increased sympathetic activity and/or increased tubular sodium reabsorption thereby producing direct hemodynamic changes.

V. Overt DM – 30% PE especially when vascular changes present. Khan & Daya showed odds of having PE increased by 20% per nmol/L increase in plasma glucose level.

10. Smoking:

Decreases incidence of PE since it causes a significant reduction in HCG and estradiol level due to direct effect on the placental function (Bernstein et al 1989)

Management objectives in severe preeclampsia
There is no preventive therapy against preeclampsia available at present even though aspirin, calcium magnesium, fish oil have been tried. Severe preeclampsia is associated with maternal complications like HELLP, eclampsia, cerebral manifestations, abruption, fetal complications like IUGR, IUD, preterm delivery. As termination of pregnancy remains the only cure, the primary objective in the management of severe preeclampsia is to effect timely delivery in order to

- Prevent maternal morbidity and mortality
- Deliver a baby in an optimal condition, thereby minimizing perinatal morbidity and mortality.

In all circumstances, the well being of the mother is primary

In some circumstances, delays seriously jeopardize the well being of the mother, fetus or both.

Williams obstetrics says "we are reluctant to advice clinician that is safe to expectantly manage such women are not managed expectantly at Parkland hospital”.

In some situations, delay of delivery will benefit the mother fetus and both. Such an approach has been advocated by research workers in various parts of the world.
<table>
<thead>
<tr>
<th>S.No</th>
<th>TRIAL</th>
<th>STUDY GROUP</th>
<th>FETAL OUTCOME</th>
<th>MATERNAL OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Odendaal et al</td>
<td>38 patients</td>
<td>Babies in NICU 11% vs 35%</td>
<td>No increase in complications</td>
</tr>
<tr>
<td></td>
<td>In 1990(20)</td>
<td>28-34 weeks GA</td>
<td>Neonatal complications (33% vs 75%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sibai et al</td>
<td>95 patients</td>
<td>Lower No.of days in NICU (20.2 days vs 36.6 days)</td>
<td>No increase in complications</td>
</tr>
<tr>
<td></td>
<td>1994(39)</td>
<td>28-34 weeks of GA</td>
<td>Lower incidence of RDS (22.4% vs 50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average birth weight being higher (1622gms vs 1233gms)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study Authors</td>
<td>Study Year</td>
<td>Study Details</td>
<td>Outcomes</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>3.</td>
<td>HALL et al</td>
<td>2000(14)</td>
<td>340 women, 28-34 weeks</td>
<td>One maternal death, 8% major complications</td>
</tr>
<tr>
<td>4.</td>
<td>Visser et al</td>
<td>1994(38)</td>
<td>50 patients, 25 to 35 weeks</td>
<td>Perinatal mortality 7% in study group, 14% in control group</td>
</tr>
<tr>
<td>5.</td>
<td>Moodley et al</td>
<td>1993(21)</td>
<td>50 patients, GA < 32 weeks</td>
<td>Perinatal mortality 27% in 30-32 weeks, 20% maternal complications</td>
</tr>
<tr>
<td>6.</td>
<td>Visser and wallenburg</td>
<td>1995(38)</td>
<td>250 women, < 34 weeks</td>
<td>Perinatal mortality 27%, 5% placental abruption, 3 women developed eclampsia</td>
</tr>
<tr>
<td>7.</td>
<td>Railton A, Allen DG</td>
<td>1987(31)</td>
<td>56 Women, 24-32 weeks</td>
<td>24.5% perinatal mortality, 19% small for gestational age, 23.2% major complications</td>
</tr>
</tbody>
</table>
Labour induction

Labour is induced by either misoprostol or cerviprime in both the groups.

Misoprostol is prescribed as an intravaginal dose of 50 mcg at 4 hrs interval which can be repeated for 4 times.

Sahin 2000 has concluded that intravaginal Misoprostol in an equally effective and safe method of induction of labour in patients with preeclampsia and normal pregnant women. Patients went in labour earlier within 12 hours, median time from induction to delivery being 14 hours. Rate of vaginal delivery was significantly higher in the Misoprostol group 82% than that of inducing with oxytocin.

As there was no significant difference between Misoprostol and oxytocin with regards to APGAR scores and NICU admissions we advocated Misoprostol mostly.
AIM OF THE STUDY

1. To compare the merits and demerits of aggressive and expectant management of women with severe Preeclampsia remote from term 28 – 34 weeks.

2. To determine which is more beneficial by comparing perinatal and maternal outcome by statistical analysis by Chi square test
MATERIAL AND METHODS

Study design : Prospective

Study period : Sep.2003 – Aug 2005

Sample:

Group A: - Patients of severe PE remote from term 28-34 weeks treated aggressively that is glucocorticoid therapy followed by delivery in 48 hrs.

All patients who delivered within 96 hrs of admission were noted.

Group B: - Patients of the same group treated expectantly i.e glucocorticoid therapy, intensive maternal and fetal monitoring followed by delivery only for specific maternal or fetal indication beyond 96 hours.

Sample size :

97 patients of group A who delivered after 48 hours of glucocorticoid therapy and 92 patients of group B were compared.
SELECTION CRITERIA

Inclusion Criteria :

All subjects had

1) GA 28 - 34 weeks.

2) Severe pre eclampsia defined as

i) Blood pressure ≥ 160/110 with proteinuria ≥ 2+

ii. Blood pressure ≥ 150/100 with proteinuria ≥ 3+

iii. Blood pressure > 140/90 with proteinuria with c/o Headache or oliguria

Exclusive Criteria :

1. Women with medical complications

2. Rupture of membrane

3. Preterm labour

4. Multifetal gestation

5. Fetal compromise/ fetal death

6. Platelet count < 1, 00,000/ Mic.L or HELLP
GUIDELINES FOR EXPECTANT MANAGEMENT

1. All patients are observed in Labour room atleast for 24 hours to determine their eligibility for expectant management.

2. Intravenous magnesium sulphates for seizure prophylaxis for selected patients. Glucocorticoid are given to improve fetal outcome.

3. Antihypertensive for BP control.

4. Complete Blood count, Platelet count, urine protein, serum creatinine, serum uric acid, AST, LDH.

5. Limited oral intake for the first 24 hours and IV fluids at the rate of 100 – 125 ml/hr within 24 hours.

After 24 hours

MATERNAL

1. BP measured every 4 to 6 hours

2. Platelet everyday

FETAL

1. We do NST daily

2. USG for fetal weight
3. Serum AST, creatinine every other day and IUGR weekly

4. Serum Uric Acid biweekly

5. Oral antihypertensive drugs to control BP systole in the range of 130 – 150 mmHg, diastole in the range of 80 – 100 mmHg

7. Retinal changes.

Then later

1. Headache in preeclamptic women are treated with analgesic and bed rest.

2. If there is no resolution within 6 hours, head ache is severe, BP is controlled meticulously and IV magnesium sulphate is started.

3. If the headache persists then decision is made for delivery.

What to expect of expectant management?

At any time during the concerned period of prolonging pregnancy, contraindications to expectant management appear, we terminate the pregnancy may be by vaginally or abdominally.

MATERNAL INDICATIONS

1. Uncontrolled severe BP persistently \(\geq 160 \text{ mmHg systole} \& \geq 110 \text{ mmHg diastole} \) despite maximum dose of the antihypertensive medication for four
2. Eclampsia
3. Platelet count <1,000,000/ mic ml
4. AST or ALT >2 times of upper limit of normal value with epigatric pain or right upper quadrant tenderness
5. Pulmonary edema
6. Compromised renal functions- rise in serum creatinine of 1 mg/dl over baseline levels.
7. Abruptio placenta
8. Persistent severe head ache or visual changes

Guidelines as adopted as in University of Tennessee, Memphis

FETAL INDICATIONS

If any one or more present like
1. Repetitive late or severe variable decelerations
2. AFI ≤2cm
3. USG estimated fetal weight ≤ 5th percentile & reverse umbilical artery diastolic flow.

TERMINATION
a. LABOUR INDUCTION:

1. MISOPROSTOL

2. Cerviprime gel to improve bishops score before induction of labour in the absence of fetal distress. May or may not need augmentation

b. ABDOMINALLY:

By LSCS

GUIDELINES FOR AGGRESSIVE TREATMENT:

1. All patients are observed in labour room.

2. Intravenous magnesium sulphate given to selected patients for seizure prophylaxis.

4. Antihypertensives for BP control, blood investigations done as like that of the expectant management.
5. Ultrasonogram for fetal well being. Then labour is induced either by misoprostol, cerviprime may or may not be augmented with syntocinon infusion.

INTRAPARTUM MANAGEMENT

Preeclamptic women are at higher risk of developing convulsions during labour as compared to normotensive women, highest being in severe preeclampsia remote from term, those with cerebral manifestations, HELLP syndrome.

1. Hence if not initiated with MgSO4, it should be started in labour in selected cases.
2. Once cervix becomes favourable, oxytocin augmentation be given.
3. If it is unripe, Caesarean section is to be considered because of higher incidence of complications like abruption, fetal distress.

4. **ANALGESIA**
 1. Provided by intermittent use of small dose of 25-50 mg of parenteral pethidine or segmental epidural analgesia.
 2. Local infiltration or epidural in vaginal delivery.
3. Continuous epidural or balanced general anaesthesia used for caesarean patients.

5. Input and output monitoring
 Hourly urine output.
 Fluid restricted to 150 ml / hr.
 If oliguria say <100ml per 4 hrs, fluids & MgSO4 reduced accordingly.

6. Antihypertensive therapy.
 Goal is to maintain systole 140 –150 systole and diastole 90-100 mm Hg.
 And not to reduce the mean arterial pressure by more than 20% from baseline value.

POSTPARTUM MANAGEMENT

1. Intensive monitoring done for 2-4 days. Vitals, reflexes, input output monitored.

2. BP control
3. Prophylactic anticonvulsives not given.

4. Patient is seen at weekly intervals until her BP is normal without medications.

5. If this change does not occur by 6 weeks work up for hypertension made

OUT COME

Parameters like prolongation of pregnancy, perinatal outcome, and maternal morbidity were evaluated.

DATA ANALYSIS

From September 2003 to August 2005, women with severe preeclampsia were noted. Among 259 patients of severe preeclampsia remote from term 28 to 34 weeks, 167 patients got terminated within 96 hours of admission.
Among them 97 patients who got full dose of steroids were compared with the remaining 92 patients who got terminated after 96 hours of admission. Participants with similar characteristics were assigned.

Maternal age, parity, gestational age, initial systole and diastole, dose of antihypertensives were comparable in both the groups.

Principal measures like

a. Maternal outcome

b. Mode of delivery and their indication

c. Perinatal outcome were analysed in both the groups

INCIDENCE IN STUDY PERIOD

Total Number of Deliveries 26,500

Mild Preeclampsia 10%
Severe Preeclampsia 1%

Eclampsia 0.04%

TABLE 1

MATERNAL AGE

<table>
<thead>
<tr>
<th>AGE(YRS)</th>
<th>AGGRESSIVE</th>
<th>EXPECTANT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-19</td>
<td>10 (10.3%)</td>
<td>5 (5.4%)</td>
<td>15 (7.9%)</td>
</tr>
<tr>
<td>20-24</td>
<td>23 (23.7%)</td>
<td>22 (23.9%)</td>
<td>55 (29.1%)</td>
</tr>
<tr>
<td>25-29</td>
<td>28 (28.8%)</td>
<td>32 (34.7%)</td>
<td>60 (31.7%)</td>
</tr>
<tr>
<td>30-34</td>
<td>32 (39.1%)</td>
<td>37 (33.6%)</td>
<td>63 (33.3%)</td>
</tr>
<tr>
<td>35-40</td>
<td>4 (4.1%)</td>
<td>2 (2.1%)</td>
<td>6 (3.1%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>97</td>
<td>92</td>
<td>189</td>
</tr>
</tbody>
</table>

>60% of patients were around 25-34 years of age

TABLE 2

GRAVIDITY

<table>
<thead>
<tr>
<th>GRAVIDITY</th>
<th>AGG.(97)</th>
<th>EXP.(92)</th>
<th>TOTAL(189)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMI</td>
<td>60 (61.8%)</td>
<td>62 (67.3%)</td>
<td>122 (64.5%)</td>
</tr>
</tbody>
</table>
SECOND 12 (12.3%) 16 (17.3%) 28 (14.8%)
THIRD 13 (13.4%) 12 (13%) 25 (13.2%)
FOURTH 8 (8.2%) 2 (2.17%) 10 (5.2%)
FIFTH 4 (4.1%) - 4 (2.1%)

Around 64.5% of Patients were primis

TABLE 3

GESTATIONAL AGE

<table>
<thead>
<tr>
<th>GA – WEEKS</th>
<th>AGG.(97)</th>
<th>EXP.(92)</th>
<th>TOTAL(189)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>34(35.0%)</td>
<td>27(29.3%)</td>
<td>61(32.3%)</td>
</tr>
<tr>
<td>31-32</td>
<td>39(42.3%)</td>
<td>39(42.3%)</td>
<td>78(41.3%)</td>
</tr>
<tr>
<td>33-34</td>
<td>24(24.7%)</td>
<td>26(28.2%)</td>
<td>50(26.4%)</td>
</tr>
</tbody>
</table>

Mean GA on admission was 31 weeks

TABLE 4

ANALYSIS OF PAST OBSTETRIC HISTORY
TABLE 5

ANALYSIS OF BODY MASS INDEX

<table>
<thead>
<tr>
<th>PREECLAMPSIA</th>
<th>AGGRESSIVE (37)</th>
<th>EXPECTANT (32)</th>
<th>TOTAL (69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past History</td>
<td>15 (40.5%)</td>
<td>10 (31.2%)</td>
<td>25 (36.2%)</td>
</tr>
<tr>
<td>Mild</td>
<td>10 (27%)</td>
<td>9 (28.1%)</td>
<td>19 (27.5%)</td>
</tr>
<tr>
<td>Severe</td>
<td>3 (3%)</td>
<td>1 (3.1%)</td>
<td>4 (5.8%)</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>1 (2.7%)</td>
<td>-</td>
<td>1 (0.01%)</td>
</tr>
<tr>
<td>Abrupton</td>
<td>1 (2.7%)</td>
<td>-</td>
<td>1 (0.01%)</td>
</tr>
<tr>
<td>Not known /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Previous history</td>
<td>22</td>
<td>22</td>
<td>44 (63.7%)</td>
</tr>
</tbody>
</table>

36% of patients had recurrent Preeclampsia
Around 43% of patients had BMI >30

18% of patients had BMI >35

Mean BMI 27.4

TABLE 6

ANALYSIS OF FAMILY HISTORY

<table>
<thead>
<tr>
<th>F/H/O</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P 50</td>
<td>M37</td>
</tr>
<tr>
<td>Not known</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>/no history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother PE</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sister PE</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

4.23% of patients had mother with preeclampsia

11% of patients had sister with preeclampsia

TABLE 7
ANALYSIS OF BLOOD PRESSURE SYSTOLE

<table>
<thead>
<tr>
<th>Initial Systole mmHg</th>
<th>Agg.</th>
<th>Exp.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-149</td>
<td>30(30.9%)</td>
<td>29(31.5%)</td>
<td>59(31.2%)</td>
</tr>
<tr>
<td>150-170</td>
<td>48(49.4%)</td>
<td>55(59.7%)</td>
<td>103(54.5%)</td>
</tr>
<tr>
<td>>170</td>
<td>19(20.1%)</td>
<td>8(8.69%)</td>
<td>27(14.3%)</td>
</tr>
</tbody>
</table>

Around 54.5% of patients had systolic BP 150-170 mmHg

Mean being 160 mmHg

TABLE 8

ANALYSIS OF BLOOD PRESSURE DIASTOLY

<table>
<thead>
<tr>
<th>Initial Diastole mmHg</th>
<th>AGG.</th>
<th>EXP.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>25(25.8%)</td>
<td>30(32.6%)</td>
<td>55(29.1%)</td>
</tr>
<tr>
<td>101-110</td>
<td>37(38.2%)</td>
<td>39(42.4%)</td>
<td>76(40.2%)</td>
</tr>
<tr>
<td>111-120</td>
<td>20(20.6%)</td>
<td>16(17.4%)</td>
<td>36(19.0%)</td>
</tr>
<tr>
<td>>120</td>
<td>15(15.4%)</td>
<td>7(7.6%)</td>
<td>22(11.7%)</td>
</tr>
</tbody>
</table>

40% of patients had diastole 101-110 mmHg

Mean being 106 mmHg
TABLE 9
ANALYSIS OF ANTIHYPERTENSIVE DRUGS

ALPHA METHYL DOPA

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>Agg.</th>
<th>%</th>
<th>Exp.</th>
<th>%</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-750</td>
<td>17</td>
<td>(17.5)</td>
<td>15</td>
<td>(16.3)</td>
<td>32</td>
<td>(16.9)</td>
</tr>
<tr>
<td>750-1000</td>
<td>25</td>
<td>(25.8)</td>
<td>38</td>
<td>(41.3)</td>
<td>63</td>
<td>(33.3)</td>
</tr>
<tr>
<td>1000-1500</td>
<td>45</td>
<td>(46.4)</td>
<td>32</td>
<td>(34.8)</td>
<td>77</td>
<td>(40.7)</td>
</tr>
<tr>
<td>1500-2000</td>
<td>10</td>
<td>(10.3)</td>
<td>7</td>
<td>(7.6)</td>
<td>17</td>
<td>(9.0)</td>
</tr>
</tbody>
</table>

About 40.7% patients were given 1000-1500 mg of alpha methyl dopa per day

TABLE 10
NIFIDEPINE DOSAGE

<table>
<thead>
<tr>
<th>Dose (Mg)</th>
<th>Agg (%)</th>
<th>Exp (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–15</td>
<td>20 (20.6)</td>
<td>25 (27.2)</td>
<td>45 (23.8)</td>
</tr>
<tr>
<td>15-20</td>
<td>42(43.4)</td>
<td>40(43.5)</td>
<td>82(43.4)</td>
</tr>
<tr>
<td>20-25</td>
<td>15(15.5)</td>
<td>24(26.1)</td>
<td>39(20.6)</td>
</tr>
<tr>
<td>25-30</td>
<td>20(20.6)</td>
<td>3(3.2)</td>
<td>23(12.2)</td>
</tr>
</tbody>
</table>

About 43.4% patients were given 15-20 mg per day of nifedipine
TABLE 11

INITIATION OF MAGNESIUM SULPHATE

<table>
<thead>
<tr>
<th>Initial Diastole</th>
<th>Aggressive (97)</th>
<th>Expectant (92)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 (22)</td>
<td>15 (15.4%)</td>
<td>7 (7.6%)</td>
<td>22 (11.6%)</td>
</tr>
<tr>
<td>111-120 (36)</td>
<td>20 (20.6%)</td>
<td>16 (17.4%)</td>
<td>36 (19%)</td>
</tr>
<tr>
<td>101-110 (76)</td>
<td>27 (27.8%)</td>
<td>22 (24%)</td>
<td>49 (25.9%)</td>
</tr>
<tr>
<td>90-100 (55)</td>
<td>10 (10.3%)</td>
<td>11 (12.9%)</td>
<td>21 (11.1%)</td>
</tr>
<tr>
<td>Not given</td>
<td>25 (25.8%)</td>
<td>36 (39.1%)</td>
<td>61 (32.2%)</td>
</tr>
</tbody>
</table>

128 patients were given. **Magnesium Sulphate**

All 58 patients whose diastolic BP > 110 got **Magnesium Sulphate**

TABLE 12

RETINAL CHANGES

<table>
<thead>
<tr>
<th>FUNDUS</th>
<th>AGG. (97)</th>
<th>EXP. (92)</th>
<th>TOTAL (189)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>78 (80.4)</td>
<td>84 (91.3)</td>
<td>162 (85.7)</td>
</tr>
<tr>
<td>GR I HTR</td>
<td>16 (16.5)</td>
<td>8 (8.7)</td>
<td>24 (12.7)</td>
</tr>
<tr>
<td>GR II HTR</td>
<td>3 (3.1)</td>
<td>-</td>
<td>3 (1.6)</td>
</tr>
</tbody>
</table>

85.7% of them had normal fundus
TABLE 13

MATERNAL OUTCOME

<table>
<thead>
<tr>
<th>Complication</th>
<th>Aggressive(97)</th>
<th></th>
<th></th>
<th>T (10.3%)</th>
<th></th>
<th></th>
<th>T (18.4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP</td>
<td>IP</td>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abruption</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>5(5.15%)</td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>HELLP/DIC</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3(3.1%)</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Renal failure(dialysis)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pul.edema</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1(1%)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ARDS</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1(1%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cerebral edema</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Maternal death</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>10(10.3%)</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

18.4% of major maternal complications occurred in expectant while 10.3% in aggressive. Though slightly higher, tackled well by anesthetist & ICU, indicating institutional supervision of expectant management.

Chi square value = 2.57

Degree of freedom = 1
It was found to be statistically not significant.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Aggressive (97)</th>
<th>Expectant(92)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primi</td>
<td>Multi</td>
</tr>
<tr>
<td>Misoprostol(M)</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>Cerviprime(C)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>M/C+synto aug.</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Not induced due to</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>mat ,fetal cause</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Labour was indued in 52% of our study by misoprostol.

16 multies of expectant group were not induced due to post caesarean pregnancy

<table>
<thead>
<tr>
<th>Duration in hrs</th>
<th>Aggressive(97)</th>
<th>Expectant(92)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primi(55)</td>
<td>Multi(33)</td>
</tr>
<tr>
<td>4-7</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>
Most of them delivered in 8-11 hours after induction

TABLE 16

MODE OF DELIVERY

<table>
<thead>
<tr>
<th>Mode</th>
<th>Aggressive(97)</th>
<th>Expectant(92)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primi</td>
<td>Multi</td>
</tr>
<tr>
<td>Vaginal</td>
<td>50(83.3%)</td>
<td>32(86.5%)</td>
</tr>
<tr>
<td>LSCS</td>
<td>10(16.7%)</td>
<td>5(13.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>37</td>
</tr>
</tbody>
</table>

As salvagability and fetal weight were lower in aggressive group, vaginal delivery preferred.

Increase in LSCS in exp. was due to post caesarean pregnancy in them.

27% of patients delivered by LSCS lost their babies.

Chi square value is 20.16

DF is 1. Significant at 0.001 (p< 0.001)

PN Loss indicates perinatal loss
Table 17

Indications of LSCS in Exp. Group

<table>
<thead>
<tr>
<th>Indication</th>
<th>Primi (24)</th>
<th>Multi (20)</th>
<th>Total (44)</th>
<th>Perinatal loss (28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post LSCS</td>
<td>-</td>
<td>16 (80%)</td>
<td>16 (36.4%)</td>
<td>5 (31.2%)</td>
</tr>
<tr>
<td>Nonreassuring CTG</td>
<td>5 (20.8%)</td>
<td>2 (10%)</td>
<td>7 (15.9%)</td>
<td>4 (57.1%)</td>
</tr>
<tr>
<td>Malpresentation</td>
<td>5 (20.8%)</td>
<td>---</td>
<td>5 (11.3%)</td>
<td>1 (20%)</td>
</tr>
<tr>
<td>Fail to progress/unfavourable Cx</td>
<td>14(58.3%)</td>
<td>2 (10%)</td>
<td>16 (36.4%)</td>
<td>2 (12.5%)</td>
</tr>
</tbody>
</table>

80% of multis were post caesarean pregnancies.

42.8% of perinatal loss occurred after LSCS

Indications of LSCS in Agg. Group

<table>
<thead>
<tr>
<th>Indication</th>
<th>P(10)</th>
<th>M(5)</th>
<th>T(15)</th>
<th>PN loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonreassuring CTG</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
13.33% of patients lost their babies by LSCS.

P – primi, M – multi, T – Total

TABLE 18

INDICATION OF TERMINATION IN EXP. GROUP

MATERNAL INDICATION

<table>
<thead>
<tr>
<th>Indication</th>
<th>P (60)</th>
<th>M (32)</th>
<th>T (92)</th>
<th>Pn loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abruption</td>
<td>3</td>
<td>2</td>
<td>5(5.4%)</td>
<td>4</td>
</tr>
<tr>
<td>Imminent sym.</td>
<td>28</td>
<td>10</td>
<td>38(41.3%)</td>
<td>8</td>
</tr>
<tr>
<td>Uncontrolled BP</td>
<td>5</td>
<td>6</td>
<td>11(12%)</td>
<td>3</td>
</tr>
<tr>
<td>Compromised renal function</td>
<td>1</td>
<td>3</td>
<td>4(4.3%)</td>
<td>-</td>
</tr>
<tr>
<td>Pul edema</td>
<td>1</td>
<td>-</td>
<td>1(0.01%)</td>
<td>1</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>20</td>
<td>59(64.1%)</td>
<td>16(27.1%)</td>
</tr>
</tbody>
</table>

64.1% of patients terminated by LSCS for maternal indication most common being imminent sym.

27.1% of patients lost their babies.
There was 57.2% of perinatal loss in patients who were terminated for maternal indication.

35.9% of patients got terminated due to fetal indication, most common among being oligohydramnios.

Among them 36.3% of pts lost their babies.
42.8% of perinatal death occurred in patience who were terminated for fetal indications.

\[P = \text{primi} \]

\[M = \text{multi} \]

\[\text{Pn loss} = \text{perinatal loss} \]

TABLE 20

FETAL OUTCOME

<table>
<thead>
<tr>
<th>Born</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>Totalbirth</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Live born</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td>Still birth</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Neonatal D</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Perinatal D</td>
<td>38</td>
<td>16</td>
</tr>
</tbody>
</table>

Perinatal loss in agg. 55.7%

Inexp. 30.4%

These perinatal loss include still birth and early neonatal death

For live born,
Chisquare value -7.91, Degree of freedom-1, significant at 0.005% P (<0.005)

For perinatal loss,

Chisquare value -2.24, Degree of freedom-1, significant at 0.001% P (<0.001)

TABLE 21

BIRTH WEIGHT SPECIFIC DEATH

<table>
<thead>
<tr>
<th>Birth wt(kg)</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Born</td>
<td>Death</td>
</tr>
<tr>
<td>< 1</td>
<td>10</td>
<td>10(100%)</td>
</tr>
<tr>
<td>1.0-1.25</td>
<td>27</td>
<td>21(78.4%)</td>
</tr>
<tr>
<td>1.26-1.5</td>
<td>35</td>
<td>16(46%)</td>
</tr>
<tr>
<td>1.51-1.75</td>
<td>18</td>
<td>6(33%)</td>
</tr>
<tr>
<td>1.76-2</td>
<td>4</td>
<td>1(25%)</td>
</tr>
<tr>
<td>2.1-2.25</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2.25-2.4</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Maximum birth wt born was 2.4kg
51% of expectant group and 27% of aggressive group had babies birth weight more than 1.5 kg. Average birth weight was 1.58 kg

Chisquare value -13.69 Degree of freedom 2

Significant at 0.005 %(P<0.005)

TABLE 22

GESTATIONAL AGE SPECIFIC PERINATAL MORTALITY

<table>
<thead>
<tr>
<th>GA(wks)</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Born</td>
<td>Death</td>
</tr>
<tr>
<td>28-30</td>
<td>34</td>
<td>26(76.5%)</td>
</tr>
<tr>
<td>31&32</td>
<td>38</td>
<td>18(47.4%)</td>
</tr>
<tr>
<td>33&34</td>
<td>25</td>
<td>10(40%)</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>54(55.7%)</td>
</tr>
</tbody>
</table>

As gestational age gets prolonged, perinatal death is lesser both agg.& exp.
giving 5.3% death in 32-34wks in exp.
Mean Gestational age 32 weeks

<table>
<thead>
<tr>
<th>Latency interval(days)</th>
<th>Cases</th>
<th>Pnloss</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>24(26%)</td>
<td>14(58.3%)</td>
</tr>
<tr>
<td>5-8</td>
<td>32(34.8%)</td>
<td>8(25%)</td>
</tr>
<tr>
<td>9-12</td>
<td>27(29.3%)</td>
<td>4(14.8%)</td>
</tr>
<tr>
<td>12-20</td>
<td>7(7.6%)</td>
<td>2*(28.5%)</td>
</tr>
<tr>
<td>>20</td>
<td>2(2.17%)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>92(100%)</td>
<td>-</td>
</tr>
</tbody>
</table>

* two cases were abruption
Maximum prolongation of pregnancy was 24 days & median prolongation was 10.5 days. Mean being 8.6 days.

PERINATAL OUTCOME IN PREGNANCIES LATENCY <96 HOURS

<table>
<thead>
<tr>
<th>Latency interval (hrs)</th>
<th>Cases</th>
<th>Pnloss</th>
</tr>
</thead>
<tbody>
<tr>
<td><24</td>
<td>48</td>
<td>39(81.25%)</td>
</tr>
<tr>
<td>24-48</td>
<td>32</td>
<td>24(75%)</td>
</tr>
<tr>
<td>49-72</td>
<td>75</td>
<td>44(58.6%)</td>
</tr>
<tr>
<td>73-96</td>
<td>22</td>
<td>10(45.4%)</td>
</tr>
</tbody>
</table>

97 patients who were terminated more than 48 hour of steroids were compared in our study.

TABLE 24

NEONATAL HOSPITALISATION

<table>
<thead>
<tr>
<th>Live babies</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission to NICU</td>
<td>77(100%)</td>
<td>79(92%)</td>
</tr>
<tr>
<td>Neonatal deaths</td>
<td>34(44.2%)</td>
<td>22(27.9%)</td>
</tr>
<tr>
<td>Survival hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stay(days) <5</td>
<td>2(2.6%)</td>
<td>25(31.6%)</td>
</tr>
<tr>
<td>5-10</td>
<td>18(23.4%)</td>
<td>17(21.5%)</td>
</tr>
<tr>
<td>11-15</td>
<td>10(13%)</td>
<td>9(11.4%)</td>
</tr>
<tr>
<td></td>
<td>>15</td>
<td>13(16.9%)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Total survival</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Survival rate</td>
<td>55.8%</td>
<td></td>
</tr>
</tbody>
</table>

Mean stay of hospitalization is eight days in expectant group

Whereas in aggressive group it is 14 days.

DISCUSSION

Incidence of Preeclampsia is 5 to 8% according to ACOG 2002.

- Incidence of Preeclampsia in IOG is 10%

Severe Preeclampsia contributes 1% of all deliveries. There were 259 cases of severe Preeclampsia remote from term 28 to 34 weeks in our study period. 189 patients got full dose of steroids and they were assigned as aggressive and expectant group in their management.
• 64.5% of patients were Primi…

Majority of cases say 75 to 80% occur during the first pregnancy.(clinical obstetrics and gynecology journal volume 42)

• 60% patients were in age group 25 to 34 yrs.

Young patients <20 & patients > 30 yrs said to have increased incidence of Hypertension and Preeclampsia.(AMJ of obstet gynecol 1993)

• 18% patients had BMI > 35

36% patients had Recurrent Preeclampsia
4.23% patients had mother with Preeclampsia
11% patients had sister with Preeclampsia.

Likelihood of developing Preeclampsia is increased in according to BJ OG October 2003.

1. Primi
2. Age .> 30
3. With family history
4. BMI > 35
5. Preexisting Hypertension
Sibai et al (37) showed risk of developing Preeclampsia in next pregnancy being 45.5%. Out of them 21% go for Severe Preeclampsia.

MATERNAL OUTCOME

Comparisons of major complications in both the groups

<table>
<thead>
<tr>
<th>Study</th>
<th>Abruption</th>
<th>Pulmonary Edema</th>
<th>HELLP/ELLP</th>
<th>Eclampsia</th>
<th>Renal Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall and colleagues 2000</td>
<td>20%</td>
<td>2%</td>
<td>5%</td>
<td>1.2 %</td>
<td>0.3%</td>
</tr>
<tr>
<td>Odendaal et al 1990(26)</td>
<td>No increase in complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibai et al 1994 (39)</td>
<td>No increase in complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Hall et al 2000 (340 women) | No maternal death, 3 required ICU
1 required dialysis in expectant. |
| Haddad B, Deis S 2004(11) | No maternal death or eclampsia.Morbidities
similar among both groups. |
| Railton A, Allen DG 1987(31) | 23.2% had increase in major complications |
| Our Study, 2005 | 10.3% in aggressive group 13.6% in expectant
group. Not statistically significant |
<table>
<thead>
<tr>
<th>Study</th>
<th>Incidence</th>
<th>Termination</th>
<th>Abruption</th>
<th>HELLP</th>
<th>Renal Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vissur and Wallenburg 1995</td>
<td>5%</td>
<td>---</td>
<td>NA</td>
<td>1.9%</td>
<td>---</td>
</tr>
<tr>
<td>Murphy DJ and Stirrat GM 2000(22)</td>
<td>1.5%</td>
<td>21%</td>
<td>1.4%</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>Olah KS, Redman CW, Gee H 1993</td>
<td>----</td>
<td>14.2%</td>
<td>----</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Our study 2005</td>
<td>8.7%</td>
<td>3.3%</td>
<td>4.3%</td>
<td>---</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

Our study showed relatively low incidence of abruption and HELLP than Hall’s study and renal failure correlating with Murphy’s. There was no maternal death or eclampsia in our study.

TERMINATION

Indication of Termination shows following distribution in studies.
Most common maternal indication being imminent eclampsia. Our study’s value was in between the both studies available.

MODE OF DELIVERY

Though mode of delivery had no influence on fetal outcome

LSCS rate was higher in expectant management in all.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>V AGINAL</th>
<th>LSCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall BR and Odendaal HJ, 2000(12)</td>
<td>18.5%</td>
<td>81.5%</td>
</tr>
<tr>
<td>Nassar et al, 306 patients(23)</td>
<td>48.3%</td>
<td>51.7%</td>
</tr>
<tr>
<td>Murphy DJ, Stirrat M 2000</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>Railton A and Allen OG,1987</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>Our Study, 2005</td>
<td>52.2% (group B)</td>
<td>47.8% (group B)</td>
</tr>
</tbody>
</table>

Our study is similar somewhat to Nassar et al.

Among 4 patients, complicated by HELLP Syndrome or DIVC 2 patients had coagulopathy with increased clotting time and bleeding from the surgical wounds on table, and they were treated with platelet transfusion, fresh frozen plasma and steroids.
Third patient who developed symptoms in postpartum period was given 6 units of fresh frozen plasma.

One patient developed signs and symptoms of Renal failure in immediate postpartum period and she was transferred to GH, taken over by Nephrologists, she underwent Peritoneal Dialysis twice and she was discharged alive after 22 days in a stable condition. Three patients who had compromised renal function got settled conservatively.

This situation explains necessity of the intensive care facilities in the management of severe preeclampsia.

Hemodynamic monitoring plays a major role in the treatment and trained persons and anaesthetists were available all the time for Central vein catheterisation and monitoring.

PERINATAL OUTCOME

PROLONGATION OF PREGNANCY
<table>
<thead>
<tr>
<th>Study</th>
<th>Mean Prolongation Of Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odendaal et al, 1990</td>
<td>7.1 days</td>
</tr>
<tr>
<td>Sibai et al</td>
<td>15.4 days</td>
</tr>
<tr>
<td>Vissur W, Wallenburg , 1995</td>
<td>14 days</td>
</tr>
<tr>
<td>Yang 2, Li R and others , Beijing(46)</td>
<td>11 days (28 to 31 weeks)</td>
</tr>
<tr>
<td></td>
<td>8 days (32 to 33 weeks)</td>
</tr>
<tr>
<td>Railton and Allen DG, 1987</td>
<td>11.4 days</td>
</tr>
<tr>
<td>Olah KS, Gee H 1993</td>
<td>9.5 days</td>
</tr>
<tr>
<td>Murphy DJ, Stirrat GM, 2000</td>
<td>14 days</td>
</tr>
<tr>
<td>Mithagen MI, Vissur W 2001</td>
<td>14 Days</td>
</tr>
<tr>
<td>This study ,2005</td>
<td>8.6 days</td>
</tr>
</tbody>
</table>

Median prolongation of pregnancy in this study was 10.5 days. Our study correlates with three studies among eight.

PERINATAL MORTALITY

<table>
<thead>
<tr>
<th>Study</th>
<th>percentage loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railton A; Allen DG 1987</td>
<td>24.5%</td>
</tr>
<tr>
<td>Odendaal HJ, Pattinson RCL 1987(20)</td>
<td>22.3%</td>
</tr>
<tr>
<td>Hall DR, 2000</td>
<td>24%</td>
</tr>
<tr>
<td>Beneditti TJ, Beneditti JK</td>
<td>14.3%</td>
</tr>
<tr>
<td>Murphy DJ, Stirrat GM 2000</td>
<td>30%</td>
</tr>
<tr>
<td>Haddad B, Deis S, 2004</td>
<td>10.7%</td>
</tr>
<tr>
<td>This Study 2005</td>
<td>30.4%</td>
</tr>
</tbody>
</table>

In aggressively managed patients, the perinatal mortality was 55.7% giving
overall perinatal mortality 43.3%. Our study correlates with Murphy’s and is closer to three other studies.

BIRTH WEIGHT

<table>
<thead>
<tr>
<th>Study</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibai et al, 1994</td>
<td>1.2 kg</td>
<td>1.62 kg</td>
</tr>
<tr>
<td>Our Study, 2005</td>
<td>1.05 kg</td>
<td>1.58 kg</td>
</tr>
</tbody>
</table>

Our study correlates with Sibai et al and all other studies showed higher birth weight by expectant management.

SURVIVAL RATE

<table>
<thead>
<tr>
<th>Study</th>
<th>Aggressive</th>
<th>Expectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibai 1997</td>
<td>24%</td>
<td>65%</td>
</tr>
<tr>
<td>Hall DR 2000</td>
<td>70%</td>
<td>94%</td>
</tr>
<tr>
<td>Our study 2005</td>
<td>55.8%</td>
<td>74.4%</td>
</tr>
</tbody>
</table>

Railton A, Allen DG, 1987 showed 100% survival rate of babies born > 30 weeks in either the groups.

Our Study showed higher survival rate in babies of higher Gestational Age and with higher Birth weight and it was in between both studies.
NEONATAL HOSPITALISATION

<table>
<thead>
<tr>
<th>Study</th>
<th>AGGRESSIVE</th>
<th>EXPECTANT</th>
<th>AGGRESSIVE</th>
<th>EXPECTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admission to NICU</td>
<td>Hospital stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibai et al 1974</td>
<td>100%</td>
<td>76%</td>
<td>30.6 days</td>
<td>20 days</td>
</tr>
<tr>
<td>Olah KS, 1983</td>
<td>64.3%</td>
<td>28.6%</td>
<td>>15 days</td>
<td>7.4 days</td>
</tr>
<tr>
<td>Our study 2005</td>
<td>100%</td>
<td>92%</td>
<td>14 days</td>
<td>8 days</td>
</tr>
</tbody>
</table>

Our study showed expectant management babies had highest survival rate and lower neonatal complications. In our study admission was similar to that of Sibai et al study because of the lower birth weight but hospital stay as that of Olah due to improvisation of neonatal facilities for the past two decade.
SUMMARY

- Severe preeclampsia contributes 1% of all deliveries.

 In our study there were 259 patients of severe preeclampsia remote from term. Among them 189 patients who had full dose of steroids were compared.

- Most of them were primis

- Most of them were in age group 25 to 34 years

- Mean gestational age on admission was 31 weeks.

- 36% had recurrent preeclampsia.

- 15.8% (29) patients had family history of preeclampsia.

- Mean body mass index was 27.4.

- Mean systolic BP 160 mmHg and mean diastolic BP being 106 mmHg.

- Most of them needed 1000 – 1500 mg of alpha methyl dopa and 15-20mg of nifedipine for BP control.

- Most patient had normal fundus.

- Major maternal complications were higher in the expectant group, proved to be statistically non significant.

 4 Patients had HELLP

 8 Patients had ABRUPTION
1 Needed renal dialysis in expectant group. There was no Maternal death and no eclampsia in both the groups.

Most of them delivered by 8-11hrs by inducing labor.
65% terminated for maternal indication 35% for fetal indication.
LSCS rate was higher in expectant group (47.8% vs 15.5%) But this was mainly contributed by post cesarean pregnancy in expectant group.
Perinatal loss was significantly lower in expectant group 30.4% vs 55.7% proved to the statistically significant P (<0.001).
Perinatal loss is not influenced by cesarean section in expectant group as 42.8% perinatal death was contributed by LSCS and 57.2% by vaginal delivery statistically not significant.
Expectant group had higher birth weight than aggressive significant. 51% had birth weight > 1.5kg maximum being 2.4kg
Mean birth weight being 1.58kg.
Mean gestational age at delivery 32 weeks.
Mean prologation of pregnancy is 8.6 days.
Perinatal mortality was higher in the patients delivered <48hrs of steroids.
- Expectant group had relatively low admission of babies to NICU (92% vs 100%), lower mean stay of hospitalization (8 days vs 14 days).
- Babies in expectant group had higher survival rate (74.4% vs 55.8%).

CONCLUSION

The conservative approach to the management of severe preclampsia remote from term results in a good obstetric outcome for most fetuses, in view of

1. Higher birth weight
2. Lower perinatal mortality
3. Lesser neonatal complications

but this must be balanced against the significant risk of morbidity to the mothers.

The success rate of expectant management will depend on both fetal gestational age and maternal and fetal conditions at the time of hospitalization. Since maternal and perinatal complications are significantly increased in these patients, expectant management should be carried out in well selected patients only at tertiary centers with adequate maternal and neonatal intensive care facilities.
Finally patients with preeclampsia are at increased risk for recurrence of preeclampsia in subsequent pregnancies.

PROFORMA

Name : Gravida:
Age: ht: weight:
IP No: BMI:
Occupation: LMP:
EDD:
Blood group:
Booked / Not:

Complaints:
Present H/o:
Period Of Amenorrhea Present Pregnancy
Edema feet I trimester
Headache II trimester
Oliguria Pain abdomen
Vomiting III trimester
Blurring of vision
Palpitation

Treatment of Preeclampsia

Past H/o: H/o Preeclampsia in previous pregnancy

Menstrual / Marital H/o:

Medical / Surgical H/o: H/o Epilepsy, Head injury, Neurological disorder.

Family H/o: H/o PE in Mother/Sister

Personal H/o:

General Examination:

Temp
PR
BP
EDEMA
ANAEMIA

CVS
RS
PUPILS
CNS
P/A

P/V

INVESTIGATIONS:

Urine Alb
Sugar
Deposits

CHG: Hb
PCV
RBC

Blood Urea
Sugar
Creatinine
Fibrinogen
Uric Acid
Electrolytes
LFT:
USG:
ECG:

Antihypertensive: Drug:

Dose:
Gravidogram: Date urine alb wt. SFH AC BP. Imminent symptoms
Magnesium sulphate: Time Dose Temp RR I/O knee jerk.

1. Mode of induction
2. Indication of termination: Maternal / Fetal
3. Vaginal delivery / LSCS
 Indication of LSCS:
4. Latency Interval
5. Baby alive/dead
 Term/preterm
 Cried/not
 Birth weight
 Distress/Not
 Admitted / not
6. Intrapartum / Postpartum complications
7. Follow up: NICU stay
 Neonatal complications
 Discharged alive / not.
The Effect of Pressor response in Preeclampsia.
By J. Obstet Gynaecol 82:246, 1961

3. Bardeguez AD, Mc Nerney R, Frieri M, Verma UL, Tejani N.

AM J. Obstet – Gynaecol 166:727, 1992

Genetics of Hypertension in Pregnancy.
By J. Obstet Gynecol 93:898-908

8. Dekker GA, Sibai BM:
Etiology and pathogenesis of preeclampsia current concepts.

11. Haddad B, Sibai BM.

12. Hall DR, Odendaal HJ, Steyn DW, Grove D.

13. Hall DR, Odendaal HJ, Steyn DW.
Expectant management of severe pre-eclampsia in the mid-trimester.

20. Madazli R, Budak E, Calay KZ, Aksu MF. Correlation between placental bed biopsy findings, vascular cell adhesion molecule and fibronectin levels in preeclampsia.

22. Murphy DJ, Stirrat GM. St Michaels hospital Briston, United Kingdom, Mortality and morbidity associated with early onset preeclampsia. Hypertens pregnancy 200:19(2) 221-31.

27. Olah KS, Redman CW, Gee H.
Management of severe, early pre-eclampsia: is conservative management justified?

Enhancement of hepatic artery resistance to blood flow in preeclampsia and in HELLP.

29. Page EW. On the pathogenesis of preeclampsia & eclampsia

30. Pritchard JA, Cunningham FG, Mason RA
Coagulation changes in preeclampsia.

31. Railton A, Allen DG-Management and outcome of pregnancy complicated by severe preeclampsia by severe preeclampsia of early onset

32. Redman CWG, Sacks GP, Sargent K
Preeclampsia an excessive maternal inflammatory response to pregnancy.

34. Sanchez-Ramos L, Jones DC, Cullen MT,
Urinary calcium as an early marker of preeclampsia.

35. Silver H, Morgan T, Ward K.
Blood volume stratified by angiotensinogen genotypes in normal and hypertensive pregnancies. Presented at 21st annual meeting of society of maternal – fetal medicine, February 5-10, 2001 held in Reno, Nerada.

36. Sibai BM.
Diagnosis and management of gestational hypertension and preeclampsia.

37. Sibai BM.
Friedman SA, Schiff E, Lubarsky SL,
Expectant management of severe preeclampsia remote from term.

38. Visser W, Wallenburg HC.
Maternal and perinatal outcome of temporizing management in 254 consecutive patients with severe pre-eclampsia remote from term.

