# STUDY ON PREVALENCE OF HYPOTHYROIDISM IN WOMEN WITH PREECLAMPSIA

### A Dissertation submitted to THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY CHENNAI

### *in partial fulfillment of the regulations for the award of the degree of*

M.S (OBSTETRICS & GYNAECOLOGY) – BRANCH – II



**GOVERNMENT STANLEY MEDICAL COLLEGE** 

# **CHENNAI – 600 001**

**OCTOBER 2015** 

# CERTIFICATE

This is to certify that dissertation entitled "STUDY ON PREVALENCE OF HYPOTHYROIDISM IN WOMEN WITH PREECLAMPSIA" is a bonafide work done by Dr. UMADEVI. N, at R.S.R.M. Lyingin Hospital, Stanley Medical College, Chennai. This dissertation is submitted to Tamil Nadu Dr.M.G.R Medical University in partial fulfilment of university rules and regulations for the award of M.S. Degree in Obstetrics and Gynaecology.

PROF.DR. P. KARKUZHALI M.D., DEAN, Stanley Medical College, Chennai- 600 001.

#### PROF.Dr.V.KALAIVANI,M.D., D.G.O.,

Professor and Head of the Department, Department ofObstetrics and Gynaecology, R.S.R.M. Lyingin Hospital, Stanley Medical College, Chennai

# DECLARATION

I Dr. UMADEVI. N, solemnly declare that this dissertation titled "STUDY ON PREVALENCE OF HYPOTHYROIDISM IN WOMEN WITH PREECLAMPSIA" is a bonafied work done by me at R.S.R.M. Lying in Hospital, Stanley Medical College, Chennai during January 2014 to December 2014 under the guidance and supervision of Prof. Dr.V.Kalaivani M.D.D.G.O., Professor and H.O.D of the Department of Obstetrics and Gynaecology.

This dissertation is submitted to the Tamil Nadu Dr.M.G.R Medical University, Chennai in partial fulfilment of university rules and regulations for the award of M.S. Degree (Branch – II) in obstetrics and Gynaecology.

Place: Chennai

Date:

## **Dr.N**.UMADEVI

# ACKNOWLEDGEMENT

I thank the Dean of Stanley Medical College Prof.DR. P. Karkuzhali, M.D., for permitting me to conduct this study in the Department of obstetrics and Gynaecology, R.S.R.M. Lying in Hospital, Stanley Medical College, Chennai

I wish to express my deep gratitude to my Guide Prof.Dr.V.Kalaivani,M.D., D.G.O.,Professor and Head of the Department, Department of Obstetrics and Gynaecology,R.S.R.M. Lyingin Hospital, for initiating me in to this study and for her constant support. I express my heartfelt gratitude to my co – guide Dr.A.Shanthi M.D., D.N.B., Assistant Professor of Obstetrics and Gynaecology, R.S.R.M. Lyingin Hospital for her encouragement, advice and suggestions during this study.

I alsothankProf.Dr.P.Vasanthamani, M.D.,DG.O., and other professors for their guidance and suggestions.

I amextremely grateful to DR.Anitha Virgin kumari, M.D.,D.G.O., and all our Assistant professors and my Colleagues for their support and co – operation.

I owe a great many thanks to all my patients without whom this study would not have been possible.

I also thank my family, especially my husband Dr.Venkatesh for their patience, love and support

Finally I thank the Almighty, who gave me the will power and showered blessings to complete my dissertation work.

| <ul> <li>Configure 10 (Configure 10 (Co</li></ul>                                                                         | 😥 Turnitin 🕆 🕹 Turnitin Document Viewer 🗙 🕂                                                                 |                |                           |                                      | × 6 1     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|---------------------------|--------------------------------------|-----------|
| Image: Substance of the standard stands of the standard standa                                                                                                             | C 本 め の 本 https://turni:in.com/dv?s=1&0=510458633&u=1037452377&student_user-                                |                | <ul> <li>Yahoo</li> </ul> | ¢,                                   | <b>*]</b> |
| Contract A content A contender a contender a contrese contract A contract A con                                                                                                             | cebook 🔽 MK Gerres Links + Links for United States + Microsoft Websites +<br>TNMGRAU EXAMINATIONS - DUE 15* |                |                           |                                      |           |
| Image: Section of the common configure performance in version of the common control provider performance in version of the common control provider performance in version of the common control provider performance in version of the common common common performance in the version of the common common performance in version of the common common common common common common performance in the version of the component of the transition o                                                                                               | C GraceMark C PenMark                                                                                       | IDISM IN WOMEN | turnitin                  |                                      |           |
| TRODICTION       Image: Second S                                                                                                                      |                                                                                                             |                | 0 Match                   | h Overview                           |           |
| Transfer       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                |                           |                                      |           |
| A variaty of endocine disorders complicate pegranoy, thyoid       A variaty of endocine disorders complicate pegranoy, thyoid       2       www.offee.gov.th       2         A variaty of endocine disorders complicate pegranoy, thyoid       3       www.offee.gov.th       1       1         A variaty of endocine disorders complicate pegranoy, thyoid       4       FOUNTIONIANTION       1       1         A variaty of endocine disorders endocines among them. Tryvoid grand       Mathematic       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INTRODUCTION                                                                                                |                |                           | ww.bioline.org br<br>thenersource    | 2%        |
| dysfunction is once the common conditions among them Tryroid gland<br>function is infinitely related to reproductive performance in women       2       membrane       1%         Ovulation failure and indertily can occur in severe hypohypoidism three<br>is an internated and extraction, pretrain and indertily can occur in mild hypohypoidism three<br>is an increased abance of abortion, pretrain and the pohypoidism three<br>is an increased abance of abortion, pretrain and the immune functor. To<br>meet the increased abance of abortion, pretrain and the immune functor. To<br>prove the increased abance of abortion and the immune functor. To<br>meet the increased abance of abortion pregnancy is associated with major danges in hypohypohal<br>physiology occur winds is reflected by altered hyroid functor tess So<br>thyroid disocces commonly occur in pregnancy. There is<br>the increased and the immune functor tess So<br>thyroid disocces commonly occur in pregnancy. There is<br>the increased and the immune functor tess So<br>thyroid disocces commonly occur in pregnancy. There is<br>the increased and the immune functor tess So<br>thyroid disocces commonly occur in pregnancy. There is<br>the increased and the immune functor tess So<br>there are a so transfer of<br>the increased and the increased<br>to the test from notion. To comparate the increased<br>to the test from notion. To comparate for this fast is<br>the increased and the increased and the increased<br>to the test from notion. To comparate for this fast is<br>the increased and the increased and the increased and the increased<br>to the test from notion. To comparate for this fast is a<br>to the increased and the increased and the increased and the increased<br>to the increased and the increased and the increased and the increased<br>to the increased and the increased and the increased and the increased<br>to the increased and the increased and the increased and the increased<br>to the increased and the increased and the increased and the increased<br>to the increased and                                                                         | A variety of endocrine disorders complicate pregnancy, thyroid                                              |                |                           | vvv.v.ghks.gov.tvv<br>nenetisource   | 2%        |
| (intercon is infurtedy related to reproductive performance in women       (intercon is infurtedy related to reproductive performance in women       (intercon is infurtedy related to reproductive performance         (intercon is infurtedy related to reproductive modelinery, satillyint.       (intercon is information and conception and the immune function. To make a sociated with major changes in hypothalanic printery tyrevid as sociated with major changes in hypothalanic printery tyrevid as sociated with major changes in hypothalanic printery tyrevid as sociated with major changes in hypothalanic printery tyrevid as sociated with major changes in thyroid function tests so the increased metabolic demands in pregnancy. There is the increased metabolic demands that there is also transfer of the increased metabolic demands that there is also transfer of the increased metabolic demands that there is also transfer of the increased metabolic demands that there is also transfer of the increased metabolic demands that the increased metabolic demands the interesed metabolic demands that the incr                                                                                                                                                                  | dysfunction is one of the common conditions among them. Thyroid gland                                       |                |                           | www.bmj.com<br>thene: source         | 1%        |
| Ovulation failure and infertility can occur in wild hypothyroidism.       1       4       F. BANNATAM. The second infertility can occur in wild hypothyroidism. There is an increased chance of abornion, preterm delivery, stillbirth.         Theogen ovulation and conception can occur in mild hypothyroidism. There is an increased chance of abornion, preterm delivery, stillbirth.       1       4       F. BANNATAM. The second of the mild hypothyroidism. There is an increased chance of abornion, preterm delivery, stillbirth.         Theogen ovulation and conception and desiruter increased chance of abornion preterm delivery, stillbirth.       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | function is intimately related to reproductive performance in women.                                        |                |                           |                                      |           |
| Though ovulation and conception can occur in mild hypothypoidism, there is an increased chance of aberrion, pretarm delivery, stillbirth. <ul> <li>Pregnancy is associated with major changes in hypothalamic pluttany threvial axis, icolare metabolism and the immune function. To metabolism and the immune function tests So thypothalamic planet through directors cannot be occur within a selected by altered thyroid function tests So thyroid directors and the immune function tests So thyroid directors and the immune function tests So there are a so the increased metabolic decrease and there is also transfer of the function function test So the function function test So there are a so transfer of the function function function test So the function functio</li></ul>                                                                                                                                           | Ovulation failure and infertility can occur in severe hypothyroidism.                                       |                |                           | CUNNNSHAM. "Th                       | 1%        |
| <ul> <li>Is an increased chance of abortion, preturn delivery, stillbitti.</li> <li>Pregnancy is associated with major changes in hypothalamic pinutusy thrypoid axis jodine metabolics and the immune function. To metabolic demands in pregnancy changes in throid physiology occur which is reflected by altered thyroid function tests So thrypoid dispecters commonly occur in pregnancy. There is through undergoes extensive changes during pregnarcy. There is real loss of iodine tratistic form this dispecters and there is also transfer of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from nother. To compensate for this there is insteaded uptake of iodine to the fatts from the through gand. This results in the through gand. This results in the through gand. This results in the total tota</li></ul>                                                                    | Though ovulation and conception can occur in mild hypothyroidism ,there                                     |                |                           | coessmedioine.mhme                   | 10,       |
| Tregrancy is associated with major changes in hypothalamic pintiary thread axis jodine metabolism and the immune function. To metabolic domands in pregnancy changes in throid physiology occur which is reflected by altered throid function tests So throid function tests So throid disoccers commonly occur in pregnancy. There is throid disoccers commonly occur in pregnancy. There is the function test So throid disoccers commonly occur in pregnancy. There is the function test So throid disoccers commonly occur in pregnancy. There is the function test So through test So the So the So through test So through test So through t                                                                                                             | is an increased chance of abertion, preterm delivery, stillbirth.                                           |                |                           | ther mer's our ce                    | 2         |
| pinitary through axis, jodine metabolism and the immune function. To<br>meet the increased metabolic demands in pregnancy changes in through<br>physiology occur which is reflected by altered thyroid function tests. So<br>physiology occur which is reflected by altered thyroid function tests. So<br>thryroid disorcers community occur in pregnancy. There is<br>through disorcers community occur in pregnancy. There is<br>through disorcers community occur in pregnancy. There is<br>through undergoes extensive changes during pregnancy. There is<br>the body undergoes extensive changes during pregnancy. There is<br>through the transfer of<br>the body undergoes extensive changes during pregnancy. There<br>is not is the body undergoes extensive changes during pregnancy. There<br>is the body undergoes extensive changes during pregnancy. The<br>is the body were the through gand. This results in<br>the body the through gand. This results in the body the through gand. This results in<br>the body term is the body the through gand. This results in<br>the body term is the through gand. This results in the body the through gand. This results in<br>the body term is the body the through gand. This results in the body term is the body ter                            | Pregnancy is associated with major changes in hypothalamic                                                  |                |                           | ogs. ir<br>tierne: source            | 1%        |
| incer the increased metabolic demands in pregnancy changes in thyroid<br>physiology occur which is reflected by altered thyroid function tests So<br>thyroid disorces commonly occur in pregnancy. There is<br>thyroid disorces commonly occur in pregnancy. There is<br>thyroid disorces commonly occur in pregnancy. There is<br>the body undergoes extensive changes during pregnancy. There is<br>remail loss of iodine relative iodine deficiency and there is also transfer of<br>iodine to the fatus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. This results in<br>the fatus from blood by the thyroid gland. The fatus from blood by the the thyroid gland. The fatus from blood by the the fatus from blood | pituitary thyroid axis ,iodine metabolism and the immune Junction. To                                       |                |                           | www.iniantrisk.com<br>thre:source    | 1%        |
| physiology occur which is reflected by altered thyroid function tests. So<br>thyroid disorcies commonly occur in pregnancy. There is<br>thyroid disorcies commonly occur in pregnancy. There is<br>The body undergoes extensive changes during pregnancy. There is<br>renal loss of iodine trelative iodine deficiency and there is also transfer of<br>iodine to the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>the fetus from mother is also transfer of<br>interest increased<br>interest in the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>the fetus from mother is also transfer of<br>interest in the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>the fetus from mother is also transfer of the fetus from the fetus from mother is also transfer of<br>the fetus from tool by the thyroid gland. This results in<br>the fetus from the fetus                               | meet the increased metabolic demands in pregnancy changes in thyroid                                        |                |                           |                                      |           |
| thyroid disorces commonly occur in pregnancy. There is<br>The body undergoes extensive changes during pregnancy. There is<br>renal loss of iodine trative iodine deficiency and there is also transfer of<br>iodine to the fetus from mother. To compensate for this there is increased<br>india to the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the thyroid gland. This results in<br>the fetus from helood by the the the fetus from helo fetus fetus from helo fetus from helo fetus fetus from helo fetus                         | physiology occur which is reflected by altered thyroid function tests. So                                   |                |                           | virwIhyrio d.org                     | 1%        |
| The body undergoes extensive changes during pregnarcy. There is<br>renal loss of iodine tradition induced and there is also transfer of<br>iodine to the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>renal not the fetus from mother is also transfer of<br>intervention in the fetus from mother. To compensate for this there is increased<br>uptake of iodine from blood by the thyroid gland. This results in<br>renal not the fetus from mother is also transfer of<br>intervention in the fetus from mother is also transfer of<br>intervention in the fetus from mother is also transfer of<br>intervention in the fetus from mother is also transfer of<br>intervention in the fetus from the fetus f                                             | thyroid disorcers commonly occur in pregnancy.                                                              |                |                           | nymedoahote.ocm<br>terre:source      | 1%        |
| renal loss of iodine trafative iodine deficiency and there is also transfer of iodine to the fetus from mother. To compensate for this there is increased uptake of iodine from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the thyroid gland. This results in the fetus from blood by the the the fetus for the fetus from blood by the the fetus from blood by the the the fetus from blood by the the fetus from blood by the the fetus from blood                                                                              | The body undergoes extensive changes during pregnarcy. There is                                             |                |                           | www.snehamumbaioro                   | .01       |
| iodine to the fetus from mother. To compensate for this there is increased uptake of iodine from blood by the thyroid gland. This results in present to the form blood by the thyroid gland. This results in the form blood by the thyroid gland and the results in the form blood by the thyroid gland and the results in the form blood by the thyroid gland and the results in the form blood by the thyroid gland and the results in the form blood by the thyroid gland and the results in the form blood by the thyroid gland and the results in the form blood by the the the form blood by the the the form blood by the the the form blood by the the form blood by the the form blood by the the the form blood by the the form blood by the the form blood by the the the form blood by the the form blood blood blood by the the form blood bloo                                                                              | renal loss of iodine relative iodine deficiency and there is also transfer of                               |                |                           | therees surce                        | <u>%</u>  |
| uptake of iodine from blood by the thyroid gland. This results in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iodine to the fetus from mother. To compensate for this there is increased                                  |                |                           | lyn.pusan baik.or.kr<br>Manet source | <1%       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                |                           | Ard O ulassitation                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                | 1                         | T Text-On                            | V Report  |

|                                 | eportasp?lang=en_us&oid=510458633&ff=1&bypa 💉 🔰 Reader Mode 😽 🔟 - Yahoo 🤌 🖉 🗧 🗧 🗮 | Microsoft Websites + MSN Websites + Windows Live +                                    | Similarity Index Internet Sources                                                                         | IDISM IN 18% Publications: 12% Eudent Papers: 3% Eudent Papers: 3% E | 09 UMA DEVI N mode ( Ston hybrat matches togeher 🗨 📑 🧃                                            | e pregnancy, thyroid dysfunction is one of the<br>intimately related to reproductive performance<br>= 1 2% match (Internet from 11-Aug-2010)                                                                 | Though ovucation and<br>bortion, preterm delivery <b>2</b> % match (Internet from 23-Sep-2010)<br>thyroid axis ,iodine                                                                                                                                                                                                   | ds in pregnancy changes in<br>thyroid disorders commonly <b>3</b> 1% match (Internet from 22-Dec-2005)<br>There is rehalloss of http://www.bmj.com                                                                                                                                                                      | 4                                                                                                                         | 25 Preedampsia', Chesey s Hypertensve<br>Disorders in Pregnancy, 2009 | as goiter. Matemal thyroxine is essential for<br>yrcid gland function , which tegins after 12<br>http://cccessmedicine.mhmedical.com                                                                                                                                                                                   | orthyroidism occurs ir 2.5%                                                                                                                                                                                                                                                                              | 7     1% match (Internet from 10-Mar-2015)       http://www.infantrist.com | 9                                                                              | jonty of 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | upsia 56 1% match (Internet from 26-May-2014)<br>tational http://www.snehamumbai.org                                                                       |                 |
|---------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 🕖 Turnitin 🛛 🗙 💋 Turnitin X 🕹 + | tps://turnitin.com/newr                                                           | I 8 Google M Gmal I Facebook M Games Links - Links for United States -<br>preferences | Curniting Processed on: 04-Apr-2015 21:27 IST STUDY ON Drinnity Recort Word Count: 11799 DR FVAL ENCE, OF | Submitted: 3 HY                                                      | By 221216058.ms Og UMA DEVI N<br>indude guoted indude bibliography excluding matches < 12 words ♥ | INTRODUCTION A variety of endocrine disorders complicate pregnancy, thyroid dysfunction is one of the common conditions among them. Thyroid gland function is intimately related to reproductive performance | in women. Cvulation failure and intertuity can occur in severe hypothyroidism. Though ovidation and<br>conception can occur in mild hypothyroidism, there is an increased chance of abortion, preterm delivery<br>stillbirth. Pregnancy is associated with major changes in hypothalamic pituitary thyroid axis ,iodine. | metabolism and the immune function. To meet the increased metabolic demands in pregnancy changes in<br>thyroid physiology occur which is reflected by aftered thyroid function tests. So thyroid disorders commonly<br>occur in pregnancy. The cody undergoes extensive changes during pregnancy. There is renalloss of | todrie "relative todrie demoency and there is also transfer of jodine to the retus from mother. To<br>compensate for this | there is increased uptake of iodine from blood by the thyroid gland.  | This results in compensatory hyperplasia which manifests as goiter. Maternal thyroxine is essential for fetal brain development especially before onset of fetal thyroxing gland function , which begins after 12 weeks. Maternal Hyperprint are accounted for 30% of Hyperprint in fetal section at hermitinghang and | colleagues, 1989). Though gestational hyperthyroidism is uncommon (0.2%), hyperthyroidism occurs in 2.3% of pregnancies and overt hypothyroidism complicates from 2 to 3 pregnancies per 1000(Caser and colleagues, 2005). Subclinical hypothyroidism is much more prevalent. Maternal hypothyroidism is | associated with fatigue, weight gain, cold intolerance, muscle cramps,     | edema, dry skin, hair loss, prolonged relaxation phase of deep tendon reflexes | <ul> <li>Computed and the second multiply outprover the prevent prevent and use about on the second sec</li></ul> | chronic hypertensior, gestational hypertension, preeclampsia, preeclampsia<br>superimposed on chronic hypertension, eclampsia, HELLP syndrome. Gestational | hunartancira ic |

# **INDEX**

| S.No | CONTENTS             | PAGE NO. |
|------|----------------------|----------|
| 1    | INTRODUCTION         | 1        |
| 2    | AIM OF THE STUDY     | 4        |
| 3    | REVIEW OF LITERATURE | 5        |
| 4    | MATERIALS & METHODS  | 71       |
| 5    | RESULTS & ANALYSIS   | 75       |
| 6    | DISCUSSION           | 84       |
| 7    | SUMMARY              | 92       |
| 8    | CONCLUSION           | 94       |
| 9    | BIBLIOGRAPHY         | 95       |
| 10   | ANNEXURES            |          |
|      | A. ABBREVIATION      |          |
|      | B. PROFORMA          |          |
|      | C. CONSENT FORM      |          |
|      | D. ETHICAL COMMITTEE |          |
|      | E. MASTER CHART      |          |

# INTRODUCTION

### **INTRODUCTION**

A variety of endocrine disorders complicate pregnancy, thyroid dysfunction is one of the common conditions among them. Thyroid gland function is intimately related to reproductive performance in women. Ovulation failure and infertility can occur in severe hypothyroidism. Though ovulation and conception can occur in mild hypothyroidism ,there is an increased chance of abortion, preterm delivery, stillbirth.

Pregnancy is associated with major changes in hypothalamic pituitary thyroid axis ,iodine metabolism and the immune function. To meet the increased metabolic demands in pregnancy changes in thyroid physiology occur which is reflected by altered thyroid function tests. So thyroid disorders commonly occur in pregnancy.

The body undergoes extensive changes during pregnancy. There is renal loss of iodine ,relative iodine deficiency and there is also transfer of iodine to the fetus from mother. To compensate for this there is increased uptake of iodine from blood by the thyroid gland. This results in compensatory hyperplasia which manifests as goiter. Maternal thyroxine is essential for fetal brain development especially before onset of fetal thyroid gland function, which begins after 12 weeks. Maternal thyroxine accounts for 30% of thyroxine in fetal serum at term(Vulsma and colleagues,1989).Though gestational hyperthyroidism is uncommon (0.2%),hypothyroidism occurs in 2.5% of pregnancies and overt hypothyroidism complicates from 2 to 3 pregnancies per 1000(Casey and colleagues,2005). Subclinical hypothyroidism is much more prevalent.

Maternal hypothyroidism is associated with fatigue, weight gain, cold intolerance, muscle cramps, edema, dry skin, hair loss, prolonged relaxation phase of deep tendon reflexes . Complications associated with hypothyroidism in pregnancy include abortion, hyperemesis, preterm labor, preeclampsia, abruption, oligohydramnios.

Hypertensive disorders complicates 5-10% of all pregnancies. There are various causes for elevated blood pressure during pregnancy, but the majority of cases can be included into cateogories namely chronic hypertension, gestational hypertension, preeclampsia, preeclampsia superimposed on chronic hypertension, eclampsia., HELLP syndrome. Gestational hypertension is most frequent with 6 and 15% prevalence in nulliparas and 2-4% in multiparas (Hauth et al.,2000;Buchbinder et al 2002). Preeclampsia is identified in 3.9% of all pregnancies.

Although pregnancy is associated with mild hyperthyroxinemia, preeclamptic women have a high incidence of hypothyroidism that might

2

correlate with the severity of preeclampsia. On the other side preeclampsia occurs in 16.7% of subclinical cases and 43.7% of overt hypothyroidism. The changes in thyroid gland in pregnancy is accounted by high circulating estrogen.

There are controversies in the mechanism of hypothyroidism in preeclampsia which are accounted by decreased plasma protein concentration and high levels of endothelin and soluble fms like tyrosine kinase.

The aim of my present study is to study the prevalence of hypothyroidism in women with preeclampsia. By looking for the association we can make screening universal instead of target screening in antenatal patients and we can start early thyroxine supplementation in affected individuals.

# **AIM OF THE STUDY**

### AIM OF THE STUDY

- To study the prevalence of hypothyroidism in women with preeclampsia and to compare them with age matched controls.
- To look for the correlation between hypothyroidism and severity of pre eclampsia.
- To analyse the association between onset of preeclampsia and hypothyroidism

# REVIEW OF LITERATURE

### **REVIEW OF LITERATURE**

The thyroid gland is an endocrine gland in the anterior region of the neck . Its main function is to secrete triiodothyronine(T3) and thyroxine (T4). The production of thyroid hormones by the gland is under the control of thyrotropin (TSH), which in turn is controlled by TRH. The thyroid gland undergoes tremendous changes during pregnancy.

### EFFECTS OF PREGNANCY ON THE THYROID GLAND:

Pregnancy has a goitrogenic effect on the thyroid gland by 40 to 100% to compensate for the maternal and fetal demands (Small ridge and associates 2005). There is an increase in Thyroxine binding globulin(TBG) in early pregnancy to reach twice the non pregnant levels by 16-20 weeks ,due to increased estrogen and reduced clearance by sialylation of TBG. The increase in TBG inturn produces an increase in total T3 and total T4, whereas the free hormone levels remain unchanged. To maintain a constant free T4 level in the plasma, the production of T4 increases by 30-50%<sup>1</sup>.

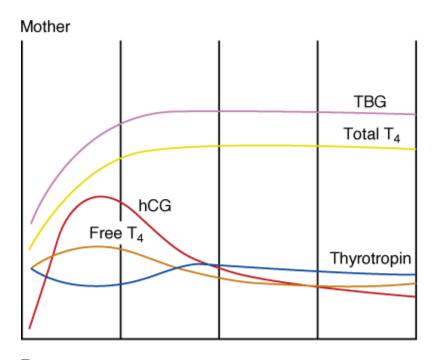
#### **PREGNANCY AS A GOITROGENIC FACTOR:**

In pregnancy due to the increased vascularity and glandular hyperplasia of the thyroid gland ,there is a moderate enlargement of the gland . The mean thyroid volume increases from 12 ml in the first trimester to 15 ml at delivery<sup>2</sup>.Serumthyrotropin concentration is inversely related to thyroid volume. Such enlargement is not pathological. Any goiter in pregnancy should be investigated since there is no significant thyromegaly in normal pregnancy.

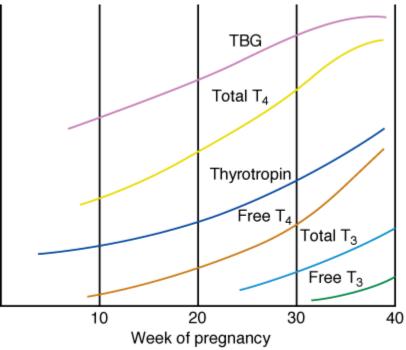
### **IODINE AND PREGNANCY:**

The iodine excretion in the urine increases during pregnancy due to increased glomerular filtration rate and plasma clearance. On the other hand the requirement of iodine increases due to increase in serum thyroxine levels and for the transfer of thyroxine to the fetus in the first trimester and iodine later on ,once the fetus starts synthesizing thyroid hormones. Women with sufficient iodine reserve can cope up with this, with little impact on the thyroid function. Those with deficient reserve will have a fall in thyroid hormone levels ,resulting in increase in TSH with enlargement of thyroid and goiter formation in the mother and fetus. Serum thyroglobulin is a good marker that correlates well with the thyroidal stimulation due to iodine deficiency. The goiter formed in pregnancy regress only partly after pregnancy ,especially in breast feeding women. To prevent this goiter formation and to attain a normal intrathyroidal stores of 10-20mg ,the women should have atleast 150µg /day iodine.

The American Thyroid Association (ATA) has recommended supplementation of pregnant and lactating women with 150µg/day of iodine added to prenatal vitamins. WHO recommends that during pregnancy and lactation, this daily intake should be increased to 250µg/day. As per the Institute of Medicine, daily iodine intake varies from 220µg/day in pregnancy and 290 µg/day in lactation.


The maximum upper limit for iodine is 600-1100  $\mu$ g/day for adults and pregnant women >19 yrs. Tend and co-workers in 2006 <sup>2</sup> have suggested that excessive iodine intake >300 mg/day may lead to subclinical hypothyroidism and autoimmune thyroiditis.

7


### **RELATIVE CHANGES IN MATERNAL THYROID FUNCTION:**

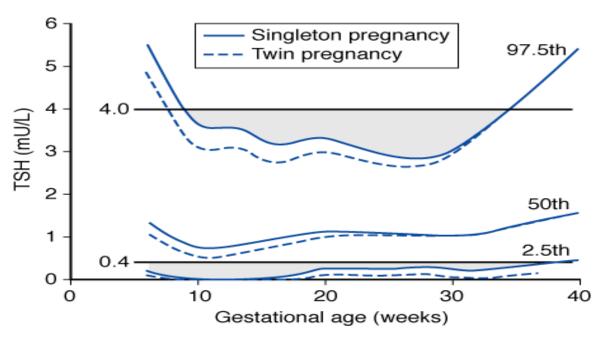
The thyroxine binding globulin increase and attains its peak at 20 weeks and stabilise at twice the baseline values thorough out the rest of the pregnancy. Between 6 and 9 weeks there is a sharp increase of TotalT4 and attains plateau at 18 weeks. There is a gradual peak of Free serum T4 along with hCG and they come back to normal. Upto 18 weeks there is a pronounced rise in total T3 and then it plateaus.

Glinoer and associates in 1990<sup>2</sup> found that the secretion of T4 and T3 is not similar in all pregnant woman .Around one third of women experience relative hypothyroxinemia ,with preferential T3 secretion and higher albeit normal, serum thyrotropin levels.








Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, 23rd Edition: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

### **RELATION BETWEEN hCG AND TSH:**

The changes in serum TSH and human chorionic gonadotropin (hCG) vary with gestational age. The alpha subunit of the two glycoproteins are identical, although the beta subunits are similar there is a difference in their amino acid sequence. Due to this structural similarity hCG has thyroid stimulating property. An example, 1 microU of hCG was equivalent to 0.0013 microU of TSH. hCG reaches peak at 8 to 10 weeks producing transient increase in free T4.

In more than 80% of pregnant women the thyrotropin levels decrease whereas the levels still fall into the normal non pregnant range. Serum TSH concentrations are transiently low or undetectable in 10 to 20 percent of normal women <sup>3,4,5</sup>. The normal fall in TSH in pregnant women may lead to a false diagnosis of subclinical hyperthyroidism. This fall in TSH also leads to the failure to identify early hypothyroidism. To obviate this misdiagnosis gestational age specific TSH values were developed by Dashe and co workers<sup>2</sup> in 2005

## Relationship between TSH and gestational age in weeks.



Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, 23rd Edition: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

These changes in thyroid regulations are not reflected by maternal thyroid status. As pregnancy advances the decline in hCG secretion leads to decline in serum free T4 and T3 concentrations and there is a rise of serum TSH slightly to or within the normal range...Though the BMR increases by as much as 25 %, if the fetal surface area is taken into consideration the observed BMI rates are similar to non pregnant women.

# PHYSIOLOGICAL CHANGES IN THE THYROIDGLAND OF THE FETUS-:

By the end of the first trimester ,the pituitary thyroid system is functional. As early as 11 weeks the TSH,T4,TBG can be detected in fetal serum. The placenta concentrates iodine on the fetal side and by 12 weeks there is more strong iodine concentration by the fetal thyroid than maternal thyroid. But there is a little hormone production till 18-20 weeks. The fetal thyroid hormone plays an important role in the development of all organs especially the brain.

Congenital hyperthyroidism caused by maternal thyroid stimulating antibodies is manifested by perceptual motor difficulties, hyperactivity and reduced growth. The placenta prevents further passage of maternal thyroid hormones to the fetus by rapidly deiodinating maternal T4 and T3 to form reverse T3. Initially it was thought that thyroid hormones are not essential for fetal growth, but Vulsma and colleagues have shown that small amount of maternal T4 prevent antenatal cretinism to manifest in fetus with thyroid agenesis<sup>1</sup>.

The fetus with congenital hypothyroidism does not develop the stigma of cretinism until after birth. Since administration of thyroid hormones will prevent this ,all newborns are tested for rise in TSH. At term serum TSH concentration is higher, whereas there is low serum T4 concentrations. The serum T3 concentration is only one half of the concentration in the mother. The serum TSH concentrations increase to 50-80 mU/L after birth and within 2 days it falls to 10-15 mU/L. The T3 and T4 concentrations in serum rise to levels are that are slightly higher than those in normal adults.

### **PLACENTAL TRANSFER :**

The placental transfer of thyroid hormones is controversial. There is passage of TSH-receptor antibodies via the placenta and leads to hypo or hyperthyroidism. There is little transfer of TSH .Exogenously administered TRH can stimulate fetal TSH secretion due to the transplacental passage of thyrotropin releasing hormone.

### NORMAL VALUES OF TSH:

The trimester specific reference range for TSH and serum free T4 is recommended by the American Thyroid Association(ATA) for management of pregnancy and postpartum period due to the pregnancy associated changes in thyroid .The commercial labs should provide their method specific reference range.

If the lab does not provide their standard range the following range is used.

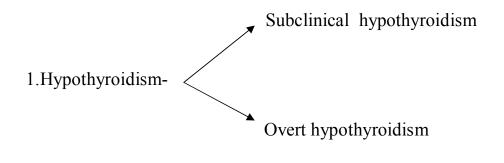
For TSH:

I trimester =0.1-2.5mU/L

II trimester=0.2-3.0mU/L

III trimester=0.3-3.0 mU/L

The value of 2.5mU/L was chosen since it is not only close to 97.5<sup>th</sup> percentile but also higher values are associated with higher fetal morbidity.


Free T3=1.7 to 4.2 pg/ml

Free T4=0.7 to 1.8ng/dl

There are some studies showing a decrease in free T4 during pregnancy, others report no change or even an increase<sup>7,8</sup>. During pregnancy it may be unreliable to measure direct free T4. Measurement of free T4 using liquid chromatography/tandem mass spectrometry in the dailysate or ultrafiltrate of serum samples appears to be the most reliable, and when this method is used, free T4 concentrations were shown to decrease gradually with advancing gestational age, particularly between the first and second trimester <sup>9,10</sup>.

Trimester-specific and method specific ranges of serum free T4 should be used, if available<sup>11</sup>.When there is a discrepancy between TSH and free T4,total T4 should be measured. The total T3 and T4 are 1.5 fold higher than non pregnant women. Thus pregnancy specific range should be used.

### **THYROID DISORDERS:**



2.Hyperthyroidism

### **HYPOTHYROIDISM:**

The most common cause of hypothyroidism in iodine sufficient areas is chronic autoimmune (Hashimotos thyroiditis),whereas iodine deficiency itself acts as a cause for hypothyroidism. Other causes are prior iodine ablation, diseases of pituitary and hypothalamus.

Overt hypothyroidism - TSH above trimester specific range in association with low free T4 concentration. It complicates 2 to 3 pregnancies per 1000.

Subclinical hypothyroidism – TSH above trimester specific range with normal free T4 concentration. The incidence of subclinical hypothyroidism is about 5 % in women between 18 -45 years.

Diez and Iglesias in 2004, did a prospective study on 93 pregnant women with subclinical hypothyroidism reported that the TSH returned back to normal levels in one third of women In the remaining two thirds, those with TSH levels between 10 -15mU/L developed overt hypothyroidism at a rate of 19 per 100 patient years. Those women with TSH <10mU/L developed overt hypothyroidism at a rate of 2 per 100 patient years<sup>2</sup>.

### **SCREENING FOR HYPOTHYROIDISM IN PREGNANCY :**

Routine screening of all pregnant women for thyroid disorders is still an area of controversy. The American Thyroid Association (ATA), the Endocrine society, the American College of Obstetrics and Gynaecology (ACOG) favour targeted screening instead of universal screening. The ATA recommends screening in pregnant women when they are,

- Symptomatic / from an area with moderate to severe iodine deficiency.
- 2. positive personal/family history of thyroid disorders.
- 3. history of miscarriages /preterm delivery/ head and neck irradiation
- 4. BMI > 40
- 5. thyroid peroxidase antibody (TPOAb) positive / type 1 diabetes
- 6. age > 30 years / history of infertility

In women who fulfill the screening criteria ,first serum TSH is measured, if it is above the trimester specific range then free T4 is measured to identify the degree of hypothyroidism. In those women with subclinical hypothyroidism ,thyroid peroxidase antibody should be measured. This helps to make decision in women with boderline TSH and in predicting postpartum thyroid dysfunction.

We miss upto one third of the cases with hypothyroidism with this approach. Universal screening will be a cost effective approach if one thinks that the treatment will improve the IQ of the newborn.

In one study 0f 4562 women ,there were no difference in adverse outcome among women divided to universal screening and case finding group. Low risk women in universal screening group who were diagnosed as hypothyroid and treated have few adverse outcomes than among low risk women in case finding group who were not treated. This however failed to reach statistical significance due to large number of adverse events occurring even in women with euthyroid status.

### **OVERT HYPOTHYROIDISM:**

It is difficult to diagnose hypothyroidism clinically during pregnancy, due to the overlapping of features between hypothyroidism and normal pregnancy itself. It is characterized by fatigue, muscle cramps, weight gain, cold intolerance ,constipation .Other features include dry skin, edema, hair loss, prolonged relaxation phase of deep tendon reflexes.

# PREGNANCY OUTCOME WITH OVERT HYPOTHYROIDISM:

### **MATERNAL:**

Overt hypothyroidism constitutes 0.3-0.5% of screened women. The factors contributing to this low % are some hypothyroid women are anovulatory<sup>12</sup>, and there are increased risk of spontaneous first trimester abortions<sup>13,14,15</sup>.

These include preeclampsia, gestational hypertension, placental abruption, anaemia, heart failure, non reassuring fetal heart tracing, preterm delivery, low birth weight babies, increased caesarean section rate<sup>16</sup>, postpartum haemorrhage.

### FETAL:

Increased perinatal morbidity and mortality, neuropsychological impairment, low IQ, sepsis, respiratory distress syndrome, cardiomyopathy, neonatal hyperthyroidism.

### SUBCLINICAL HYPOTHYROIDISM:

It is more common when compared to overt hypothyroidism occuring in 2.0 - 2.5% of screened women in united states.

### 1)Pregnancy outcome:

Some studies state that women with subclinical hypothyroid are also at an increased risk of preeclampsia, placental abruption ,preterm labor, pregnancy loss<sup>17-21</sup>. In a study of 17,298 women registered for prenatal care ,there is two fold higher risk of preterm birth in 2.3% subclinical hypothyroid women ,defined as TSH above 97.5<sup>th</sup> percentile for gestational age.

In another study comparing pregnancy outcome in women with negative antithyroid peroxidase antibody, there is increased pregnancy loss rate in women with serum TSH between 2.5 -5.0mU/L than those with TSH < 2.5mU/L in the first trimester (6.1 Vs 3.6%)<sup>22</sup>.

There are limited studies<sup>23</sup> available stating that there is worse pregnancy outcome in women undergoing IVF with preconception TSH > 2.5 mU/L, whereas the FASTER trial didn't find significant adverse outcomes in subclinical hypothyroidism.

### 2) Cognitive impairment:

There are some observational studies indicating the association of subclinical hypothyroidism with impaired cognitive development in children<sup>24,25</sup>. In one report, 15 % of women of women with TSH >  $98^{th}$  percentile have mean IQ score was 85% or less ,whereas only 5% of women have TSH within normal limits<sup>26</sup>.

Further additional randomized trials are needed to determine whether screening and treatment of subclinical hypothyroidism earlier in pregnancy (prior to 13 weeks) has any benefit on neurocognitive outcomes. An analysis of maternal thyroid function at delivery of preterm babies < 34 weeks ,and later neurocognitive development at 5.5 years reported a significant decrements in cognitive performance for each mU/L increment in TSH<sup>27</sup>. There are some studies stating subclinical hypothyroidism in older patients causes hypertension, heart failure and atherosclerotic vascular disease.

### **ISOLATED HYPOTHYROXINEMIA:**

It is defined as lower maternal free T4 concentration in the  $5^{\text{th}}$  or  $10^{\text{th}}$  percentile of the reference range in association with normal TSH. The effects of isolated hypothyroxinemia on pregnancy is unclear. According to one study there is no adverse outcomes associated with this condition<sup>28.</sup>

According FASTER trial, with isolated to the women hypothyroxinemia have increased odds ratio of 1.62 for preterm labor, for macrosomia, 1.70 for gestational diabetes .Children whose 1.97 mother had isolated low FT4 have decreased mean intelligence and behavior scale compared with women who had normal TSH values<sup>24,29,30,31</sup>. The children IO was not different between those who born to low T4 mothers who did or didn't receive treatment before 20 weeks of gestation<sup>32</sup>.

### **TREATMENT OF HYPOTHYROID ;**

The treatment recommendations as per American Thyroid Association (ATA) and the Endocrine society are as follows;

Candidates eligible for treatment:

- pregnant women with overt hypothyroidism which is newly diagnosed.

- pregnant women with subclinical hypothyroidism with positive TPO-Ab titres ( as per ATA).

In women with subclinical hypothyroidism without positive TPO-Ab, the ATA found insufficient evidence to support for or against for treating them. Therefore the benefits of treating women without TPO-Ab is to be established by further studies.

The goal of treatment is to maintain trimester-specific reference range for mother's serum TSH (0.1 to 2.5 mU/L, 0.2 to 3 mU/L, and 0.3 to 3 mU/L for the first, second, and third trimesters ).

The treatment of choice for hypothyroidism is synthetic thyroxine (T4).Tthose with moderate and severe hypothyroidism should be started with almost full replacement doses(1.6mcg/kg/day),while patients with TSH< 10mU/L can be started on approximately 1 mcg/kg/day.

Ideally T4 should be taken on empty stomach in morning, one hour before breakfast. If the TSH is above the trimester specific range ,the dose should be increased by12-25mcg/day. After starting treatment TSH should be repeated every 4 weeks once, in the first half of pregnancy and less frequently in later half of pregnancy. It is suggested that same formulation of T4 to be used. Generics is avoided because of the potential for frequent interchange of preparations by the pharmacy. Follow-up biochemical monitoring (TSH) should be performed six weeks later, if the preparation is changed .This is done to consider the need for retitration of the dose .

### **PREEXISTING HYPOTHYROIDISM:**

50-85 % of Women with pre existing hypothyroidism need dose increments during pregnancy <sup>33-35</sup>. During pregnancy there may be increase in dose requirements to as much as 50% and the increase occurs usually as early as 5<sup>th</sup> week of gestation .This is accomplished by increasing the dose from once daily dosing to nine doses per week.

In a retrospective study ,60% required levothyroxine dose increase (34% during the first trimester)<sup>35</sup>.In a prospective study of 20 patients, 47% required increase in thyroxine dose<sup>34</sup>.

Unlike normal women, those with pre-existing hypothyroidism or subclinical hypothyroidism are unable to cope with the increased demand occurring in normal pregnancy especially difficult in those who had prior ablation, surgical treatment for graves disease. There is an increase in T4 requirement in pregnancy because of increase in T4 pool, increase in TBG, weight gain, transfer of iodine to fetus, placental deiodinase activity and reduced gastrointestinal absorption due to iron in prenatal vitamins<sup>33</sup>.

The goal of preconception TSH is  $<2.5 \text{ mU/L}^{36}$ . According to one study, only 17% of women with preconception TSH <1.2 mU/L required dose increments whereas 50% of women required dose increments with preconception TSH between 1.2 and 2.4 mU/L <sup>37</sup>.

The TSH should be measured immediately after conception and then once in every 4 weeks or 4 weeks after change in T4 dose and atleast one in each trimester. Adjustment of the dose should be done every 4 weeks to achieve normal TSH .The T4 dose can be reduced to prepregnancy levels, but this should be confirmed by measuring TSH 4-6 weeks whether the reduction was appropriate<sup>33,38</sup>.

### **CONGENITAL HYPOTHYROIDISM:**

It is caused by agenesis or dysgenesis of thyroid gland, congenital dyshormonogenesis, iodine deficiency in endemic areas.

### **THYROID PEROXIDASE ANTIBODIES:**

Women with TPO-Ab are at increased risk of subclinical hypothyroidism in first trimester and thyroiditis in the postpartum period. The decision to treat euthyroid women with TPO-Ab with thyroxine or to monitor for the development of hypothyroidism is controversial.

### **PREGNANCY HYPERTENSION:**

Among all the pregnancies hypertensive disorders complicate 5 to 10 percent .The hypertensive disorders ,haemorrhage and infection form a deadly triad and they greatly contribute to maternal morbidity and mortality rates . Preeclampsia syndrome alone or superimposed on chronic hypertension is most dangerous.

Preeclampsia occurs in 3.9% of all pregnancies. In developed countries ,preeclampsia constitutes greater percentage than other three leading causes abortion —8 percent, hemorrhage —13 percent, and sepsis—2 percent. 16% of maternal mortality rates were due to hypertensive disorders(2)

# **Classification of hypertensive disorders:**

According to NHBPEP—National High Blood Pressure Education Program (2000), hypertensive disorders in pregnancy are classified into:

- 1. Gestational hypertension—previously known as pregnancy-induced hypertension. If there is no development of preeclampsia syndrome and by 12 weeks of postpartum if hypertension resolves , it is renamed as transient hypertension
- 2. Preeclampsia and eclampsia syndrome
- 3. Preeclampsia superimposed on chronic hypertension
- 4. Chronic hypertension

# **Diagnosis of Hypertensive Disorders Complicating Pregnancy**

# **Gestational Hypertension:**

- Systolic  $BP \ge 140$  or diastolic  $BP \ge 90$  mm Hg for the first time during pregnancy
- No proteinuria
- BP returns to normal before 12 weeks postpartum
- Final diagnosis made only in postpartum

May have other signs or symptoms of preeclampsia, for example, epigastric discomfort or thrombocytopenia

# **Preeclampsia:**

### Minimum criteria:

- BP  $\geq$  140/90 mm Hg after 20 weeks gestation
- Proteinuria  $\geq$  300 mg/24 hours or  $\geq$  1+ dipstick

# Increased certainty of preeclampsia:

- BP  $\geq$  160/110 mm Hg
- Proteinuria 2.0 g/24 hours or  $\geq 2 + \text{ dipstick}$

- Serum creatinine >1.2 mg/dL unless known to be previously elevated
- Platelets  $< 100,000/\mu L$
- Microangiopathic hemolysis—increased LDH
- Elevated serum transaminase levels—ALT or AST
- Persistent headache or other cerebral or visual disturbances.
- Persistent epigastric pain

# **Eclampsia:**

• Seizures that cannot be attributed to other causes in a woman with preeclampsia

# Superimposed Preeclampsia On Chronic Hypertension:

- New-onset proteinuria ≥ 300 mg/24 hours in hypertensive women but no proteinuria before 20 weeks gestation
- A sudden increase in proteinuria or blood pressure or platelet count
   < 100,000/ µL in women with hypertension and proteinuria before</li>
   20 weeks gestation

### **Chronic Hypertension:**

•

 $BP \ge 140/90 \text{ mm}$  Hg before pregnancy or diagnosed before 20 weeks' gestation, not attributable to gestational trophoblastic disease

#### or

Hypertension first diagnosed after 20 weeks' gestation and persistent after 12 weeks postpartum

(ALT = alanine aminotransferase; AST = aspartate amino transferase; BP = blood pressure; LDH = lactate dehydrogenase)

This classification helps in differentiating o preeclampsia and eclampsia from other hypertensive disorders, since the above two are potentially more ominous

# **DIAGNOSIS:**

Hypertension is defined as systolic blood pressure >140 mmHg and diastolic blood pressure >90 mmHg on 2 occasions atleast 6 hours apart. Diastolic blood pressure is measured by Korotkoff phase V. Previously a rise of 30mmHg of systolic or 15mmHg of diastolic blood pressure from mid pregnancy values was used to diagnose hypertension, even when the absolute values were below 140/90mm Hg. Its not recommended now since evidence shows that such women were not associated with poor pregnancy outcomes.

#### **GESTATIONAL HYPERTENSION:**

Gestational hypertension is diagnosed when blood pressure reaches for the first time after mid pregnancy to 140/90 mm Hg or greater after midpregnancy, but without *proteinuria*. Almost 50% of these women develop preeclampsia syndrome subsequently, which includes signs such as proteinuria and thrombocytopenia or symptoms such as epigastric pain or headache. If by 12 weeks postpartum, the blood pressure returns to normal and if there is no evidence of proteinuria, gestational hypertension is redefined as *transient hypertension*.

Proteinuria is the marker for endothelial damage.10% of eclamptic seizures develop before overt proteinuria is identified.

# **PREECLAMPSIA:**

Preeclampsia is otherwise known as pregnancy specific syndrome which affects virtually all the organ systems of the body. Preeclampsia is more than gestational hypertension with proteinuria. Proteinuria is defined as 24 hour urinary protein of >300mg/24 hours or urine protein:creatinine ratio  $\geq$ 0.3 or persistent 30mg/dl or 1+ protein in dipstick (Lindheimer and colleagues, 2008a). The more severe the hypertension or proteinuria or the presence of indicators for severity ,the more is the certainity for development of preeclampsia.

# **INDICATORS FOR SEVERITY OF PREECLAMPSIA:**

*Headaches* or *visual disturbances* such as *scotomata* can be premonitory symptoms of eclampsia. *Epigastric or right upper quadrant pain* frequently accompanies hepatocellular necrosis, ischemia, and edema that stretch Glisson's capsule. This characteristic pain is frequently accompanied by elevated serum hepatic transaminase levels.

The worsening preeclampsia may also be characterised by thrombocytopenia. The platelet activation, aggregation, microangiopathic hemolysis induced by severe vasospasm leads to thrombocytopenia. The more profound the signs of severity, the more likely delivery will be indicated. It may be misleading to classify as mild and severe because those classified as mild may progress to severe preeclampsia.

As per ACOG guidelines preeclampsia is divided into mild and severe based on the following indicators.

32

| Indicators of Severity of Gestational Hypertensive Disorders |            |                  |  |
|--------------------------------------------------------------|------------|------------------|--|
| Abnormality                                                  | Nonsevere  | Severe           |  |
| Diastolic blood pressure                                     | <110 mm Hg | $\geq$ 110mm Hg  |  |
| Systolic blood pressure                                      | <160 mm Hg | $\geq$ 160 mm Hg |  |
| Proteinuria                                                  | $\geq$ 2+  | ≥ 3+             |  |
| Headache                                                     | Absent     | Present          |  |
| Visual disturbances                                          | Absent     | Present          |  |
| Upper abdominal pain                                         | Absent     | Present          |  |
| Oliguria                                                     | Absent     | Present          |  |
| Convulsion (eclampsia)                                       | Absent     | Present          |  |
| Serum creatinine                                             | Normal     | Elevated         |  |
| Thrombocytopenia<br>(<100,000/μL)                            | Absent     | Present          |  |
| Serum transaminase elevation                                 | Minimal    | Marked           |  |
| Fetal-growth restriction                                     | Absent     | Obvious          |  |
| Pulmonary edema                                              | Absent     | Present          |  |

# **ECLAMPSIA:**

The appearance of convulsions in a preeclamptic women with seizures not contributing to any other reasons. The seizures may be generalised and may appear before, during and after labour. As per parkland hospital status, delayed postpartum eclampsia continues to occur in less than 10% of pregnancies.(Alexander and co-workers, 2006; Brown and colleagues, 1987).

# PREECLAMPSIA SUPERIMPOSED ON CHRONIC HYPERTENSION:

All chronic hypertension cases predispose to the development of eclampsia and preeclampsia. The diagnosis of chronic hypertension can be difficult if the patient is first seen >20 weeks ,since there is normally mid trimester fall in blood pressure, which again rise to original hypertensive level in the third trimester. If chronic hypertension is accompanied by proteinuria, then superimposed preeclampsia is diagnosed. Superimposed preeclampsia commonly may develop earlier in pregnancy than "pure" preeclampsia. Superimposed disease is often more severe and fetal-growth restriction most often accompanies it .

#### **INCIDENCE AND RISK FACTORS OF PREECLAMPSIA:**

Young and nulliparous women are more prone for preeclampsia whereas chronic hypertension usually occurs in older women. According to Sibai and Cunningham (2009), the incidence of preeclampsia in nulliparous populations ranges from 3 to 10 percent. The incidence of preeclampsia in multiparas is variable. Other risk factors include maternal age >35 years, obesity, multifetal gestation, African American ethnicity (Agudelo and Belizan, 2000; Sibai and colleagues, 1997; Walker, 2000).

There is a progressive relationship between preeclampsia and maternal weight. For women with a body mass index (BMI)  $< 20 \text{ kg/m}^2$  the risk is 4.3 percent whereas in those with a BMI  $> 35 \text{ kg/m}^2$  the risk is 13.3 %. In twins the incidence of preeclampsia is 13% Vs 5% in singletons. (Sibai and co-workers, 2000). The incidence is unrelated to zygosity (Maxwell and associates, 2001).

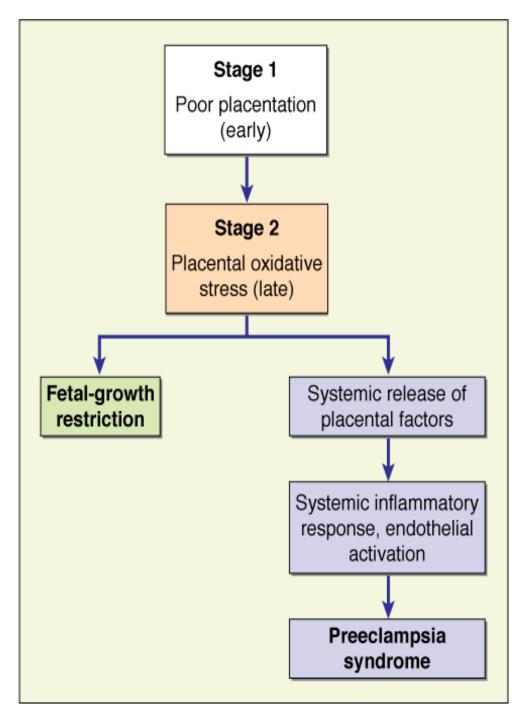
Though there are adverse pregnancy outcomes with smoking during pregnancy, there is decreased risk of hypertension in pregnant women who are smoking. (Bainbridge and associates, 2005; Zhang and colleagues, 1999). This is due to the fact that smoking upregulates placental adrenomedullin expression, which regulates volume homeostasis. Placenta previa has also been reported to reduce the risk of hypertensive disorders in pregnancy (Ananth and colleagues, 1997). Those women who are normotensive during first pregnancy are less prone for preeclampsia in subsequent pregnancies.

# **INCIDENCE OF ECLAMPSIA:**

Due to improved prenatal care the incidence of eclampsia decreases. According to the Royal College of Obstetricians and Gynaecologists (2006), in the United Kingdom, it approximates 1 in 2000.

# **ETIOPATHOGENESIS:**

There is increased likelihood to develop gestational hypertensive disorders in the following women;


- First time exposure to chorionic villi
- Exposure to a more abundance of chorionic villi, as with twins or hydatidiform mole
- Have prior renal or cardiovascular disease
- When there is a genetic predisposition in pregnancy to hypertension.

A fetus is not a requisite for preeclampsia. The cascade of events that leads to the preeclampsia syndrome is characterized by a host of abnormalities that result in vascular endothelial damage and subsequent vasospasm, transudation of plasma, and further ischemic and thrombotic sequelae.

#### PREECLAMPSIA AS TWO STAGE DISORDER:

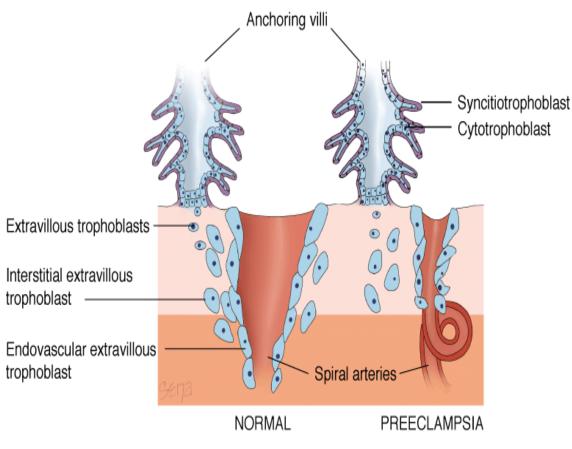
Following the observations that abnormal interfaces between maternal, paternal, and fetal tissues may cause preeclampsia, have led to hypotheses that the syndrome is a two-stage disorder.

According to Redman and colleagues (2009), stage 1 is caused by faulty endovascular trophoblastic remodeling that downstream causes the stage 2 clinical syndrome. Stage 2 is susceptible to maternal factors like diabetes, cardiac or renal disease, obesity and hereditary influences .Preeclampsia is clinically a spectrum of continuum disease.



Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, 23rd Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.


# **ETIOLOGY:**

- Abnormal trophoblastic invasion of uterine vessels during placental implantation.
- 2. There is maladaptive immunological tolerance between maternal, paternal (placental), and fetal tissues
- 3. There is maternal maladaptation to normal cardiovascular or inflammatory changes of pregnancy
- Genetic factors such as epigenetic influences and predisposing inherited genes.

# ABNORMAL TROPHOBLAST INVASION:

In normal implantation, as shown in the figure below the uterine spiral arterioles are remodelled by the endovascular trophoblastic invasion. The vascular endothelial and muscular linings are replaced by these trophoblasts to increase the vessel diameter. There is only superficial invasion of the veins.

There may be *incomplete trophoblastic invasion* in preeclampsia. Because of the incomplete invasion only the decidual vessels, become lined with endovascular trophoblasts but not the myometrial vessels. Since there is no loss of the endothelial lining and musculoelastic tissue in the deeper myometrial arterioles ,their mean external diameter is only 50% of the diameter in normal placental vasculature. (Fisher and colleagues, 2009). Madazli and associates (2000) showed that the severity of the hypertensive disorder is proportional to the magnitude of defective trophoblastic invasion of the spiral arteries.



Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, 23rd Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Thus the abnormally narrow spiral artery reduces placental blood flow, which inturn decreases placental perfusion leading to ischemia ,causing release of placental debris leading to systemic inflammatory response.

# **IMMUNOLOGICAL FACTORS**

There is maternal tolerance to fetal and placental antigens. Loss of this tolerance is another explanation for preeclampsia.

| Inherited Immunogenetic Factors in preeclampsia that May affect |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|
| Genotype and Phenotype Expression                               |  |  |  |  |
| "Immunization" from a prior gestation                           |  |  |  |  |
| Inherited haplotypes for HLA-A, -B, -D, -Ia, -II                |  |  |  |  |
| Inherited haplotypes for NK-cell receptors—also called          |  |  |  |  |
| killer-immunoglobulin-like receptors—KIR                        |  |  |  |  |
| Possibly shared susceptibility genes with diabetes and chronic  |  |  |  |  |
| hypertension                                                    |  |  |  |  |

### **ENDOTHELIAL CELL ACTIVATION:**

The endothelial injury is thought to be provoked by metabolic factors, anti angiogenic and other inflammatory mediators . The activated state of leucocytes in maternal circulation causes endothelial injury.(Faas, 2000; Gervasi, 2001)TNF- $\alpha$ , ILs may also leads to this oxidative stress. This oxidative stress produces reactive oxygen species and free radicals that inturn leads to self-propagating lipid peroxides formation (Manten and associates, 2005).

These free oxygen radicals damage the endothelial cells, impair nitric oxide production and interfere with the balance between the prostaglandins. Other manifestations of oxidative stress include lipid laden foamy macrophages as seen in atheroma, thrombocytopenia caused by microvascular coagulation and increased capillary permeability causing edema and proteinuria.

Many researchers have believed that antioxidants might prevent the occurrence of preeclampsia .But it's not proven so far.

### **NUTRITIONAL FACTORS:**

John and co-workers (2002) showed that a diet high in fruits and vegetables with antioxidant activity is associated with decreased blood pressure. Zhang and associates (2002) reported there is double the incidence of preeclampsia in those women whose daily intake of calcium was less than 85mg. Villar and associates (2006) reported the supplementation of calcium in those women whose dietary intake of calcium was low, was associated with lower perinatal mortality rates, but no effect on the incidence of preeclampsia.

# **GENETIC FACTORS**:

Preeclampsia is a multifactorial polygenic disorder. Ward and Lindheimer (2009) found that the following candidate genes are commonly investigated for causation.

| Gene<br>(Polymorphism)               | Function<br>Affected                       | Chromosome | Biological<br>Association                                                       |
|--------------------------------------|--------------------------------------------|------------|---------------------------------------------------------------------------------|
| MTHFR<br>(C677T)                     | Methylene<br>tetrahydrofolate<br>reductase | 1p36.3     | Vascular diseases                                                               |
| F5 (Leiden)                          | Factor V Leiden                            | 1q23       | Thrombophilia—<br>may coexist with<br>other thrombophilic<br>genes              |
| AGT (M235T)                          | Angiotensinogen                            | 1q42-q43   | Blood pressure<br>regulation, linked to<br>essential<br>hypertension            |
| HLA (Various)                        | Human leukocyte<br>antigens                | 6p21.3     | Immunity                                                                        |
| NOS3 (Glu 298<br>Asp)                | Endothelial nitric<br>oxide                | 7q36       | Vascular endothelial<br>function                                                |
| F2 (G20210A)                         | Prothrombin<br>(factor II)                 | 11p11-q12  | Coagulation—<br>weakly associated,<br>studied with other<br>thrombophilic genes |
| ACE (I/D <sup>at</sup> Intron<br>16) | Angiotensin<br>converting<br>enzyme        | 17q23      | Blood pressure<br>regulation                                                    |

Because of the heterogenecity of preeclampsia, and the interaction of genetic and environmental factors for complex phenotypic expression ,it is doubtful whether any one of the candidate genes will be found responsible

# Other genetic factors are

- 1. Multiple genotypes: maternal and paternal (fetal and placental)
- Subgroups: associated disorders such as diabetes and characteristics such as parity
- Genomic ethnicity: frequency of polymorphisms, founder effect, selection and genetic drift.
- 4. Gene-gene interaction: specific alleles or products of two or more genes affect one another and thus the phenotype
- 5. Epigenetic phenomena: variations in expression of a functional stable gene, for example, monozygotic twin differences
- 6. Gene-environmental interactions-these are infinite

# PATHOGENSIS OF PREECLAMPSIA SYNDROME.

### VASOSPASM:

Because of vasoconstriction there is increased resistance and subsequent hypertension .Due to endothelial damage there is interstitial leakage with subendothelial deposition of platelets and fibrinogen .With decreased blood flow there is ischemia of surrounding structures with necrosis ,haemorrhage and further end organ damage.

# **ENDOTHELIAL CELL ACTIVATION:**

Intact endothelium has anticoagulant properties, and the vascular smooth muscle response to agonists is blunted by the endothelial cells by releasing nitric oxide. Damaged or activated endothelial cells may produce less nitric oxide and produce substances that favour coagulation and increase sensitivity to vasopressors. (Gant and co-workers, 1974).

# **INCREASED PRESSOR RESPONSE :**

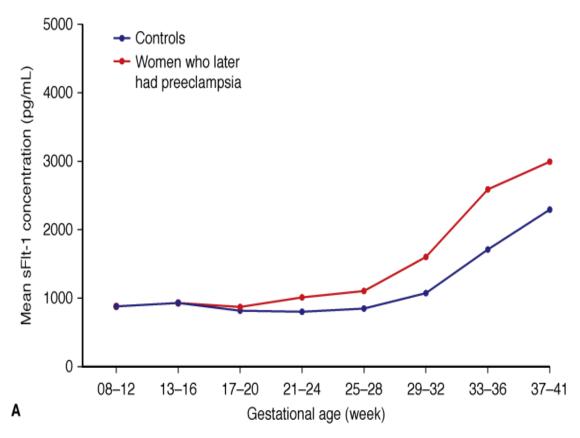
There is loss of refractoriness to renin angiotensin II which precedes the onset of preeclampsia.

### **PROSTAGLANDINS:**

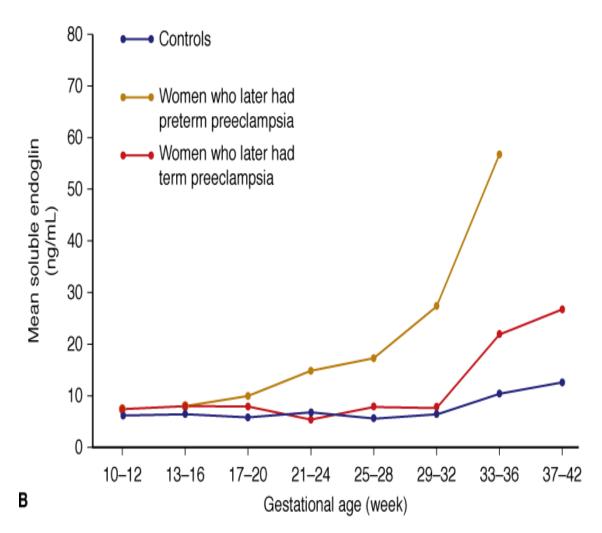
The decreased pressor response in normal pregnancy is mediated by increased prostacyclin .In preeclampsia there is decreased production of prostacyclin and increased thromboxane production with decreased prostacyclin: thromboxane ratio.

# **NITRIC OXIDE:**

NO is a potent vasodilator produced by endothelial cells from L-ARGININE. Decreased nitric oxide production is associated with increased mean arterial pressure, decreased heart rate ,reverses the pregnancy induced refractoriness to vasopressor. The fetoplacental perfusion is characterised by the low pressure vasodilated state which is maintained by the nitric oxide The relation between nitric oxide and preeclampsia is unclear. It is associated with decreased nitric oxide production.


#### **ENDOTHELINS:**

Endothelins-1 (ET- 1) is the isoform produced by human endothelial cells. According to Taylor and Roberts (1999), the placenta is not the source of increased ET-1 concentrations, and they likely arise from systemic endothelial activation.


47

### **ANGIOGENIC ANTIANGIOGENIC PROTEINS:**

The worsening hypoxia at the uteroplacental interface stimulates excessive amounts of antiangiogenic factors that leads to angiogenic imbalance. Trophoblastic tissue of women destined to develop preeclampsia overproduces at least two antiangiogenic peptides that enter into the maternal circulation (Karumanchi and colleagues, 2009) namely soluble fms like tyrosine kinase and soluble endoglins.



Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: *Williams Obstetrics, 23rd Edition:* http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.



Source: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, 23rd Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

### **PATHOPHYSIOLOGY OF PREECLAMPSIA:**

The changes in preeclampsia evolve gradually beginning from early weeks of gestation to manifest in later half .They usually involve multiple organ systems.

# **CARDIOVASCULAR CHANGES:**

The changes are due to increased cardiac afterload caused by hypertension, increased preload, endothelial activation leading to extravasation of intravascular fluid into extracellular space especially the lungs. Though there is a hyperdynamic cardiac state in all women, intravenous fluid infusions influence the filling pressures. In most women especially, aggressive hydration leads to hyperdynamic ventricular function . Importantly, this is also accompanied by elevated pulmonary capillary wedge pressures. In some of these women, inspite of normal ventricular function pulmonary edema may develop, because of an alveolar endothelial-epithelial leak that inturn is compounded by decreased oncotic pressure from a low serum albumin concentration (American College of Obstetricians and Gynecologists, 2002a).

The hyperdynamic ventricular function was largely a result of low wedge pressures and not a result of augmented myocardial contractility measured as left ventricular stroke work index. By comparison, women given appreciably larger volumes of fluid commonly had filling pressures that exceeded normal, but their ventricular function remained hyperdynamic because of increased cardiac output. Thus aggressive fluid administration to women with severe preeclampsia causes normal left sided filling pressure to become substantively elevated and increase an already normal cardiac output to supranormal levels.

# **Blood volume:**

Hemoconcentration is the hallmark of eclampsia.during last weeks of gestation the average blood volume is 5000ml compared to 3500ml in non pregnant women. This anticipated normal excess of 1500ml is lost in preeclampsia. This is due to generalised vasoconstriction that follows endothelial activation and leakage of plasma into interstitial space due to increased permeability. In preeclamptic women depending on its severity hemoconcentration is usually not marked . There is normal blood volume in gestational hypertension.

For women with severe hemoconcentration, it was taught that an sudden fall in hematocrit indicates resolution of preeclampsia. In this situation, hemodilution follows endothelial healing with return of interstitial fluid into the intravascular space. Though its partially correct, it is important to realise that a substantive cause of this fall in hematocrit is usually the consequence of blood loss at delivery. It may also be partially the result of increased erythrocyte destruction. Vasospasm and endothelial leakage of plasma may persist for a variable amount of time after delivery as the endothelium undergoes repair. As this takes place, vasoconstriction reverses, and as the blood volume increases, the hematocrit usually falls. Thus, women with eclampsia:

- Are unduly sensitive to vigorous fluid therapy administered in an attempt to increase the contracted blood volume to normal pregnancy levels.
- Are sensitive to amounts of blood loss which is considered as normal for a normotensive women during delivery.

# **BLOOD AND COAGULATION ABNORMALITIES:**

# **Platelet abnormalities:**

Thrombocytopenia, platelet surface alterations(platelet bound and circulating antibodies ). *Maternal thrombocytopenia in hypertensive women is not a fetal indication for caesarean delivery*. Kenny and associates (2009) reported other changes such as platelet activation with increased degranulation, thromboxane  $A_2$  release, and decreased lifespan.

# Hemolysis :

Severe preeclampsia is accompanied by hemolysis with elevated lactate dehydrogenase , with peripheral smear findings of schistocytosis, spherocytosis , reticulocytosis. These derangements result in part from microangiopathic hemolysis caused by endothelial disruption with platelet adherence and fibrin deposition. Sanchez-Ramos and colleagues (1994) described increased erythrocyte membrane fluidity with HELLP syndrome, and Cunningham and co-workers (1995) postulated that these changes were due to serum lipid alterations. Erythrocytic membrane changes, increased adhesiveness, and aggregation may also facilitate a hypercoagulable state (Gamzu and co-workers, 2001; Grisaru and associates, 1997).

# **HELLP Syndrome:**

Weinstein (1982) named the combination of hemolysis, elevated liver transaminase levels, thrombocytopenia as HELLP syndrome. These components are used in the distinction between mild and severe preeclampsia.

# **COAGULATION:**

for thrombocytopenia other coagulation aberrations Except consistent with intravascular coagulation are less pronounced in preeclampsia. Unless there is associated placental abruption, plasma fibrinogen levels do not differ remarkably from levels found in normal pregnancy, and fibrin degradation products are elevated only occasionally. Barron and colleagues (1999) stated that it is not necessary to do prothrombin time, partial thromboplastin time, plasma fibrinogen level routinely in all pregnancy associated hypertensive disorders. Thrombophilias be associated with may early onset preeclampsia. Fibronectin, a glycoprotein associated with endothelial cell basement is elevated in preeclampsia.

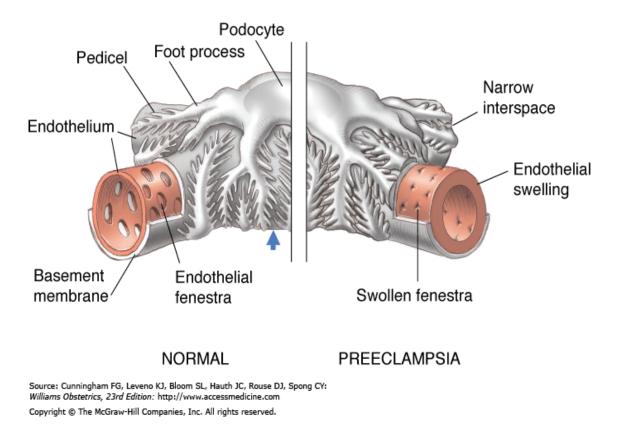
# FLUID AND ELECROLYTE IMBALANCE:

In preeclampsia women edema is more than normal. The endothelial injury leads to edema, proteinuria leading to decreased oncotic pressure which further causes a shift of fluid from intravascular to extravascular space. There is not much difference in electrolyte concentrations between preeclamptics and controls. This may not be the case if there has been vigorous diuretic therapy, sodium restriction, or administration of free water with sufficient oxytocin to produce antidiuresis. After an eclamptic convulsion there is decrease in serum pH and serum bicarbonate concentration due to lactic acidosis and compensatory respiratory loss of carbondioxide.

# **KIDNEY:**

During normal pregnancy there is increase in renal blood flow and glomerular filtration rate .With the onset of preeclampsia there is decrease in renal blood flow and glomerular filtration rate. Mildly diminished glomerular filtration may result from a reduced plasma volume. Most of the decrement is probably from increased renal afferent arteriolar resistance that may be elevated up to fivefold. Pathologic changes such as glomerular endotheliosis blocking the filtration barrier, diminished filtration causes serum creatinine values to rise.

Urine sodium concentration is raised in most of the preeclamptic women. Urine osmolality, urine:plasma creatinine ratio, and fractional excretion of sodium are also indicative that a prerenal mechanism is involved. Crystalloid infusion raises left ventricular filling pressure, and although oliguria temporarily improves, rapid infusions may cause clinically evident pulmonary edema. For these preeclamptic women with oliguria intensive intravenous hydration therapy is not indicated, *unless diminished urine output is caused by hemorrhage*. In preeclampsia plasma uricacid increases due to increased tubular reabsorption, increased placental urate production due to oxidative stress.There is also decreased urinary calcium excretion due to tubular reabsorption. Rarely acute tubular necrosis and acute cortical necrosis occurs, which is usually associated with obstetric haemorrhage.


### **PROTEINURIA:**

Approximately 10-15% of women with HELLP syndrome and 17% of eclamptic women didn't have proteinuria. Proteinuria is defined as 24 hour urine protein in clean catch midstream sample with >300 mg/24 hours or spot urine protein creatinine ratio  $\ge 0.3$ . A more accurate method involves measurement of albumin excretion. Albumin filtration exceeds that of larger globulins, and with glomerular disease such as preeclampsia, much of the protein in urine is albumin. Patients with nephrotic-range proteinuria has been included by most to be a severe disease.

# **ANATOMICAL CHANGES :**

Hallmark feature is glomerular capillary endotheliosis. Other findings are depicted in the figure below,

56



LIVER:

Pain in the right upper or mid epigastric region is seen in severe disease. The characteristic lesion is periportal haemorrhage in the liver periphery. Elevation in hepatic transaminase seldom rises above 500 U/L sometimes upto 2000U/L. There is an inverse relationship between platelet levels and serum liver enzymes. Both of them returns to normal usually within 3 days following delivery. The hepatic haemorrhage from infarcted areas extend to form hepatic hematoma which lead to subcapsular hematoma. It can be managed conservatively sometimes needing surgical intervention and liver transplant. Acute fatty liver of pregnancy is one of the differential diagnosis of preeclampsia (Sibai, 2007). It has also arises late in pregnancy, and often with associated hypertension, elevated serum transaminase and creatinine levels, and thrombocytopenia.

There is increased likelihood of hepatic hematoma and rupture in HELLP syndrome. The subcapsular liver hematoma has 1.6 percent incidence. Other complications are eclampsia—6 percent, placental abruption—10 percent, acute kidney injury—5 percent, and pulmonary edema—10 percent, stroke, coagulopathy, acute respiratory distress syndrome, and sepsis.

# **BRAIN:**

The pathological findings are intracerebral hemorrhage, cortical and subcortical petechial hemorrhage, subcortical edema. The microscopic picture is fibrinoid necrosis of the arterial wall and perivascular microinfarcts and haemorrhages. The pathophysiology of cerebral changes can be explained by two theories,

- in response to severe hypertension there is vasospasm with decreased blood flow ,cerebral ischemia and cytotoxic edema and infarction.

58

sudden rise in blood pressure leads to loss of cerebral autoregulatory mechanisms with end capillary endothelial injury with hyper perfusion, with extravasation of plasma and red cells through the tight junction leading to edema.

The preeclampsia syndrome has endothelial activation associated with an interendothelial cell leak that develops at blood pressure levels much lower than those causing vasogenic edema and has a loss of upper-limit autoregulation (Zeeman and colleagues, 2009b). This was termed as *reversible posterior leukoencephalopathy syndrome* by Hinchey and colleagues (1996).Recently it is referred as the *posterior reversible encephalopathy syndrome*—*PRES* (Narbone and associates, 2006). Eclampsia occurs when cerebral hyperperfusion forces capillary fluid interstitially because of endothelial activation and leads to perivascular edema as occurring in preeclampsia syndrome. Thus eclampsia has similarities to PRES.

#### **Clinical manifestations include**

Headache, scotoma, convulsions in eclampsia, blindness and generalised cerebral edema which compress the cerebral ventricles leading to manifestations of transtentorial herniation. The manifestations of cerebral edema varies from lethargy, confusion to coma .The unique feature of the headache is that it improves after magnesium sulphate infusion. A localised hypodense lesion in CT or a hyperintense T2 image in MRI in parieto-occipital region occurs.

Scotoma, blurred vision, or diplopia are commonly seen in severe preeclampsia and eclampsia. These usually resolve with treatment with magnesium sulfate and or with lowering of blood pressure. Blindness has low occurrence, is usually reversible, and may arise from the visual cortex zone of the occipital lobe, the lateral geniculate nuclei, and retina. In the retina, lesions may include ischemia, infarction, and detachment. Occipital blindness also called as *amaurosis*, usually resolves completely. Retinal blindness is called as *Purtscher retinopathy*. Asymptomatic serous retinal detachment is relatively common and is obvious by examination (Saito and Tano, 1998). Surgical mode of treatment is rarely needed .There is usually good prognosis and vision usually comes back to normal within a week.

### **TESTS FOR PREDICTION OF PREECLAMPSIA**

#### 1. placental perfusion /vascular resistance related tests

Roll over test( 28-32 weeks ), isometric hand grip test, angiotensin II infusion test, uterine artery Doppler velocimetry (increased resistance).

### 2. fetal- placental unit endocrine dysfunction

Human chorionic gonadotropin (hCG), alpha-fetoprotein (AFP), estriol, pregnancy-associated protein A (PAPP A), inhibin A, activin A, placental protein 13, corticotropin-releasing hormone .None of these are significant for prediction of preeclampsia.

### 3. renal dysfunction related tests

- serum uricacid– increase results from decreased uric acid clearance from reduced glomerular filtration, increased tubular reabsorption, reduced secretion.( sensitivity 0 to 55 percent and specificity 77 to 95 percent).
- Microalbuminuria (poor predictive value specificity from
  29 -97 %), urinary calcium or kallikrein, micro transferrinuria, *N*-acetyl-β glucosaminidase.

# 4. endothelial dysfunction and oxidative stress related

- fibronectin ( not useful )
- thrombocytopenia and platelet dysfunction
- Increased levels of lipid peroxides coupled with decreased antioxidant activity might predict preeclampsia.

- Hyperhomocysteinemia (not useful)
- angiogenic factors -Serum levels of proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF), begin to decrease before clinical preeclampsia develops. At the same time, levels of some antiangiogenic factors such as soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglins (sEng) are increased. Because of these findings, measurement of their plasma levels may serve as predictive tests for preeclampsia.
  - free fetal DNA according to Holzgreve and associates (1998) there is increased fetal-maternal cell trafficking in preeclampsia complicating pregnancies. It is hypothesized that free DNA is released by accelerated apoptosis of cytotrophoblasts (DiFederico and colleagues, 1999). Conde-Agudelo and associates (2009) concluded that free fetal DNA quantification is not useful for prediction purposes.

### **PREVENTION :**

Some Methods to Prevent Preeclampsia That Have Been Evaluated in

Randomized Trials

**Dietary modification**—restricted salt diet, calcium supplementation, fish oil supplementation

Cardiovascular drugs—diuretics, antihypertensive drugs<sup>39</sup>

Antioxidants—ascorbic acid (vitamin C), -tocopherol (vitamin  $\overline{E}$ )<sup>40</sup>

Antithrombotic drugs—low-dose aspirin<sup>41</sup>, aspirin/dipyridamole, aspi-

rin + heparin, aspirin + ketanserin

None of these are clinically useful<sup>39</sup>.

### **RELATION BETWEEN PREECLAMP SIA AND**

### HYPOTHYROIDISM VARIOUS LITERATURES.

### I. STUDY BY RICHARD J LEVINE ET $AL^{42}$ ,

Analysed the relationship between preeclampsia, hypothyroidism and soluble fms like tyrosine kinase 1.

Soluble fms like tyrosine kinase -1 is an antiangiogenic protein .It inhibits vascular endothelial growth factor and placental growth factor. There is an increase in fms like tyrosine kinase in last two months of pregnancy. Preeclamptic women are more prone for hypothyroidism in later life. A nested case control study was done in the Calcium for Pre-eclampsia Prevention (CPEP) trial cohort.

There is a greater increase in TSH concentration during pregnancy in pre-eclamptic women than normotensive controls and the increase is proportional with the magnitude of the soluble fms-like tyrosine kinase 1 concentration during pre-eclampsia. Cancer patients treated with VEGF inhibitors have higher risk of hypothyroidism<sup>43-45</sup>.

Compared with the controls preeclampsia had greater BMI . A large number of patients had preterm delivery (p<0.001) and small for gestational age infants(P=0.002). The baseline mean TSH between the two groups didn't differ (p0.14) whereas there is significant difference with the onset of preeclampsia(p0.007).Predelivery to baseline ratio of 95% confidence interval between cases and controls1.64 (1.29 to 2.08). There is a more fall in free T3 than free T4 of predelivery sample compared with the baseline values .

The ratio of predelivery to baseline values is significant in cases than controls<sup>49</sup>. Preeclampsia is subsequently associated with subclinical hypothyroidism in pregnancy and those with a history of preeclampsia are

at increased risk of hypothyroidism in later life and future cardiovascular and renal disease.

Since subclinical hypothyroidism can progress to overt hypothyroidism it implicates that preeclampsia women should be screened for hypothyroidism<sup>46</sup>.

### **II.MATERNAL THYROID HORMONAL STATUS IN**

### PREECLAMPSIA

Although pregnancy is associated with mild hyperthyroxinemia ,preeclampsia is associated with hypothyroidism which might reflect the severity of preeclampsia. On the contrary preeclampsia develops in 16.7 % of subclinical cases and 43.7 % of overt hypothyroid cases. In preeclampsia the decreased thyroid hormones concentrations is due to reduced plasma protein concentrations <sup>47</sup> and high endothelin levels<sup>48</sup> produced by vascular endothelium after a vascular injury. It was a case control study from July 2001 to December 2002 on 82 preeclampsia patients in third trimester after excluding other medical co morbidities.

According to an Indian study the mean TSH value in preeclampsia is  $3.8\pm0.53$  mIU/ml whereas in normal group it is  $2.3\pm0.24$  mIU/ml<sup>49</sup>. In the present study venous blood taken and analysed for free T3,free T4,TSH by

chemiluminescene assay. According to this study , the preeclampsia patients have higher incidence of biochemical hypothyroidism<sup>47,50-52</sup>.

The non thyroid illness acting as stress factor and reduced plasma albumin concentration causes mild alterations in thyroid function<sup>53,54</sup>. The total T3,total T4 decreases. The free T3 titres are significantly related to decreased plasma albumin. The decrease in thyroid hormone with increase in TSH is proportional to high levels of endothelin<sup>54</sup>.

The decrease in thyroid binding globulin(TBG) ,T3,T4 can be due to faulty estrogen production by the placenta in preeclampsia<sup>47</sup>. The T3 ,T4 may be normal in the early stage of preeclampsia .Decrease in T3,T4 with increase in TSH can be observed at a later stage of the disease. Rarely this TSH increase may be due to autoimmune thyroiditis since the increase is not too high and they became normal 6 weeks postpartum.

The preeclamptic women with hypothyroidism have small for gestational age infants<sup>47,50,52</sup>.Birth weight of infants is inversely proportional to the TSH level <sup>47</sup>.By this study they concluded that birth weight of infants has no association with free T3,T4,TSH.The detection of thyroid abnormalities and proper treatment might influence the occurrence and severity of preeclampsia.

### III.PREECLAMPSIA LINKED TO REDUCED THYROID FUNCTION

Women with preeclampsia have high TSH due to soluble fms like tyrosine kinase activity. Women with preeclampsia in their prior pregnancy have increased risk of hypothyroidism in subsequent years. Mostly the TSH abnormality is subclinical hypothyroid without clinical manifestations<sup>56</sup>.

### IV.THYROID HORMONES IN PREGNANCY AND PREECLAMPSIA<sup>57</sup>

In pregnancy there is increased demand of thyroid and there is increased iodine uptake with increased production of thyroid hormones. Estrogen causes a rise in production of TBG and the placenta releases several thyroid stimulatory substances such as hCG. The alpha subunit of hCG has thyrotropic properties<sup>58</sup>. In preeclampsia, due to the placental dysfunction there is decreased estrogen production leading to reduced production of TBG,TT3,TT4 and growth retardation in fetus<sup>59</sup>.

The endothelial dysfunction and oxidative stress also play a role<sup>60-62</sup>. The oxidative stress contributing to hyperuricemia in preeclampsia. There is production of superoxide anions leading to reduced production of nitric oxide with vasoconstriction<sup>62,63</sup>. The reduced nitric oxide production in

endothelial cell dysfunction might lead to hypothyroidism in preeclampsia<sup>64,65.</sup>

There is significant negative correlation between TSH levels and birth weight of infants (P<0.001) and significant positive correlation between birth weight and serum albumin levels(p<0.001). There is significant correlation between serum uric acid and birth weight of infants (p<0.001). There is significant negative correlation between TSH and serum albumin levels (p<0.01).

The total TT3 were lower in severe preeclampsia compared to normotensive controls. Causes of low TT3 include inability to compensate for fetal demand, increased placental breakdown of hormones, and transfer of maternal T4 to fetus. There is reduced peripheral conversion of T4 to T3 in preeclamptic women with liver and kidney involvement.

Low T3 syndrome is also seen in preeclampsia . There is urinary loss of proteins and protein bound hormones .It is a reflection of inability to compensate for increased fetal demand, transfer of maternal T4 to fetus and increased placental breakdown of thyroid .There are various controversies regarding TT4 levels with some studies reporting lower TT4<sup>47,66</sup> and some reflecting higher TT4 levels<sup>48</sup>. The degree of hypothyroidism might reflect the severity of preeclampsia. Mostly the preeclampsia is associated with biochemical hypothyroidism in contrast to normotensive women <sup>47,66,67,68</sup>.

Thyroid hormones are responsible for neurodevelopment of fetus and cause preterm birth in preeclampsia. Identification of thyroid abnormalities and timely intervention with supplementation will help in preventing the occurrence and improving the outcome. Future studies are needed to analyse the association between two.

### V.A study by Wilson KL et al,

Analysed the diagnosis of Subclinical Hypothyroidism Early in Pregnancy Is a Risk Factor for the Development of Severe Preeclampsia.

They investigated the association between subclinical thyroid dysfunction and hypertensive disorders in those who presented before 20 weeks of gestation .Subclinical hypothyroidism causes endothelial dysfunction by decreasing nitric oxide production with impaired vascular relaxation .It leads to hypertension, heart failure and atherosclerotic disease.

The incidence of preeclampsia in euthyroid, subclinical hypothyroid and subclinical hyperthyroid are 8.5%,6.2%,10.9%. There is increased risk of severe preeclampsia in women with subclinical hypothyroidism. (adjusted odds ratio, 1.6; 95% confidence interval, 1.1 to 2.4; P = 0.031).

Subclinical hypothyroidism a common condition of the reproductive age group may be associated with adverse perinatal outcomes<sup>69</sup>.Universal screening of thyroid disorders should not be routinely implemented unless proven so. The ATA<sup>70</sup> and the Endocrine society<sup>71</sup> recommends the treatment of women with subclinical hypothyroidism.

# MATERIALS & METHODS

### **MATERIALS AND METHODS**

This study was conducted in Govt. R.S.R.M. Lyingin hospital, Royapuram, Chennai from January 2014 to December 2014.

### **TYPE OF STUDY-**

Cross sectional study

### **SELECTION CRITERIA:**

The duration of study was about one year .Women with preeclampsia and normotensive antenatal women who were attending our outpatient and inpatient department after 20 weeks of gestation fulfilling inclusion and exclusion criteria, were counselled for investing thyroid function tests .Informed written consent were obtained from women who were willing for the study. The study was approved by our ethical committee.

In our study 200 preeclampsia patients were compared with 200 normotensive age and gestational age matched controls. Free T3,free T4 and TSH were done for both the groups.

### **INCLUSION CRITERIA:**

- 18 to 35 yrs
- pregnancies complicated by preeclampsia.
- singleton pregnancies.
- patient willing to give consent for the study.

### **EXCLUSION CRITERIA:**

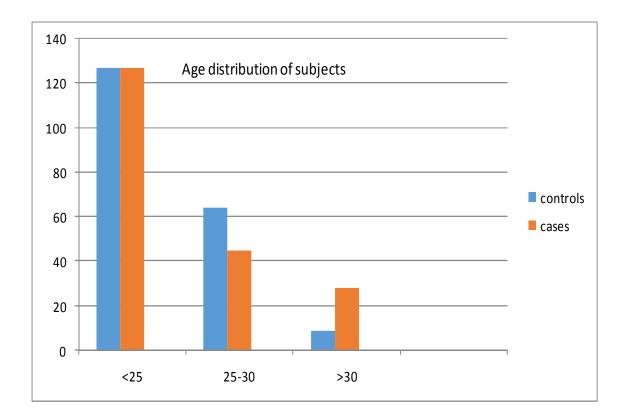
- Other hypertensive disorders of pregnancy (chronic hypertension, gestational hypertension, eclampsia )
- women with known thyroid disorders or on drugs for thyroid disorders.
- multiple pregnancies.
- patient on any drugs known to affect thyroid functions.
- other medical disorders complicating pregnancy .
- patient not willing to give consent

#### METHOD OF STUDY:

The patients meeting all the inclusion and exclusion criteria were included in the study after obtaining an informed written consent. A total of 200 preeclampsia patients were compared with their age and gestational age matched controls. The study adopted a cross sectional approach.

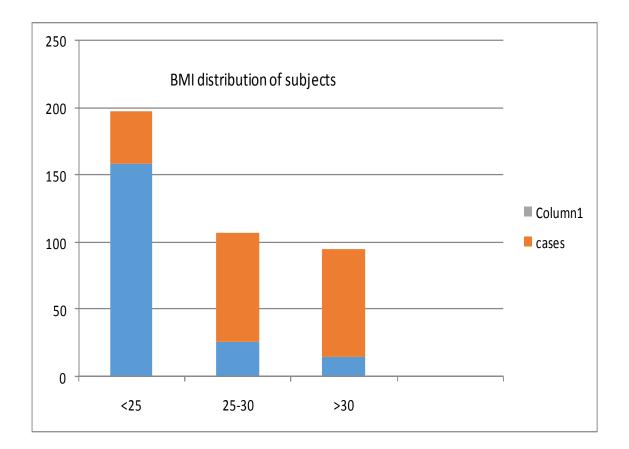
Five ml of fasting venous blood was obtained from each patient from the cubital vein in (a ) preeclamptics once it is diagnosed but before initiation of the treatment and (b) the normotensive controls. All the samples were labelled with different code numbers and sent to the laboratory. The separated sera was stored at -20°C until assayed.

Thyroid function tests (FT3,FT4,TSH )were done for both the groups by chemiluminescence ELISA( CMIA ).The results were analysed and its correlation with preeclampsia was done.


### STATISTICAL ANALYSIS

Continuous variables were expressed as mean and standard deviation whereas categorical variables are expressed as frequency and percentage. Descriptive statistics were used to present demographic data. Normality of the data was assessed by Shapiros-Wilk's test. Categorical variables between groups are analysed using Chi square test or Fisher's exact test based on number of observations. Between groups means were compared using independent sample t test. A two sided P value <0.05 was taken as statistically significant.

# RESULTS & ANALYSIS


### **RESULTS.**

In this study we have compared 200 preeclampsia patients with 200 normotensive controls. The age distribution of subjects is depicted in figure 1.The majority of subjects were in the <25 years age group.



### FIGURE 1

The BMI distribution of the subjects are shown in figure 2. As can be seen the majority of control subjects had BMI <25 whereas in cases the BMI was >25 in majority. The relative proportions of each can be seen from figure 2.



### FIGURE 2

The baseline characteristics of the study population are tabulated in table 1

| Parameter       | controls  | patients   | P value |
|-----------------|-----------|------------|---------|
| Age ±SD         | 23.99±3.5 | 24.36±4.25 | 0.35    |
| Gestational age | 34.9±3.4  | 34.7±2.9   | 0.66    |

### TABLE 1

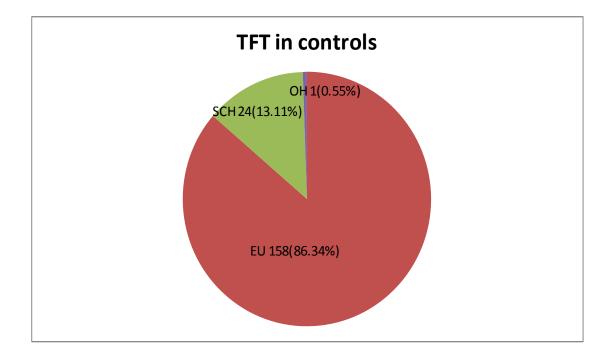
As seen in table 1 both the groups were equally distributed with respect to age and gestational age ( P 0.35 and 0.66 respectively).

The other parameters are given in table 2.

| Variable | group    | Ν   | Mean   | Std.<br>Deviation | P value  |
|----------|----------|-----|--------|-------------------|----------|
| BMI      | Patients | 200 | 29.103 | 4.2763            | 0.001    |
|          | controls | 200 | 23.904 | 2.9348            |          |
| BP       | Patients | 200 | 151.14 | 8.212             | < 0.0001 |
|          | Controls | 200 | 121.47 | 71.113            |          |

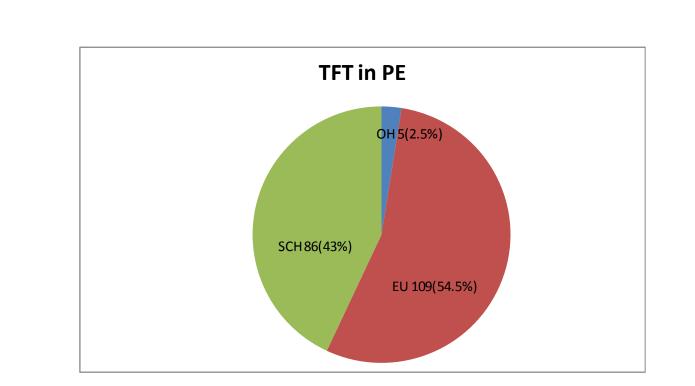
### TABLE 2

There is a significant difference of BMI and BP between the groups (P is 0.001 for BMI and <0.0001 for BP ). The preeclamptic patients were significantly overweight than their normotensive counterparts.


Thyroid function tests were done in both the groups. The tests done were free T3, free T4 and TSH. The results are shown in table 3.

| Variable | Group    | Ν   | Mean   | SD      | P value |
|----------|----------|-----|--------|---------|---------|
| FT3      | Patients | 200 | 2.213  | 0.3621  | <0.0001 |
|          | Controls | 200 | 2.396  | 0.4452  | <0.0001 |
| FT4      | Patients | 200 | 1.240  | 0.2337  | <0.0001 |
|          | Controls | 200 | 1.351  | 0.2454  |         |
| TSH      | Patients | 200 | 3.1289 | 2.01076 |         |
|          | Controls | 200 | 2.2479 | 1.07183 | <0.0001 |

### TABLE 3


The mean FT3 and FT4 levels in both the groups were within the normal range. There is also a significant difference in FT3 and FT4 between the groups(P<0.0001),with preeclampsia patients having mean FT3 and FT4 lower than the controls..TSH levels were significantly more for the preeclamptic group (3.12 vs 2.24, P<0.0001).

The relative proportions of Euthyroids (EU), subclinical hypothyroids(SCH) and overt hypothyroids(OH) in controls and in PE group are shown in figure 3 and 4 respectively.



### FIGURE 3

Among the study population, majority of the subjects belonged to the EU group (86.3% and 54.5% in controls and cases respectively). SCH was more common in the PE group as compared to the controls. The same was true for OH too.



#### **FIGURE 4**

The thyroid function tests in severe as compared to mild preeclampsia is given in table 4.

### TABLE 4

| Variable | Severity | Ν   | Mean   | SD      | P value |
|----------|----------|-----|--------|---------|---------|
| FT3      | Severe   | 41  | 1.985  | 0.3046  | <0.0001 |
|          | mild     | 159 | 2.271  | 0.3532  |         |
| FT4      | Severe   | 41  | 1.104  | 0.2230  | <0.0001 |
|          | mild     | 159 | 1.275  | 0.2240  |         |
| TSH      | Severe   | 41  | 5.2949 | 2.58681 |         |
|          | mild     | 159 | 2.5703 | 1.36632 | <0.0001 |

There were 41 patients with severe PE as compared to 159 in the mild PE group. As is shown in table 4, the TFT abnormalities were more common in the severe PE group as compared to the mild PE group.

The TSH was significantly more in severe PE as compared with mild PE( P < 0.0001). Both the FT3 and FT4 were numerically less in the severe PE group than the mild PE group with the P value being statistically significant (P < 0.0001).

The relation between the onset of preeclampsia and the TFTs is compared and shown in table 5.

| Variable | Onset(weeks) | Ν   | Mean   | SD      | P value |
|----------|--------------|-----|--------|---------|---------|
| FT3      | ≤34          | 67  | 2.158  | 0.3197  | 0.130   |
|          | >34          | 133 | 2.240  | 0.3799  |         |
|          |              |     |        |         |         |
| FT4      | ≤34          | 67  | 1.224  | 0.2436  | 0.473   |
|          | >34          | 133 | 1.249  | 0.2291  |         |
| TSH      | ≤34          | 67  | 3.1224 | 2.11331 | 0.974   |
|          | >34          | 133 | 3.1321 | 1.96526 |         |

TABLE 5

There were 67 patients in the PE group where the disease has occurred before 34 weeks and 133 in the  $\geq$  34 group. Thyroid function tests were comparable in both the groups(P statistically not significant).

## DISCUSSION

### DISCUSSION

In this present study we have studied the prevalence of hypothyroidism in preeclamptic patients and the correlation between hypothyroidism and the severity of preeclampsia .We have also analysed the relationship between the onset of preeclampsia and hypothyroidism. The patients were divided into two groups; one group containing 200 preeclamptic patients and the control group of 200 normotensive subjects.

The age distribution of patients included in our study ranged from 18 to 35 years. Majority of them belonged to the less than 25 years age group in both the groups. The mean age of the patients in control and study group was  $23.99\pm3.5$  and  $24.36\pm4.25$  years respectively, which was comparable (p=0.35).

Both the groups were comparable with respect to their gestational age too(controls- $34.9\pm3.4$  weeks and study group  $34.7\pm2.9$  weeks ) (p=0.66).

In a similar study done by Ashokkumar et  $al^{72}$ , comparing pre-eclamptics with normotensive women, the mean ( $\pm$  SD) age of the study group and the control group was 28.4  $\pm$  6.24 years and 27.5 $\pm$ 5.91 years respectively which is quite similar to our subjects.

84

The mean ( $\pm$  SD) gestational age when TFT was done was 34.3 $\pm$ 2.92 weeks in the study group and 35.1  $\pm$  2.86 weeks in the control group which is similar to our present study.

BMI in the present study is significantly more in the study group as compared to the controls (p=0.001). The mean BMI of patients is  $29.103\pm4.2763$  and that of the controls is  $23.904\pm2.9348$ .

The preeclamptic patients were significantly overweight compared to the normotensive controls and it is indeed a known risk factor for preeclampsia<sup>2</sup>.

TSH, free T3 ,free T4 were done for both the groups and the results were analysed. The control group in our study had 158 euthyroid subjects (86.34%) ,24 subclinical hypothyroids(13.11%) and one overt hypothyroid(0.55%).

In the preeclampsia group 109 were euthyroids (54.5%), 86 are subclinical hypothyroids (43%),5 are overt hypothyroids(2.5%). These findings are in accordance with the previous literature stating that preeclamptic women have a higher incidence and prevalence of biochemical hypothyroidism than the normotensive population<sup>47,50,51,52</sup>.

85

The mean free T3 levels in both the groups(2.213 Vs 2.396) were within the normal range ,with the PE group having numerically less FT3 than the controls. The P value is statistically significant (P <0.0001).

The mean free T4 values in our study in preeclampsia Vs controls is (1.240 Vs 1.351) which remains within the normal trimester specific range of FT4. However the PE group had a mean FT4 level which was lower than the controls and the difference was significant statistically (p < 0.0001).

The mean TSH value in the preeclamptic group is more than the controls in our study (3.1289 Vs 2.2479)and is significant (P<0.0001).The mean TSH in the preeclamptic group is 3.1289 which is above the cut off for diagnosing SCH during pregnancy in the second and third trimester.

Thus subclinical hypothyroidism is more common in the preeclamptic group in the present study. One reason for this subclinical hypothyroidism could be that the hypothyroidism is in the evolving phase and a larger study with a longer term follow up may be needed to document it.

In a similar study by Ashok Kumar et al <sup>72</sup>, the mean FT3 and FT4 were not significantly different in the two groups and the mean TSH

value was significantly higher in the preeclamptic women than that of controls (P < 0.001). This is partly comparable to our study where the mean TSH,FT3 and FT4 are significantly different between the groups with the PE group having a high mean TSH and a low mean FT3, FT4.

In an another Indian study the mean TSH titres in the preeclamptic pregnancies has been reported to be  $3.8\pm0.53$ mIU/ml while in the normal pregnancies it was  $2.3\pm0.24$ mIU/ ml<sup>73</sup> which again is comparable to the present study.

In a study by Wilson KL et  $al^{74}$ , women with subclinical hyperthyroidism had an incidence of hypertensive disorders of 6.2% as compared with 8.5% of euthyroid women and 10.9% of subclinical hypothyroid women. After adjusting ,only women with subclinical hypothyroidism were at increased risk for severe preeclampsia (adjusted odds ratio, 1.6; 95% confidence interval, 1.1 to 2.4; P = 0.031) pointing towards a causal role.

In the calcium for preeclampsia prevention cohort, the mean TSH values were increased 2.42 times above baseline in the PE group as compared with a 1.48 times increase in controls<sup>42</sup>. The ratio of the predelivery to baseline TSH ratio of cases to that of the controls was 1.64

(95% confidence interval 1.29 to 2.08) and there is a decrease in free T3 in preeclampsia women than in controls.

Only the predelivery specimens and not the baseline TSH values were significantly higher than in controls .The increase in predelivery TSH values was associated with an increase in the soluble fms like tyrosine kinase and preeclampsia may also predispose to reduced thyroid functions in later years<sup>42</sup>.

This study thus suggests PE as a possible risk factor for hypothyroidism and the mechanisms could be one mediated through s-fms like tyrosine kinase. Other mechanism postulated to explain hypothyroidism in PE is placental dysfunction in  $PE^{56}$ .

In the Nord-Trondelag Health Study, women with history of preeclampsia in their first pregnancy were associated with high concentrations of thyroid stimulating hormone without thyroid peroxidase antibodies, suggesting hypothyroid function in the absence of an autoimmune process. This association was especially strong (5.8, 1.3 to 25.5) if there is history of preeclampsia in more than one pregnancy.

According to Ghalia Ashoor et al, measurement of maternal serum TSH can improve the prediction of late-PE provided by a

88

combination of factors in the maternal history and the measurements of mean arterial pressure and uterine artery pulsatility index<sup>75</sup>.

Hypothyroidism may also play a direct role in causing pregnancy hypertension because thyroid hormones act directly on peripheral arterioles to cause dilation (Dernellis and Panaretou, 2002). A study on nonpregnant individuals reported that hypothyroidism is associated with an increase in peripheral resistance due to increased arterial wall thickness (Giannattasio*et al.*, 1997) and endothelial dysfunction (Virdis*et al.*,2009). This can be reversed by treatment with thyroid hormones (Giannattasio*et al.*, 1997; Dernellis and Panaretou, 2002).

The above mentioned studies point towards an association between PE and hypothyroidism and the association could be either way<sup>42,56,74,75</sup>

On the other hand there a few studies arguing against any relationship between hypothyroidism and preeclampsia. In a study done in Jordon, there was no significant difference in the values of FT3, FT4, TSH between the preeclampsia and the control group<sup>76</sup>.

In our present study, the mean TSH is significantly higher in the preeclamptic group and FT3, FT4 significantly low in the preclamptics.

Though a high TSH and a low FT4,FT3 might suggest SCH as a cause for preeclampsia, both the FT3 and FT4 were within the trimester specific range preventing us from drawing any conclusion out of it. Larger studies with a long term follow up would be needed to clarify this.

We have also tried to analyse the relationship between the severity of preeclampsia and hypothyroidism. Out of the 200 preeclamptic patients,41 belonged to the severe and 159 belonged to the mild preeclampsia group.

The TSH was significantly more in the severe preeclampsia group as compared to mild preeclampsia (5.29 Vs 2.57; P <0.0001). The values of free T4 are (1.104 Vs 1.275) numerically less in severe preeclampsia than mild preeclampsia and they were statistically significant.(P <0.0001). Similarly the values of free T3 are numerically less in the preeclamptics than the controls(1.985 Vs 2.271) with a statistically significant P value (P <0.0001).

These findings strongly suggest an association between the severity of preeclampsia and hypothyroidism.

There are evidences stating that the underlying mechanism for early-PE is impaired trophoblastic invasion of the maternal spiral arteries, reduced placental perfusion and fetal growth restriction (Plasencia*et al.*, 2007; Yu *et al.*, 2008; Poon *et al.*, 2009),whereas in late-PE the main pathophysiological processes resemble those of the metabolic syndrome with an increase in adipose tissue and impaired glucose and lipid metabolism (Witlin*et al.*, 2000; Moldenhauer*et al.*, 2003; Vatten*et al.*, 2004; D'Anna*et al.*, 2006; Egbor*et al.*, 2006; Poon *et al.*, 2009).

The association between hypothyroidism and late-PE may be mediated by the well described role of thyroid hormones in glucose homeostasis and in the synthesis, metabolism and mobilization of lipids (Duntas, 2002; Pearce, 2004; Chidake l*et al.*, 2005).

We have tried to analyse the TFT in early as compared to late onset PE. Out of the 200 preeclamptic patients 67 were early PE and 133 were late PE. The thyroid function tests were comparable between both the groups in our study. So we could not document an association between the onset of preeclampsia and hypothyroidism.

# SUMMARY

### SUMMARY

The study was conducted in Govt RSRM hospital. The study group was divided into two groups with one containing 200 preclamptic patients and the other containing 200 normotensive women.

TSH, FT3, FT4 are done in both the groups and the results are analysed. The two groups are comparable with respect to their age and gestational age.

There is significant difference of FT3 and FT4 between the groups with the PE group having numerically less FT3 and FT4 than the controls. similarly there is a significant difference of TSH between the groups, with PE ha group having higher TSH than the controls.

The prevalence of SCH in controls is 13.11% in contrast to 43% in preeclamptics and the prevalence of OH in controls Vs preeclamptics is 0.55% Vs 2.5%.

Hypothyroidism is more common and the TSH levels are significantly higher in the severe PE as compared with mild PE, indicating a relation between the severity and hypothyroidism. However our study could not find any significant relation between the onset of PE and hypothyroidism. The preeclamptic women have higher prevalence of SCH than the normotensive women in this study . So far screening for hypothyroidism is not routinely recommended in pregnancies and it is done on an individual basis.

Since SCH and OH is associated with lots of maternal and perinatal adverse effects, there is a need for early diagnosis of these disorders and hence a routine screening of antenatal women for thyroid function should be made mandatory. The recent trend is also towards treating women with SCH as per the ATA and the endocrine society recommendations.

## CONCLUSION

### **CONCLUSION**

To conclude by our study, that the preeclamptics have a higher incidence of hypothyroidism (OH and SCH) in contrast to the normotensive women and there is a correlation between the severity of preeclampsia and hypothyroidism. There is no association between the onset of preeclampsia and hypothyroidism.

The treatment of OH and SCH is mandatory and in future there should be a changing trend towards routine screening of hypothyroidism in contrast to targeted screening, but further larger studies are needed to support this fact.

# BIBLIOGRAPHY

### **BIBILIOGRAPHY**

- 1. ian Donald's practical obstetric problems,7<sup>th</sup> edition chapter 13.
- 2. williams textbook of obstetrics 23<sup>rd</sup> edition ,chapter-maternal

physiology, endocrine disorders.

- 3. Glinoer D, de Nayer P, Bourdoux P, et al. Regulation of maternal thyroid during pregnancy. J ClinEndocrinolMetab 1990; 71:276.
- 4. Yeo CP, Khoo DH, Eng PH, et al. Prevalence of gestational thyrotoxicosis in Asian women evaluated in the 8th to 14th weeks of pregnancy: correlations with total and free beta human chorionic gonadotrophin.ClinEndocrinol (Oxf) 2001; 55:391.
- Goodwin TM, Montoro M, Mestman JH, et al. The role of chorionic gonadotropin in transienthyperthyroidism of hyperemesis gravidarum. J ClinEndocrinolMetab 1992; 75:1333
- Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation fromphysiology to pathology. Endocr Rev 1997; 18:404.
- Lee RH, Spencer CA, Mestman JH, et al. Free T4 immunoassays are flawed during pregnancy. Am JObstetGynecol 2009; 200:260.e1.
- Soldin OP, Tractenberg RE, Hollowell JG, et al. Trimester-specific changes in maternal thyroid hormone,thyrotropin, and thyroglobulin concentrations during gestation: trends and associations across trimestersin iodine sufficiency. Thyroid 2004; 14:1084

- Kahric-Janicic N, Soldin SJ, Soldin OP, et al. Tandem mass spectrometry improves the accuracy of freethyroxine measurements during pregnancy. Thyroid 2007; 17:303.
- Yue B, Rockwood AL, Sandrock T, et al. Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction--liquid chromatography/tandem mass spectrometry. ClinChem 2008; 54:642
- Stagnaro-Green A, Abalovich M, Alexander E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:1081.
- 12. Goldsmith RE, Sturgis SH, Lerman J, Stanbury JB. The menstrual pattern in thyroid disease. J ClinEndocrinolMetab 1952; 12:846
- 13. Abalovich M, Gutierrez S, Alcaraz G, et al. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002; 12:63.
- 14. Krassas GE, Pontikides N, Kaltsas T, et al. Disturbances of menstruation in hypothyroidism. ClinEndocrinol (Oxf) 1999; 50:655.
- Hallengren B, Lantz M, Andreasson B, Grennert L. Pregnant women on thyroxine substitution are often dysregulated in early pregnancy. Thyroid 2009; 19:391:846
- Idris I, Srinivasan R, Simm A, Page RC. Maternal hypothyroidism in early and late gestation: effects on neonatal and obstetric outcome. ClinEndocrinol (Oxf) 2005; 63:560

- 17. Casey BM, Dashe JS, Wells CE, et al. Subclinical hypothyroidism and pregnancy outcomes. ObstetGynecol 2005; 105:239.
- Wilson KL, Casey BM, McIntire DD, et al. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol 2012; 119:315.
- Schneuer FJ, Nassar N, Tasevski V, et al. Association and predictive accuracy of high TSH serum levels in first trimester and adverse pregnancy outcomes. J ClinEndocrinolMetab 2012; 97:3115.
- Korevaar TI, Schalekamp-Timmermans S, de Rijke YB, et al. Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: the generation R study. J ClinEndocrinolMetab 2013; 98:4382.
- 21. Breathnach FM, Donnelly J, Cooley SM, et al. Subclinical hypothyroidism as a risk factor for placental abruption: evidence from a low-risk primigravid population. Aust N Z J ObstetGynaecol 2013; 53:553.
- Negro R, Schwartz A, Gismondi R, et al. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J ClinEndocrinolMetab 2010; 95:E44.22.
- Baker VL, Rone HM, Pasta DJ, et al. Correlation of thyroid stimulating hormone (TSH) level with pregnancy outcome in women undergoing in vitro fertilization. Am J ObstetGynecol 2006; 194:1668.

- 24. Li, Y, Shan, Z, Teng, W, et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25-30 months. ClinEndocrinol 2010; 72:825.
- Smit BJ, Kok JH, Vulsma T, et al. Neurologic development of the newborn and young child in relation to maternal thyroid function. ActaPaediatr 2000; 89:291
- Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999; 341:549
- 27. Williams F, Watson J, Ogston S, et al. Mild maternal thyroid dysfunction at delivery of infants born ≤34 weeks and neurodevelopmental outcome at 5.5 years. J ClinEndocrinolMetab 2012; 97:1977
- 28. Casey BM, Dashe JS, Spong CY, et al. Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy. ObstetGynecol 2007; 109:1129. 29.Henrichs J, Bongers-Schokking JJ, Schenk JJ, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J ClinEndocrinolMetab 2010; 95:4227.
- 30. Finken MJ, van Eijsden M, Loomans EM, et al. Maternal hypothyroxinemia in early pregnancy predicts reduced performance in reaction time tests in 5- to 6-year-old offspring. J ClinEndocrinolMetab 2013; 98:1417

- Kooistra L, Crawford S, van Baar AL, et al. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics 2006; 117:161.
- Lazarus JH, Bestwick JP, Channon S, et al. Antenatal thyroid screening and childhood cognitive function. N Engl J Med 2012; 366:493.
- Kaplan MM. Management of thyroxine therapy during pregnancy. EndocrPract 1996; 2:281.
- 34. Alexander EK, Marqusee E, Lawrence J, et al. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med 2004; 351:241.
- 35. Vadiveloo T, Mires GJ, Donnan PT, Leese GP. Thyroid testing in pregnant women with thyroid dysfunction in Tayside, Scotland: the thyroid epidemiology, audit and research study (TEARS). Clin Endocrinol (Oxf) 2013; 78:466
- De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J ClinEndocrinolMetab 2012; 97:2543
- 37. Abalovich M, Alcaraz G, Kleiman-Rubinsztein J, et al. The relationship of preconception thyrotropin levels to requirements for increasing the levothyroxine dose during pregnancy in women with primary hypothyroidism. Thyroid 2010; 20:1175.

- Roti E, Minelli R, Salvi M. Clinical review 80: Management of hyperthyroidism and hypothyroidism in the pregnant woman. J ClinEndocrinolMetab 1996; 81:1679.
- 39. Sibai BM, Cunningham FG: Prevention of preeclampsia and Eclampsia. Chesley's hypertensive disorders of pregnancy,3<sup>rd</sup> edition ,Elsevier ,In pre,2009, p 215.
- Roberts JM:A RCT of antioxidant vitamins to prevent serious Complicationsin pregnancy related hypertension.Abstractno.8.presented at 29<sup>th</sup> annual meeting of the society of Maternal-Fetal Medicine ,January 26-31,2009.
- CaritisS,SibaiB,HauthJ,et al:Low dose aspirin to prevent preeclampsia in women at risk.NICHD network of Maternal-Fetal Medicine Units .N Engl J Med 338:701,1998.
- 42 Richard J Levine, senior investigator,1 Lars J Vatten, professor,2 Gary L Horowitz, associate professor,3 CongQian, statistician,4 Pal R Romundstad, associate professor,2 Kai F Yu, senior statistician,1 Anthony N Hollenberg, associate professor,5 Alf I Hellevik, medical student,2 Bjorn O Asvold, postdoctoral fellow,2 S AnanthKarumanchi, associate professor. BMJ. 2009; 339: b4336. Published online Nov 17, 2009. doi: 10.1136/bmj.b4336
- 43. Desai J, Yassa L, Marqusee E, George S, Frates MC, Chen MH, et al.Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann InternMed 2006;145:660-4.

- 44. Wolter P, Stefan C, Decallonne B, Dumez H, BexM, Carmeliet P, et al.The clinical implications of sunitinib-induced hypothyroidism: aprospective evaluation. Br J Cancer 2008;99:448-54.
- 45. Feldman DR, Baum MS, Ginsberg MS, Hassoun H, Flombaum CD,Velasco S, et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J ClinOncol2009;27:1432-9.
- 46. Biondi B, Cooper DS. The clinical significance of subclinical thyroiddysfunction. Endocr Rev 2008;29:76-131.
- 47. Lao TT, Chin RKH, Swaminathan R, Lam YM.Maternal thyroid hormones and outcome of preeclampticpregnancies. Br J ObstetGynaecol1990;97:71-4.
- Basbug M, Aygen E, Tayyar M, Tutus A, KayaE, Oktem O. Correlation between maternalthyroid function tests and endothelin inpreeclampsia-eclampsia. Obstet Gynecol1999;94;551-5
- 49. Khaliq F, Singhal U, Arshad Z, Hossain MM.Thyroid functions in pre-eclampsia and its correlation with maternal age, parity, severity ofblood pressure and serum albumin. Indian JPhysiolPharmacol 1999;43:193-8.
- 50. Lao TT, Chin RKH, Swaminathan R. Thyroid function in pre-eclampsia. Br J ObstetGynaecol 1988;95:880-3.
- Kaya E, Sahin Y, Ozkececi Z, Pasaoglu H. Relation between birth weight and thyroid function in pre-elampsia-eclampsia. GynaecolObstet Invest 1994;37:30-3.

- 52. Basbug M, Aygen E, Tayyar M, Tutus A, KayaE, Oktem O. Correlation between maternal thyroid function tests and endothelin in preeclampsia-eclampsia. ObstetGynecol 1999;94;551-5.
- 53. Davis PH, Black EG, Sheppard MC, Franklyn JA. Relation between interleukin-6 and thyroid hormone concentration in 270 hospital inpatientswith non-thyroidal illness. Clin Endocrinol1996;44: 199-205.
- 54. Spencer C, Eigen A, Shen D, Duda M, Qualls S,Weiss S, et al. Specificity of sensitive assays of thyrotropin (TSH) used to screen for thyroiddisease in hospitalized patients. Clin Chem1987;33:1391-6.
- 55. Brent GA. Maternal thyroid function: Interpretation of thyroid function tests in pregnancy. ClinObstetGynecol 1997;40:3-15.
- 56. Levine, R. *BMJ*, 2009; vol 339: p b4336.News release, Eunice Kennedy Shriver National Institute of Child Healthand Human Development.
- 57. DivyaSardana, Smiti Nanda, SimmiKharb J Turkish-German GynecolAssoc 2009; 10: 168-7158. Brent GA. Maternal thyroid function: interpretation of thyroid functiontests in pregnancy. ClinObstetGynecology 1997; 40: 3-15.
- Kaye E, Sahin Y, Ozkececi Z, PasaogluH. Relation between birthweight and thyroid function in preeclampsia-eclampsia. GynecolObstet invest 1994; 37: 30-3.

- Kharb S, Gulati N, Singh V, Singh GP. Lipid peroxidation and vitaminE levels in preeclampsia. GynecolObstet Invest 1998; 46: 238-40.
- 61. Kharb S, Total free radical trapping antioxidant potential in preeclampsia.Int J GynecolObstet 2000; 69: 23-6.
- Kumar CA, Das UN. Lipid peroxides, anti-oxidants and nitric oxidein patients with preeclampsia and essential hypertension. Med SciMonitor 2000; 6: 901-7.
- 63. Kharb S, Gulati N, Singh V, Singh GP. Superoxide formation andglutathione levels in patients with preeclampsia. GynecolObstet Invest 2000; 49: 28-30
- Qualam HS, Al-Kaisi IJ, Hinduwi M, Hiasat MS, Awamleh I, HamaidehAH, Etal. Severe preeclampsia and maternal thyroid function. JObstetGynaecol 2003; 23: 244-6.
- Vargas F, Montes R, Sabio JM, Garcia EJ. Role of nitric oxide in thesystemic circulation of conscious hyper- and hypothyroid rats. GenPharmacol 1994; 25: 887-91.
- Osathanondh R, Tulchinsky D, Chopra IJ. Total and free thyroxineand triiodothyronine in normal and complicated pregnancy. J ClinEndocrinolMetab 1976; 42: 98-104.
- 67. Tolino A, De Concilus B, Montemagno U. Thyroid hormones in humanpregnancy. ActaObstetGynecol Scan 1985; 64: 557-9
- 68. Khaliq F, Singhal U, Arshad Z, Hossain MM. Thyroid functions inpreeclampsia and its correlation with maternal age, parity, severity

of blood pressure and serum albumin. Indian J physiolPharmacol 1999; 43: 193-8.

- Wilson KL, Casey BM, McIntire DD, Halvorson LM, Cunningham FG.Subclinical thyroid disease and the incidence of hypertension in pregnancy.ObstetGynecol 2012;119:315-20.
- 70. Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, Nixon A, Pearce EN, Soldin OP, Sullivan S, Wiersinga W. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:1081-125. Epub July 25, 2011.
- 71. DeGroot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin R, Eastman C, Lazarus J, Luton D, Mandel SJ, Mestman JH, Rovet J, Sullivan S. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society Clinical Practice Guideline, J ClinEndocrinolMetab 2012 (in press).
- 72 Ashok Kumar, B. K. Ghosh, N. S. Murthy, Indian journal of medical science vol 59.no.2February 2005
- 73. Khaliq F, Singhal U, Arshad Z, Hossain MM.Thyroid functions in pre-eclampsia and its correlation with maternal age, parity, severity of blood pressure and serum albumin. Indian JPhysiolPharmacol 1999;43:193-8
- 74. Diagnosis of Subclinical Hypothyroidism Early in Pregnancy Is a Risk Factor for the Development of Severe Preeclampsia.wilson KL,et alClinical Sardana et al.

- 75. Maternal thyroid function at 11 to 13 weeks of gestation and subsequent development of preeclampsia. GhaliaAshoor et al, prenatal diagnosis,2010; **30**: 1032–1038.
- 76. Qublan HS, Al-Kaisi IJ, Hindawi IM, HiasatMS,Awamleh I, Hamaideh AH, et al. Severepreeclampsia and maternal thyroid function. JObstetGynaecol 2003;23:244-6

# ANNEXURES

## ABBREVIATION

| TFT    | - | Thyroid Function Test                |
|--------|---|--------------------------------------|
| FT3    | - | Free T3                              |
| FT4    | - | Free T4                              |
| PE     | - | Preeclampsia                         |
| SCH    | - | Subclinical Hypothyroidism           |
| ATA    | - | American Thyroid Association         |
| ОН     | - | Overt Hypothyroisim                  |
| EU     | - | Euthyroid                            |
| TSH    | - | Thyroid Stimulating Hormone          |
| TRH    | - | Thyroid Releasing Hormone            |
| TT3    | - | Total T3                             |
| TT4    | - | Total T4                             |
| VEGF   | - | Vascular Endothelial Growth Factor   |
| CPEP   | - | Calcium for Pre-eclampsia Prevention |
| PLGF   | - | Placental Growth Factor              |
| sFlt-1 | - | solubleFms-like tyrosine kinase 1    |
| AST    | - | Aspartate Trans Aminase              |

| ALT    | - | Alanine Trans Aminase                         |
|--------|---|-----------------------------------------------|
| LDH    | - | Lactate Dehydrogenase                         |
| sEng   | - | Soluble Endoglins                             |
| ELISA  | - | Enzyme Linked Immuno Sorbent Assay            |
| CMIA   | - | Chemiluminescence ELISA                       |
| hCG    | - | human Chorionic Gonadotropin                  |
| IVF    | - | InVitro Fertilization                         |
| FASTER |   |                                               |
| trial  | - | First And Second Trimester Evaluation Of Risk |
| AFP    | - | Alpha Feto Protein                            |

### PROFORMA

l. Name

Age

IP/op.no

Address

Socioeconomic status

Education status

2. Menstrual history

age of menarche

cycles&flow

menorrhagia/oligomenorrhoea

LMP (Last Menstrual Period )

3. obstetric history

age of marriage

consanguinity

gravida/para/live/abortion

mode of prior delivery/any complications/baby details

Last Child Birth.

4. Personal history:

known case of Diabetes /Hypertension / Bronchial Asthma/Tuberculosis / Heart disease/thyroid disease.

if patient is on any drugs for thyroid disorders or on any other drugs affecting thyroid functions.

- 5. family h/o
- 6. general examination including BP/urine albumin
- 7. breast examination
- 8. Systemic examination
- 9. Abdominal examination
- 10. Per vaginal examination
- 11. Investigations:

Urine dipstick protein

24 hour urinary protein

Thyroid function test

#### தகவல் படிவம்

ஸ்டான்லி மருத்துவமனையின் ஆர். எஸ். ஆர். எம். மருத்துவமனையில் மகப்பேறு மற்றும் பெண்கள் நல மருத்துவ துறையில் மேற்கொள்ளப்படும் ஆய்வு தொடர்பான தகவல் படிவம் இது.

இந்த ஆய்வு மரு. நா. உமாதேவி அவர்களால் மற்றும் பிற அனுபவம் வாய்ந்த மருத்துவர்களின் உதவியோடு நடத்தப்படுகிறது.

இந்த ஆய்வு கற்பகாலத்தில் ஏற்படும் உயர் இரத்த அழுத்த நோய்க்கும், தைராய்டு குறைபாட்டிற்கும் உள்ள தொடர்பினை அறிவதற்கு மேற்கொள்ளப்படுகிறது.

இந்த ஆய்வு பெண்கள் தங்கள் சுயவிருப்பத்துடன் பரிசோதனை செய்ய முன்வந்தால் மட்டுமே மேற்கொள்ளப்படும்.

## <u>ஒப்புதல் படிவம்</u>

திரு. / திருமதி. ....

என்ற விலாசத்தில் வசிக்கும் நான், எனக்கு அளிக்கப்பட்ட தகவல் படிவத்தில் உள்ள விவரங்களை படித்தும், கேட்டும் புரிந்து கொண்டேன்.

ஆய்வின் முடிவினை சொந்த அடையாளங்களை வெளியிடாமல் மருத்துவ ஆராய்ச்சிக்காக பயன்படுத்திக் கொள்ள சம்மதிக்கிறேன்.

நாள் :

கையொப்பம்

இடம் :

பெயர்

#### **CONSENT FORM**

#### **STUDY TITLE "STUDY ON PREVALENCE OF** : HYPOTHYROIDISM IN WOMEN WITH PREECLAMPSIA"

**STUDY CENTRE** : R.S.R.M. Lying in Hospital, Stanley Medical College, Chennai.

#### **PARTICIPANT NAME** AGE: SEX: I.D.NO. :

I confirm that I have understood the purpose of procedure for the above study, I have the opportunity to ask the question and all my questions and doubts have been answered to my satisfaction.

I understand that the investigator, regulatory authorities and the ethics committee will not need my permission to look at my health records both in respect to the current study and any further research that may be conducted in relation to it, even if I withdraw from the study. I understand that my identity will not be revealed in any information released to third parties of published, unless as required under the law. I agree not to restrict the use of any results that arise from the study.

> I hereby consent to participate in this study of **"STUDY ON PREVALENCE OF** HYPOTHYROIDISM IN WOMEN WITH **PREECLAMPSIA**"

| Place :       | Signature of Investigator:              |
|---------------|-----------------------------------------|
| Date :        | Study Investigators Name                |
| Institution : | Signature / Thumb Impression of patient |

#### INSTITUTIONAL ETHICAL COMMUTTEE, STANLEY MEDICAL COLLEGE, CHENNAI-1

| Title of the Work | : Prevalence of Hypothyroidism in women with |  |
|-------------------|----------------------------------------------|--|
|                   | Preeclampsia                                 |  |

Principal Investigator : Dr. Uma Devi. N

| Designation : PG in M | B (U8 | (s. 1 |
|-----------------------|-------|-------|
|-----------------------|-------|-------|

Department : Department of O&G Government Stanley Medical College, Chennai-01

The request for an approval from the Institutional Ethical Committee (IEC) was considered on the IEC meeting held on 02.07.2014 at the Council Hall, Stanley Medical College, Chennai-1 at 2PM

The members of the Committee, the secretary and the Chairman are pleased to approve the proposed work mentioned above, submitted by the principal investigator.

The Principal investigator and their team are directed to adhere to the guidelines given below:

- You should inform the IEC in case of changes in study procedure, site investigator investigation or guide or any other changes.
- You should not deviate from the area of the work for which you applied for ethical clearance.
- You should inform the IEC immediately, in case of any adverse events or serious adverse reaction.
- You should abide to the rules and regulation of the institution(s).
- You should complete the work within the specified period and if any extension of time is required, you should apply for permission again and do the work.
- You should submit the summary of the work to the ethical committee on completion of the work.

SECRETARY, IEC, SMC, CHENNAI

# **MASTER CHART**

#### **CONTROL GROUP**

|      |                 |     |        | CON       | KOL GRO     |      |        |         |      |      |      |           |
|------|-----------------|-----|--------|-----------|-------------|------|--------|---------|------|------|------|-----------|
|      |                 |     |        | obstetric | gestational |      |        | urine   |      |      |      |           |
| S.No | Name            | Age | IP.No  | code      | age (wks)   | BMI  | BP     | albumin | fT3  | fT4  | TSH  | Diagnosis |
| 1    | Durga           | 20  | 10796  | primi     | 36          | 21.8 | 110/70 | nil     | 2.2  | 0.96 | 3.34 | SCH       |
| 2    | stella          | 19  | 10824  | primi     | 32          | 23.4 | 120/74 | nil     | 2.7  | 1.21 | 4.73 | SCH       |
| 3    | thameema        | 20  | 10849  | primi     | 37          | 23.5 | 110/76 | nil     | 2.4  | 1.02 | 3.24 | SCH       |
| 4    | kavitha         | 25  | 10500  | G2P1L1    | 38          | 24.1 | 120/72 | nil     | 2.6  | 1.32 | 3.61 | SCH       |
| 5    | govindammal     | 28  | 10504  | G2A1      | 32          | 22.3 | 110/82 | nil     | 2.3  | 1.3  | 0.96 | E         |
| 6    | nancy           | 20  | 10846  | primi     | 39          | 23.4 | 120/80 | nil     | 3    | 1.3  | 3.74 | SCH       |
|      | jayalakshmi     | 26  | 10510  | G4P2L2A1  | 33.2        | 24.3 | 110/76 | nil     | 2.3  | 1.2  | 3.74 | SCH       |
| 8    | inbalakshmi     | 29  | 10842  | G3P2L1    | 39          | 25.3 | 120/84 | nil     | 2.5  | 1.34 | 3.9  | SCH       |
|      | reshmi          | 33  | 10830  | G2P1L1    | 31.2        | 24   | 120/82 | nil     | 2.5  | 1.23 | 2.37 | E         |
|      | janaki          | 24  | 10887  | G3P1L1A1  | 31.2        | 24.6 | 120/86 | nil     | 2.3  | 1.2  | 1.19 | E         |
|      | nisha           | 27  | 10393  | G2P1L1    | 38.2        | 23.2 | 124/82 | nil     | 3    | 1.4  | 1.4  | E         |
|      | bhavani         | 26  | 10905  | G2P1L1    | 31.2        | 24.3 | 118/82 | nil     | 2.2  | 1.2  | 0.98 | E         |
|      | vallivital      | 27  | 10578  | G2P1L1    | 38.4        | 23.2 | 120/84 | nil     | 2.3  | 1.31 | 3    | E         |
| _    | mariyambeevi    | 19  | 10567  | primi     | 37.4        | 24.5 | 128/76 | nil     | 3    | 1.53 | 2.22 | E         |
|      | vennila         | 30  | 10652  | primi     | 32.2        | 25.3 | 128/82 | nil     | 2    | 1.17 | 4.47 | SCH       |
|      | sudha           | 20  | 10638  | primi     | 38.4        | 24.6 | 110/82 | nil     | 2.4  | 1.15 | 3.52 | SCH       |
|      | mariyambeevi    | 29  | 11342  | primi     | 33          | 23.2 | 120/82 | nil     | 3    | 1.52 | 2.22 | E         |
|      | lakshmi         | 23  | 11232  | G2P1L1    | 33.2        | 24.3 | 120/82 | nil     | 2.1  | 1.52 | 2.22 | E         |
|      |                 | 23  | 11232  |           |             | 24.5 | 120/82 |         | 1.7  | 1.2  |      | E         |
|      | yasmin          |     |        | primi     | 28.3        |      |        | nil     | 1.7  |      | 1.4  | E         |
|      | lavanya         | 23  | 11097  | G2P1L0    | 36.6        | 24.4 | 112/72 | nil     |      | 1.6  | 1.53 |           |
|      | ramalakshmi     | 27  | 11550  | primi     | 36.4        | 24.3 | 118/82 | nil     | 2    | 1.2  | 2.2  | E         |
|      | syedali fathima | 21  | 11402  | primi     | 33.5        | 22.4 | 118/86 | nil     | 1.8  | 1.53 | 2.18 | E         |
|      | rajeswari       | 32  | 11729  | primi     | 37.6        | 30.7 | 120/86 | nil     | 3.23 | 1.17 | 4.3  | SCH       |
|      | muniammal       | 24  | 11714  | G4P2L1A1  | 33.4        | 22.4 | 112/78 | nil     | 2.5  | 1.35 | 2.06 | E         |
|      | manimeagalai    | 28  | 11678  | G3P1L1A1  | 36.1        | 22.3 | 120/72 | nil     | 1.9  | 0.8  | 7.38 | SCH       |
|      | clara           | 25  | 11728  | primi     | 32.1        | 22.5 | 118/78 | nil     | 2.08 | 1.36 | 2.38 | E         |
|      | vasanthi        | 27  | 11719  | G4P3L2    | 37.3        | 23.2 | 116/74 | nil     | 1.93 | 1.62 | 2.77 | E         |
|      | mayilvani       | 21  | 11720  | G2P1L1    | 30.2        | 23.8 | 118/78 | nil     | 2    | 1    | 2.3  | E         |
| 29   | gomathy         | 29  | 11701  | G3P1L1A1  | 38          | 25.7 | 120/86 | nil     | 2.14 | 1.2  | 2.55 | E         |
| 30   | almas           | 20  | 11727  | G2P1L1    | 28          | 22.2 | 112/82 | nil     | 2.24 | 1.56 | 2.08 | E         |
|      | raadha          | 21  | 11737  | G2P1L1    | 34.3        | 23.3 | 110/74 | nil     | 2.14 | 1.49 | 1.01 | E         |
| -    | jothi           | 21  | 11726  | G2P1L1    | 32          | 25.2 | 120/86 | nil     | 2.14 | 1.2  | 1.02 | E         |
|      | manimegalai     | 28  | 11717  | G3P2L1    | 33.2        | 22.5 | 112/82 | nil     | 2    | 1.2  | 1.4  | E         |
| 34   | meena           | 20  | 11696  | primi     | 39.4        | 23.8 | 112/82 | nil     | 1.97 | 0.9  | 3.21 | SCH       |
| 35   | mumtaz          | 26  | 11636  | primi     | 37.2        | 31.2 | 110/82 | nil     | 2.4  | 1.41 | 3.44 | SCH       |
| 36   | backiyalakshmi  | 23  | 11406  | G2P1L1    | 33.2        | 22.9 | 116/78 | nil     | 2.2  | 1.32 | 2.3  | E         |
| 37   | sajithabanu     | 25  | 11627  | primi     | 36          | 23.2 | 112/86 | nil     | 1.99 | 1.49 | 4    | SCH       |
| 38   | kesha           | 23  | 11479  | G2P1L1    | 36          | 22.5 | 120/84 | nil     | 2.3  | 1.1  | 2.73 | E         |
| 39   | abirami         | 21  | 11722  | G3P2L1    | 30          | 22   | 114/84 | nil     | 2.73 | 1.32 | 3.61 | SCH       |
| 40   | vijayabarathi   | 21  | 10012  | primi     | 24          | 21.3 | 120/88 | nil     | 2.19 | 0.82 | 2.7  | E         |
| 41   | jansi rani      | 24  | 11730  | G2P1L0    | 38          | 22.2 | 120/78 | nil     | 2.39 | 1.29 | 3.43 | SCH       |
| 42   | channammal      | 22  | 11905  | G2P1L1    | 31.3        | 24.3 | 124/78 | nil     | 2.73 | 1.1  | 1.86 | E         |
| 43   | sathyakala      | 25  | 11879  | G2P1L1    | 24          | 21.5 | 120/80 | trace   | 1.76 | 1.22 | 0.77 | E         |
| 44   | bhuvaneswari    | 26  | 11839  | G2P1L1    | 38.4        | 22.1 | 120/76 | nil     | 2.45 | 1.06 | 2.22 | E         |
| 45   | kiruba          | 32  | 11838  | primi     | 37          | 23.3 | 110/78 | nil     | 0.72 | 0.54 | 11.2 | ОН        |
|      | shobana         | 23  | 11832  | G3P1L1    | 32.1        | 21.6 | 120/86 | nil     | 2.29 | 0.9  | 2.79 | E         |
|      | nagalakshmi     | 30  | 11413  | G2P1L1    | 35.6        | 24.5 | 120/84 | nil     | 1.9  | 1.3  | 0.66 | E         |
|      | karima          | 22  | 11887  | primi     | 30.2        | 26.3 | 118/74 | nil     | 2.52 | 0.89 | 2.51 | E         |
|      | suganthi        | 23  | 11881  | G2P1L1    | 32          | 25.3 | 120/82 | nil     | 2.38 | 0.99 | 3.71 | SCH       |
|      | malar           | 25  | 11890  | primi     | 39.3        | 32.4 | 120/82 | nil     | 2.22 | 1.12 | 3.26 | SCH       |
|      | gowri           | 30  | 11890  | G2P1L1    | 37.6        | 24.7 | 120/82 | nil     | 2.22 | 1.42 | 2.17 | E         |
|      | dhanalakshmi    | 28  | 119939 | G2P1L1    | 37.0        | 31.6 | 118/82 | nil     | 2    | 1.42 | 1.54 | E         |
|      | meena           | 28  | 119939 | G3P1L1A1  | 37.5        | 31.4 | 110/02 | nil     | 2.19 | 1.02 | 3.82 | SCH       |
|      | shaidha         | 24  | 11955  | G2P1L1    | 37.5        | 23   | 120/74 | nil     | 2.19 | 1.23 | 0.71 | E         |
| 54   | siidiulla       | 23  | 11927  | GZPILI    | 57          | 23   | 110/00 | 1111    | 2.02 | 1.33 | 0.71 | E         |

|     |              | 20 | 11020 |                  | 20.4 | 20.6 | 420/02  | .1    | 4.0        | 4.62 | 2.24 | -   |
|-----|--------------|----|-------|------------------|------|------|---------|-------|------------|------|------|-----|
|     | bhavani<br>  | 29 | 11938 | primi            | 29.1 | 29.6 | 120/82  | nil   | 1.8        | 1.62 | 2.31 | E   |
|     | rihana       | 25 | 11961 | G2P1L1           | 38.6 | 32.8 | 118/78  | nil   | 1.69       | 1.08 | 3.27 | SCH |
|     | aparna       | 23 | 11945 | primi            | 30.2 | 31.2 | 120/82  | nil   | 2.46       | 1.21 | 3.71 | SCH |
|     | sarala       | 30 | 11934 | G3P1L1           | 36   | 20.2 | 114/82  | nil   | 1.9        | 1.02 | 1.11 | E   |
|     | vimala       | 20 | 12010 | primi            | 28.3 | 23.2 | 118/74  | nil   | 1.8        | 2.51 | 2.51 | E   |
|     | karima       | 23 | 12004 | G2P1L1           | 32.3 | 26.8 | 120/82  | nil   | 2.52       | 1.6  | 3.75 | SCH |
|     | mamatha      | 20 | 11967 | G4P2L0A1         | 37   | 23.3 | 110/80  | nil   | 2.84       | 1.27 | 1.5  | E   |
|     | bhuvaneswari | 21 | 12303 | G3A2             | 33   | 31.4 | 110/70  | nil   | 2.91       | 1.42 | 0.96 | E   |
|     | chitra       | 20 | 11018 | primi            | 39   | 31.7 | 120/82  | nil   | 2.1        | 1.4  | 0.32 | E   |
| 64  | lavanya      | 22 | 9590  | primi            | 37   | 28.8 | 110/82  | nil   | 1.9        | 1.6  | 2.12 | E   |
| 65  | mahalakshmi  | 21 | 9513  | G2P1L1           | 32.2 | 23.2 | 120/82  | nil   | 2.1        | 0.9  | 2.13 | E   |
|     | chandrika    | 24 | 9517  | primi            | 37.2 | 23.5 | 124/82  | nil   | 2.2        | 1.2  | 2.22 | E   |
|     | suganya      | 21 | 9612  | G3P1L1A1         | 33.2 | 31.1 | 118/82  | nil   | 2.32       | 1.29 | 1.75 | E   |
|     | rukzhana     | 20 | 9599  | primi            | 37.3 | 32   | 120/84  | nil   | 2.15       | 1.2  | 1.52 | E   |
| 69  | bhuvaneswari | 30 | 9582  | G2P1L1           | 36.1 | 27   | 120/84  | nil   | 2.1        | 1.34 | 1.43 | E   |
| 70  | nirmala      | 25 | 9584  | primi            | 31   | 28   | 118/84  | nil   | 2.2        | 1.4  | 2.79 | E   |
|     | kalpana      | 24 | 9612  | G2P1L1           | 36   | 27   | 120/72  | trace | 2.14       | 1.38 | 1.11 | E   |
|     | naventaj     | 22 | 9613  | primi            | 38   | 23   | 118/82  | nil   | 1.9        | 1.6  | 2.12 | E   |
| 73  | sasikala     | 22 | 9598  | G2P1L1           | 36.3 | 32   | 110/72  | nil   | 2.3        | 0.9  | 2.6  | E   |
| 74  | saranya      | 23 | 9602  | G3P2L1           | 32.2 | 33   | 114/74  | nil   | 3.2        | 1.4  | 2.98 | E   |
| 75  | ambiga       | 27 | 9673  | G2P1L1           | 37   | 24.3 | 118/82  | nil   | 3.1        | 1.3  | 2.92 | E   |
| 76  | selvamary    | 31 | 9684  | primi            | 33.2 | 32   | 120/82  | nil   | 2.5        | 1.2  | 2.44 | E   |
| 77  | jayalakshmi  | 28 | 9872  | primi            | 36   | 31.6 | 118/82  | nil   | 3.2        | 1.6  | 2.97 | E   |
| 78  | suganya      | 21 | 9869  | primi            | 31.2 | 27.8 | 120/82  | nil   | 2.2        | 1.46 | 1.9  | E   |
| 79  | vasanthi     | 26 | 9564  | G3P1L1A1         | 38   | 26.4 | 120/72  | nil   | 2          | 1.62 | 1.06 | E   |
| 80  | nandhini     | 21 | 9985  | primi            | 33.2 | 23   | 118/74  | nil   | 1.9        | 1.4  | 2.96 | E   |
| 81  | kavitha      | 22 | 9948  | G2A1             | 37   | 27.5 | 120/82  | nil   | 2.3        | 1.72 | 1.97 | E   |
| 82  | jancy        | 26 | 9971  | primi            | 36.2 | 27.7 | 120/72  | nil   | 2.4        | 1    | 2.97 | E   |
| 83  | thirumala    | 25 | 10000 | G2P1L1           | 32.2 | 27.9 | 110/72  | nil   | 2.2        | 0.9  | 3.67 | SCH |
| 84  | usharani     | 28 | 9859  | G3P2L2           | 36   | 25.5 | 110/82  | nil   | 2.1        | 1.1  | 1.28 | E   |
| 85  | sangeetha    | 24 | 9914  | primi            | 33.2 | 22.6 | 110/72  | nil   | 2.1        | 1.62 | 2.6  | E   |
| 86  | sasikala     | 22 | 9598  | G2P1L1           | 36.4 | 28.2 | 112/82  | nil   | 2.3        | 1.25 | 0.73 | E   |
| 87  | sudharani    | 23 | 10090 | G2P1L0           | 31.2 | 28.5 | 120/82  | nil   | 2.4        | 1.12 | 2.57 | E   |
| 88  | navatha      | 22 | 9920  | G3P1L1A1         | 28   | 25.2 | 118/82  | nil   | 2          | 1.58 | 2.18 | E   |
| 89  | ameena       | 21 | 10151 | G2P1L1           | 36.3 | 27   | 116/76  | nil   | 2.2        | 1.23 | 2.16 | E   |
|     | mohanapriya  | 23 | 10138 | G2A1             | 34   | 24.4 | 120/82  | nil   | 1.92       | 1.73 | 1.85 | E   |
|     | anandhi      | 23 | 10143 | G2P1L1           | 36.5 | 23.4 | 110/82  | nil   | 2.12       | 1.45 | 3.84 | SCH |
| 92  | anukirthiga  | 22 | 10187 | primi            | 36.4 | 21.8 | 116/84  | nil   | 2.23       | 1.62 | 1.91 | E   |
|     | nabeesa      | 23 | 10349 | primi            | 24   | 22   | 120/82  | nil   | 2.04       | 1.3  | 2.13 | E   |
|     | abirami      | 21 | 11722 | G3P2L1           | 28   | 21   | 110/72  | trace | 1.9        | 1.47 | 1.5  | E   |
|     | sevanthi     | 21 | 12295 | primi            | 36.3 | 25.8 | 120/82  | nil   | 2.6        | 1.17 | 1.6  | E   |
|     | sarala       | 30 | 12287 | G3P2L1           | 30.1 | 20.2 | 112/82  | nil   | 2.5        | 1.32 | 2.78 | E   |
|     | vani         | 30 | 11934 | G3P1L1A1         | 38.4 | 28.9 | 118/84  | nil   | 2.6        | 1.17 | 2.1  | E   |
|     | alimabanu    | 23 | 12392 | G2P1L0A0         | 33.4 | 23.1 | 120/82  | nil   | 3.23       | 1.23 | 2.3  | E   |
|     | noorjahan    | 20 | 12127 | primi            | 35   | 23.3 | 110/82  | nil   | 3          | 1.31 | 2.1  | E   |
|     | kalaiarasi   | 25 | 12432 | G3P1L1A1         | 33.2 | 24.3 | 110/72  | nil   | 3.2        | 1.12 | 2.4  | E   |
|     | radhika      | 28 | 5636  | G3P2L2           | 36.1 | 23   | 110/72  | nil   | 1.9        | 1.72 | 2.13 | E   |
|     | mehta        | 20 | 5647  | G2P1L1           | 30.1 | 21.5 | 120/72  | nil   | 2.1        | 1.4  | 1.2  | E   |
|     | Shivani      | 22 | 5640  | primi            | 38   | 24.3 | 110/72  | nil   | 2.2        | 1.5  | 1.6  | E   |
|     | surekha      | 24 | 5350  | G2P1L1           | 37.2 | 23.5 | 124/82  | nil   | 2.4        | 1.57 | 1.3  | E   |
|     | ammulu       | 20 | 5633  | G2P1L1           | 28.9 | 21.4 | 124/82  | nil   | 3.1        | 1.82 | 2.1  | E   |
|     | mohana       | 25 | 5638  | G2P1L1           | 39   | 23.3 | 122/80  | nil   | 2.4        | 1.23 | 2.1  | E   |
|     | rekha        | 20 | 5600  | primi            | 30.2 | 23.5 | 116/78  | nil   | 2.4        | 1.23 | 1.8  | E   |
|     | devi         | 20 | 5651  | G2P1L1           | 36.3 | 23.2 | 110/78  | nil   | 2.1        | 1.07 | 1.7  | E   |
|     | jothy        | 35 | 5293  | primi            | 29   | 22.2 | 114/78  | nil   | 2.7        | 1.32 | 1.7  | E   |
|     | vadivukarasi | 30 | 5168  | G2P1L1           | 32.3 | 23.1 | 110/82  | nil   | 3.2        | 1.32 | 1.43 | E   |
|     | sangeetha    | 22 | 5658  | G2P1L1<br>G2P1L1 | 37.4 | 23.1 | 112/82  | nil   | 5.2<br>1.9 | 1.49 | 2.21 | E   |
| 111 | sangeetiid   | 22 | QCOC  | GZPILI           | 57.4 | 21.2 | 1120/70 | 1111  | 1.9        | 1.12 | 2.21 | E   |

| 442 | с. н. ·                   | 22       | 55.40        | 020411             | 20.4       | 20.4         | 404/72 |       | 2.2          | 4 4 7        | 4.70        | - |
|-----|---------------------------|----------|--------------|--------------------|------------|--------------|--------|-------|--------------|--------------|-------------|---|
|     | fathima                   | 23       | 5543         | G2P1L!             | 38.4       | 20.1         | 104/72 | trace | 2.3          | 1.17         | 1.76        | E |
|     | devi                      | 22       | 5612         | primi              | 32.1       | 21.3         | 110/72 | nil   | 1.9          | 1.72         | 2.24        | E |
|     | pooja                     | 25       | 5644         | G2P1L1             | 36.2       | 20.4         | 108/74 | nil   | 3            | 1.67         | 2.34        | E |
|     | kalaiarasi                | 19       | 5681         | primi              | 33.2       | 22.1         | 106/82 | nil   | 2.5          | 1.48         | 2.12        | E |
|     | jayanthi                  | 26       | 5631         | G2P1L1             | 37         | 22.4         | 110/80 | nil   | 3.24         | 1.38         | 2.45        | E |
|     | mariyamma                 | 31       | 5684         | G3P2L1             | 32         | 21.3         | 110/70 | nil   | 1.94         | 1.02         | 2.12        | E |
|     | kokila                    | 27       | 5639         | primi              | 37.4       | 24.2         | 120/82 | nil   | 2.23         | 1.22         | 2.12        | E |
|     | kathijabee                | 24       | 5398         | G3P1L1A1           | 31         | 23.1         | 110/82 | nil   | 1.98         | 1.02         | 2.32        | E |
|     | kuppulakshmi              | 23       | 5599         | G2P1L1             | 28         | 22.1         | 120/78 | nil   | 2.24         | 1.34         | 2.43        | E |
|     | yogalakshmi               | 22       | 5646         | primi              | 38.4       | 24.2         | 110/82 | nil   | 2.16         | 1.62         | 2.52        | E |
|     | reenarani                 | 22       | 5575         | primi              | 38         | 21.4         | 120/78 | nil   | 2.05         | 1.4          | 1.24        | E |
|     | lalithakumari             | 24       | 5584         | G2P1L1             | 28         | 24.3         | 110/82 | nil   | 2.45         | 1.43         | 1.09        | E |
| -   | mumtaz                    | 28       | 5689         | G2P1L1             | 37.4       | 22.3         | 120/82 | nil   | 3.2          | 1.03         | 1.24        | E |
| -   | ammu                      | 25       | 5624         | G2P1L1             | 31         | 23.1         | 110/78 | nil   | 3.4          | 1.7          | 1.45        | E |
|     | kavitha                   | 21       | 5654         | G2P1L1             | 29         | 24.1         | 120/78 | nil   | 2.56         | 1.21         | 1.23        | E |
|     | sarbunisha<br>            | 28       | 5679         | G2P1L1             | 39         | 22.1         | 124/86 | nil   | 2.42         | 1.32         | 1.32        | E |
|     | yasodha                   | 28       | 5675         | G2P1L1             | 36.2       | 23.1         | 120/78 | nil   | 2.34         | 1.42         | 1.07        | E |
|     | megala                    | 25       | 5623         | primi              | 30.2       | 24.1         | 114/78 | nil   | 3.23         | 1.42         | 1.18        | E |
|     | bavani                    | 21       | 5694         | primi              | 36.4       | 23.1         | 118/82 | nil   | 1.97         | 1.23         | 2.12        | E |
| -   | thasleen                  | 24       | 5601         | primi              | 37         | 24.2         | 120/78 | nil   | 1.83         | 1.54         | 2.32        | E |
|     | jaya                      | 39       | 5691         | G4P2L2A1           | 36.4       | 22.4         | 114/76 | nil   | 2.23         | 1.32         | 2.23        | E |
|     | indumathy                 | 26       | 5682         | G3P1L1A1           | 32.1       | 21.5         | 120/82 | nil   | 2.43         | 1.62         | 2.12        | E |
|     | saraswathy                | 28       | 5660         | G3P1L1A1           | 38         | 24.3         | 116/76 | nil   | 3.23         | 1.23         | 2.32        | E |
|     | muniammal                 | 21       | 5704         | primi              | 33.4       | 21           | 120/84 | nil   | 3.12         | 1.42         | 2.34        | E |
| -   | premalatha                | 28       | 5695         | primi              | 37.4       | 23.2         | 118/78 | nil   | 2.08         | 1.24         | 2.31        | E |
| -   | vachala                   | 25       | 5673         | G2P1L1             | 31.2       | 20.2         | 120/72 | nil   | 2.14         | 1.32         | 2.13        | E |
|     | jothilakshmi              | 18       | 5715         | primi              | 30.2       | 23.2         | 118/72 | nil   | 2.24         | 1.2          | 2.22        | E |
|     | mahurnisha                | 20       | 5718         | primi              | 38         | 24.3         | 120/78 | nil   | 3.21         | 1.4          | 1.78        | E |
|     | subamangalam              | 25       | 5170         | G4A3               | 31         | 24.3         | 120/82 | nil   | 1.93         | 1.24         | 1.79        | E |
| -   | shabana                   | 23       | 5700         | primi              | 34         | 23.4         | 112/78 | nil   | 2.24         | 1.34         | 1.9         | E |
|     | ramya                     | 29       | 5687         | G2P1L1             | 36.2       | 20.2         | 114/86 | nil   | 2.22         | 1.63         | 2.09        | E |
|     | suganthi                  | 21       | 5734         | primi              | 35.5       | 24.5         | 112/78 | nil   | 2.41         | 1.72         | 2.56        | E |
|     | subha                     | 22       | 5711         | primi              | 34.2       | 23.2         | 114/82 | nil   | 2.22         | 1.23         | 1.92        | E |
|     | kavitha                   | 21       | 5736         | primi              | 38.4       | 21.3         | 116/82 | nil   | 3.21         | 0.97         | 1.86        | E |
|     | anjali                    | 29       | 5771         | G2P1L1             | 37.4       | 24.2         | 120/72 | nil   | 1.98         | 1.24         | 1.78        | E |
|     | subetha                   | 28       | 5739         | G2P1L1             | 38.3       | 24.3         |        | nil   | 2.21         | 1.45         | 1.67        | E |
|     | nageswari                 | 22       | 5770         | G2P1L1             | 37.4       | 23.3         | 122/78 | nil   | 3.34         | 1.62         | 1.69        | E |
|     | sivapoongodi              | 32       | 5725         | G2P1L1             | 36.5       | 22.3         | 120/82 | nil   | 2.43         | 1.3          | 2.14        | E |
|     | srimetha                  | 19       | 5762         | primi              | 37.3       | 21.2         | 114/78 | nil   | 2.67         | 1.67         | 2.02        | E |
| -   | asha<br>Jalitha           | 25       | 5780         | G2P1L0<br>G4P1L1A2 | 38.3       | 20.2         | 110/72 | nil   | 2.3          | 1.2          | 2.52        | E |
|     | lalitha<br>ashina         | 28       | 5733         |                    | 37.5       | 21.2         | 112/82 | nil   | 2.1          | 1.4          | 1.18        | E |
|     | ashina<br>absiba          | 21       | 5776         | primi              | 38.5       | 22.2         | 112/78 | nil   | 2.34         | 1.5          | 2.12        | E |
|     | ebsiba<br>karnagam        | 22       | 5751         | primi              | 37.4       | 20.3         | 114/82 | nil   | 2.31         | 1.8          | 2.13        | E |
|     | karpagam<br>krishnavoni   | 24       | 5761         | G2P1L1             | 38.4       | 20.3         | 120/82 | nil   | 2.21         | 1.34         | 1.54        | E |
|     | krishnaveni<br>maheswari  | 23       | 5732         | G3P1L1A1           | 37.4       | 20.4         | 114/82 | nil   | 2.54         | 1.65         | 1.34        | E |
|     | maheswari<br>priva        | 23<br>32 | 5611<br>5588 | primi<br>G2P1L1    | 39         | 21.2         | 108/78 | nil   | 2.65         | 1.45         | 1.67        | E |
|     | priya<br>baby             | 32<br>23 | 5588         |                    | 37.4       | 22.3         | 110/78 | nil   | 2.56<br>2.47 | 1.34         | 1.84        | E |
|     | baby<br>kamatchi          | 23       | 5697         | primi<br>G2P1L1    | 37.5       | 22.2         | 112/84 | nil   | 2.47         | 1.67         | 1.9         | E |
|     | kamatchi<br>mohanasundari | 23<br>24 | 5538         |                    | 38.5<br>39 | 21.2<br>20.8 | 108/78 | nil   |              | 1.34<br>1.24 | 2.2<br>2.98 | E |
|     |                           |          |              | G2P1L1             |            |              | 110/72 | nil   | 2.3          |              |             |   |
|     | jabinabanu<br>gavatri     | 24       | 5775         | G2P1L1             | 36         | 23.4         | 114/76 | nil   | 3.12         | 1.45         | 2.12        | E |
|     | gayatri<br>nonnaraci      | 20       | 5553         | primi              | 36.3       | 28           | 112/82 | nil   | 2.34         | 1.34         | 2.43        | E |
|     | ponnarasi                 | 23       | 5749         | primi              | 36.5       | 24.2         | 114/78 | nil   | 3.12         | 1.24         | 2.76        | E |
|     | revathy                   | 22       | 5744         | primi              | 36.6       | 24.4         | 114/78 | nil   | 2.12         | 1.54         | 2.63        | E |
|     | manimegalai               | 21       | 5755         | G2P1L1             | 37         | 23.4         | 116/76 | nil   | 2.13         | 0.92         | 2.43        | E |
|     | hemalatha                 | 19       | 5533         | primi              | 37.2       | 21.3         | 120/78 | nil   | 2.45         | 1.46         | 2.99        | E |
| 168 | nagaammal                 | 23       | 5779         | G2P1L1             | 37.4       | 23.5         | 122/82 | nil   | 2.57         | 1.35         | 2.13        | E |

| -   |            |    |      |          |      |      |        |       |      |      |      |   |
|-----|------------|----|------|----------|------|------|--------|-------|------|------|------|---|
| 169 | gowri      | 23 | 5759 | G2P1L1   | 38   | 24.3 | 112/82 | trace | 2.59 | 1.46 | 2.33 | E |
| 170 | mumtaz     | 26 | 5586 | G2P1L1   | 38.3 | 23.3 | 120/84 | nil   | 3.21 | 1.63 | 2.12 | E |
| 171 | kalaimathi | 26 | 5786 | G2P1L1   | 38.2 | 25.3 | 122/82 | nil   | 2.89 | 1.72 | 2.32 | E |
| 172 | rekha      | 24 | 5735 | primi    | 37.3 | 21.4 | 122/82 | nil   | 3.24 | 1.27 | 1.96 | E |
| 173 | shanthi    | 20 | 5773 | primi    | 29.1 | 22.5 | 118/78 | nil   | 3.6  | 1.64 | 1.45 | E |
| 174 | jayapriya  | 22 | 5790 | G2P1L1   | 37.6 | 24.3 | 120/72 | nil   | 2.89 | 1.62 | 1.43 | E |
| 175 | bharathy   | 22 | 5491 | G2P1L1   | 30.2 | 20.1 | 114/76 | nil   | 3.24 | 1.73 | 2.13 | E |
| 176 | loganayaki | 24 | 5791 | G2P1L1   | 38.4 | 20.4 | 122/82 | nil   | 2.83 | 1.63 | 2.45 | E |
| 177 | gomathy    | 24 | 5466 | primi    | 38.3 | 21.3 | 120/72 | nil   | 2.3  | 1.54 | 2.3  | E |
| 178 | thenmani   | 30 | 5796 | G3P1L1A1 | 33.4 | 22.3 | 112/78 | nil   | 2.42 | 1.52 | 2.1  | E |
| 179 | mala       | 24 | 5800 | G3P2L2   | 37.3 | 21.3 | 114/78 | nil   | 2.15 | 1.43 | 1.09 | E |
| 180 | dhivya     | 20 | 5798 | G3A2     | 28.4 | 24.3 | 116/82 | nil   | 2.15 | 1.27 | 1.98 | E |
| 181 | jansy      | 25 | 5501 | G3P1L1A1 | 30.3 | 24.5 | 120/72 | nil   | 3.23 | 1.43 | 1.19 | E |
| 182 | nageswari  | 23 | 5802 | primi    | 33.4 | 24.3 | 122/74 | nil   | 2.15 | 1.64 | 1.8  | E |
| 183 | mohana     | 19 | 5748 | primi    | 38.3 | 21.3 | 112/78 | nil   | 1.98 | 1.56 | 1.67 | E |
| 184 | geetha     | 21 | 5722 | primi    | 38.5 | 23.2 | 120/72 | nil   | 2.03 | 1.34 | 2.2  | E |
| 185 | selvi      | 22 | 5811 | primi    | 32   | 24.3 | 118/72 | nil   | 2.45 | 1.21 | 2.1  | E |
| 186 | sasikala   | 21 | 5370 | G2A1     | 37.2 | 22.3 | 120/72 | nil   | 2.54 | 1.11 | 2.13 | E |
| 187 | padmini    | 24 | 5813 | primi    | 31.3 | 21   | 114/78 | nil   | 3.5  | 1.23 | 2.13 | E |
| 188 | rajeswari  | 20 | 5635 | primi    | 37.2 | 22.1 | 120/72 | nil   | 2.05 | 1.24 | 2.34 | E |
| 189 | vaishnavi  | 21 | 5810 | G3A2     | 36.3 | 21.4 | 112/78 | nil   | 2.49 | 1.22 | 2.3  | E |
| 190 | eswari     | 25 | 5816 | primi    | 37.3 | 22.3 | 120/72 | nil   | 3.23 | 1.23 | 2.11 | E |
| 191 | sandhya    | 18 | 5803 | primi    | 38   | 21.2 | 112/78 | nil   | 2.21 | 1.42 | 2.23 | E |
| 192 | priya      | 23 | 5605 | G2P1L1   | 37.3 | 23.4 | 120/72 | nil   | 2.56 | 1.23 | 1.23 | E |
| 193 | lakshmi    | 23 | 5821 | G3P1L1A1 | 36.3 | 23.5 | 110/72 | nil   | 2.79 | 1.54 | 2.67 | E |
| 194 | gowthami   | 20 | 5826 | G2P1L1   | 36.2 | 22.1 | 120/78 | nil   | 2.76 | 1.74 | 2.13 | E |
| 195 | teresa     | 29 | 5822 | G2P1L1   | 37.2 | 21.5 | 120/72 | nil   | 2.4  | 1.3  | 2.2  | E |
| 196 | jayasree   | 22 | 5814 | primi    | 37.3 | 22.7 | 110/82 | nil   | 1.96 | 1.73 | 2.34 | E |
| 197 | malathy    | 22 | 5772 | primi    | 35.3 | 21.4 | 112/78 | nil   | 3.23 | 1.23 | 2.31 | E |
| 198 | kasthuri   | 20 | 5827 | primi    | 36.4 | 21   | 114/78 | nil   | 1.73 | 1.54 | 1.21 | E |
| 199 | asha       | 22 | 5531 | G2P1L0   | 37.2 | 20.3 | 120/78 | nil   | 2.1  | 1.26 | 2.43 | E |
| 200 | renuka     | 22 | 5852 | G2P1L1   | 38.2 | 21.3 | 120/74 | nil   | 2.32 | 2.13 | 2.34 | E |

#### STUDY GROUP (PREECLAMPSIA )

|          |                |          | -            |                 | STUDY GR     |              | PREECL             | AMPS     | · ·              | 1        | 1    |      |       |           |
|----------|----------------|----------|--------------|-----------------|--------------|--------------|--------------------|----------|------------------|----------|------|------|-------|-----------|
| s.       |                |          |              | obstetric       | Gestational  |              |                    | urine    | 24 hr<br>urinary |          |      |      |       |           |
| NO       | Name           | Age      | IP.NO        | code            | age(wks)     | BMI          | BP                 | albumin  | protein          | severity | FT3  | FT4  | тѕн   | Diagnosis |
|          | lakshmi        | 30       | 10582        | G3P1L1A1        | 24           | 32.1         | 146/98             | 1+       | 340              | sevency  | 2.4  | 1.3  | 3.27  | SCH       |
|          | selvi          | 23       | 10686        | Primi           | 34.3         | 34.2         | 160/112            | 3+       | 5021             | severe   | 1.8  | 0.9  | 5.6   | SCH       |
|          | kalpana        | 25       | 10875        | Primi           | 36.5         | 24.4         | 144/98             | 1+       | 305              | Severe   | 2.1  | 1.11 | 2.98  | E         |
|          | pramila        | 22       | 11659        | G2P1L1          | 36           | 32.4         | 150/94             | trace    | 220              |          | 2.4  | 1.02 | 3.15  | SCH       |
|          | chitra         | 22       | 11787        | Primi           | 36.4         | 24.8         | 148/94             | trace    | 234              |          | 2.4  | 0.9  | 3.13  | SCH       |
|          |                |          |              |                 |              |              |                    |          |                  | covoro   |      |      |       |           |
|          | sharmila       | 21       | 11882        | Primi           | 32           | 32.3         | 164/116            | 1+       | 453              | severe   | 1.01 | 0.4  | 11.4  | OH        |
|          | hemavathy      | 20       | 12034        | Primi           | 32           | 26.3         | 148/98             | 1+       | 425              |          | 2.1  | 0.98 | 4.2   | SCH       |
|          | shymala        | 23       | 11834        | Primi           | 38           | 34.4         | 150/92             | 1+       | 357              |          | 1.2  | 0.3  | 11.3  | OH        |
|          | ammu           | 23       | 11978        | Primi           | 34.3         | 34.2         | 144/94             | 1+       | 320              |          | 2.73 | 0.99 | 1.31  | E         |
|          | hasinabegum    | 34       | 12142        | Primi           | 32           | 28.3         | 146/94             | trace    | 212              |          | 2.13 | 0.8  | 2.12  | E         |
|          | karimabegum'   | 32       | 11562        | G2P1L1          | 34.2         | 35.4         | 154/94             | trace    | 120              |          | 1.94 | 1.03 | 1.81  | E         |
| 12       | rekha          | 25       | 11452        | Primi           | 36.6         | 26.4         | 162/114            | 2+       | 3500             | severe   | 1.9  | 1.26 | 2.89  | E         |
| 13       | deepa          | 22       | 12523        | Primi           | 36           | 24.3         | 142/98             | 1+       | 142              |          | 2.19 | 1.31 | 1.9   | E         |
| 14       | hemavathy      | 22       | 10240        | G3P1L1A1        | 29.2         | 34.3         | 150/92             | trace    | 153              |          | 2.2  | 1.4  | 2.34  | E         |
| 15       | ameena         | 20       | 12344        | Primi           | 38.5         | 23.3         | 164/114            | 2+       | 2134             |          | 2.3  | 1.21 | 4.3   | SCH       |
| 16       | mumtaz         | 27       | 12184        | G3P1L1A1        | 35           | 34.3         | 162/120            | 3+       | 5045             | severe   | 2.19 | 0.9  | 1.2   | E         |
| 17       | deepa          | 22       | 12331        | Primi           | 32           | 26           | 146/94             | trace    | 154              |          | 2.34 | 1.04 | 2.14  | E         |
| 18       | nagammal       | 21       | 10867        | Primi           | 31.1         | 28           | 164/118            | 2+       | 2451             | severe   | 2.13 | 1.3  | 5.48  | SCH       |
|          | meena          | 20       | 10485        | Primi           | 32           | 30.5         | 154/92             | trace    | 120              |          | 2    | 1.42 | 1.13  | E         |
|          | porkodi        | 20       | 12388        | Primi           | 36.3         | 32.1         | 166/114            | 2+       | 2472             | severe   | 2.07 | 1.06 | 6.23  | SCH       |
|          | benazirbegum   | 24       | 12462        | Primi           | 38.3         | 26.4         | 144/96             | trace    | 142              |          | 2.31 | 1    | 2.23  | E         |
|          | saranya        | 25       | 12464        | G2P1L1          | 33           | 32.3         | 146/94             | 1+       | 352              |          | 1.97 | 1.4  | 3.53  | SCH       |
|          | kalyani        | 27       | 12465        | G2P1L1          | 33           | 33.8         | 152/92             | 1+       | 341              |          | 2.2  | 1.31 | 2.3   | E         |
|          | devi           | 21       | 14254        | Primi           | 35           | 24.2         | 146/94             | trace    | 127              |          | 2.9  | 1.08 | 3.78  | SCH       |
|          | thulasi        | 23       | 12558        | G2A1            | 38.1         | 35.4         | 170/112            | 2+       | 2200             | severe   | 2.07 | 1.08 | 2.42  | E         |
|          | devika         | 32       | 12557        | Primi           | 32.4         | 30.1         | 156/98             | 2+       | 2311             | 367616   | 2.35 | 1.1  | 3.43  | SCH       |
|          |                |          |              |                 |              |              |                    |          |                  |          |      |      |       |           |
|          | venkatta       | 20       | 5625         | Primi           | 37.2         | 22.1         | 152/92             | nil      | 98               |          | 2.13 | 1.2  | 1.23  | E         |
|          | latha          | 32       | 4949         | G2P1L1          | 36           | 23.1         | 154/96             | nil      | 74               |          | 2.34 | 1.43 | 1.5   | E         |
|          | sandhya        | 21       | 5808         | G4P3L1          | 37.3         | 31.1         | 162/112            | 1+       | 564              | severe   | 2.1  | 1.14 | 5.24  | SCH       |
|          | jayanthi       | 23       | 5867         | Primi           | 33.2         | 34.2         | 158/92             | trace    | 123              |          | 1.83 | 1.23 | 1.54  | E         |
|          | chellammal     | 22       | 5910         | Primi           | 37.1         | 32.1         | 164/114            | 1+       | 763              | severe   | 1.82 | 1.01 | 6.24  | SCH       |
| 32       | meena          | 22       | 5870         | Primi           | 36.2         | 35.4         | 154/94             | nil      | 102              |          | 2.13 | 1.37 | 1.2   | E         |
| 33       | rahmathnisha   | 22       | 4635         | G4P1L1A2        | 29           | 34.2         | 170/124            | 3+       | 5421             | severe   | 0.98 | 0.45 | 13.2  | OH        |
| 34       | backiyalakshmi | 19       | 5892         | Primi           | 36.2         | 34.4         | 154/98             | nil      | 124              |          | 2.24 | 1.45 | 3.12  | SCH       |
| 35       | noorjahan      | 21       | 5958         | Primi           | 32.1         | 24.1         | 142/100            | 1+       | 312              |          | 2.11 | 1.09 | 2.4   | E         |
| 36       | ummukulthum    | 21       | 5959         | Primi           | 36.1         | 21.2         | 154/96             | 3+       | 5210             |          | 2.34 | 1.42 | 2.1   | E         |
| 37       | devi           | 22       | 5938         | Primi           | 29.3         | 35.3         | 152/92             | nil      | 120              |          | 2.09 | 0.98 | 1.8   | E         |
| 38       | saranya        | 24       | 6033         | G3P2L1          | 35.4         | 34.3         | 142/96             | nil      | 112              |          | 2.05 | 1.42 | 1.65  | E         |
| 39       | sakira         | 30       | 6032         | G3P2L2          | 34.2         | 32.1         | 152/94             | nil      | 78               |          | 2.34 | 1.45 | 3.53  | SCH       |
| 40       | roshini        | 20       | 6034         | Primi           | 37.3         | 35.4         | 146/100            | 1+       | 212              |          | 2.11 | 1.17 | 2.34  | E         |
|          | sarala         | 18       | 5831         | Primi           | 32.3         | 22.1         | 144/98             | trace    | 290              |          | 1.96 | 1.45 | 2.14  | E         |
|          | nandhini       | 20       | 5705         | Primi           | 39           | 31.2         | 142/94             | 1+       | 145              |          | 1.2  | 0.5  | 11.6  | ОН        |
|          | kavibharathi   | 20       | 6050         | Primi           | 37.1         | 30.1         | 142/96             | 1+       | 315              | İ        | 2.13 | 1.28 | 3.12  | SCH       |
|          | sangeetha      | 30       | 6081         | G2P1L1          | 29.2         | 21.56        | 152/94             | trace    | 124              |          | 2.03 | 1.38 | 1.82  | E         |
|          | ezhilarasi     | 25       | 6114         | G2P1L1          | 35.2         | 34.2         | 154/98             | 3+       | 5201             |          | 2.05 | 1.41 | 3.21  | SCH       |
|          | hemasundari    | 32       | 5961         | G4A3            | 33.4         | 31.2         | 162/116            | 2+       | 2512             | severe   | 1.98 | 0.96 | 1.9   | E         |
|          | hameedasultana | 38       | 6135         | Primi           | 37.4         | 20.93        | 144/92             | 2+       | 2422             | JEVELE   | 2.12 | 1.18 | 3.23  | SCH       |
|          |                | 23       | 6185         | Primi           |              | 36.4         | 152/92             |          |                  |          | 2.12 | 1.18 | 2.1   | E         |
|          | sathya         |          |              |                 | 37.6         |              |                    | trace    | 120              |          |      |      |       | E         |
|          | nagammal       | 25       | 5950         | G2P1L1          | 31.2         | 34.2         | 142/98             | 1+       | 121              |          | 2.32 | 1.54 | 2.01  |           |
|          | rathi          | 32       | 6227         | G2P1L1          | 35.3         | 34.2         | 150/100            | 1+       | 352              |          | 2.01 | 1.09 | 3.21  | SCH       |
|          | menaka         | 30       | 6196         | G2P1L1          | 36.5         | 27.2         | 160/112            | 1+       | 768              | severe   | 1.92 | 1.12 | 4.62  | SCH       |
|          | dhivya         | 24       | 6354         | Primi           | 37.2         | 25.6         | 172/114            | 2+       | 2462             | severe   | 2.1  | 1.21 | 5.25  | SCH       |
|          | hannis         | 23       | 6414         | Primi           | 33           | 32.1         | 150/92             | nil      | 94               |          | 2.12 | 1.21 | 1.43  | E         |
| 54       | shalini        | 25       | 6396         | Primi           | 36.1         | 32.1         | 154/98             | 3+       | 5620             | severe   | 1.2  | 0.55 | 12.3  | ОН        |
| 55       | suganya        | 22       | 6436         | Primi           | 32           | 23.2         | 146/96             | nil      | 67               |          | 2.1  | 1.32 | 2.01  | E         |
|          | abitua         | 21       | 5483         | G2P1L1          | 36.1         | 24.3         | 142/94             | trace    | 163              |          | 2.23 | 0.98 | 3.78  | SCH       |
| 56       | chitra         |          |              |                 |              |              |                    |          | (24              | covere   | 2.1  | 1.05 | 2 1 0 | E         |
|          | megala         | 25       | 6346         | G2P1L1          | 35.2         | 34.2         | 162/112            | 1+       | 624              | severe   | 2.1  | 1.05 | 2.16  | L         |
| 57       |                | 25<br>31 | 6346<br>6413 | G2P1L1<br>Primi | 35.2<br>33.2 | 34.2<br>26.4 | 162/112<br>164/100 | 1+<br>2+ | 2722             | severe   | 2.1  | 1.05 | 5.6   | SCH       |
| 57<br>58 | megala         |          |              |                 |              |              |                    |          |                  |          |      |      |       |           |

| 61       Janchana       366       3631       Primi       386.       34.1       1649/8       2.2       31.2       1.7       E         63       Jumuthy       21       6638       Primi       30.2       23.1       162/10       31.4       5467       severe       2.04       1.02       4.58       SCH         64       barrunchis       22       6742       Primi       33.2       23.2       152/30       31.6       57.2       SCH         65       Jangmasham       22       6742       Primi       32.2       154/95       nil       58       Severe       2.1       1.31       2.1       E         667       Jangmasham       22       6860       Primi       32.2       122.2       1.44/90       1.1       23.2       2.241       1.16       1.34       E         667       Jangmasham       28       6867       Primi       32.2       1.44/90       1.1       32.1       2.21       1.14       1.15       1.16       1.16       1.56       2.21       1.21       2.13       1.61       1.61       3.56       1.69/12       2.4       1.22       2.21       1.21       1.21       2.15       1.61       1.                                                                                                                                                                                                                                                                                                                                       |     |                                       |    |      |        |      |      |         | -     |      |        |      |      |      | -   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|----|------|--------|------|------|---------|-------|------|--------|------|------|------|-----|
| Fig.         Sumatry         21         6698         Primi         30         223         562/10         3+         5467         severe         2.01         102         458         557           66         bazronsha         22         616         severe         2.21         103         572         5574           66         formi         30         263         154/16         2-2         2.21         131         2.14         1.01         1.4           66         formi         30         2.83         1.54/16         2-2         2.21         1.31         1.8         F           67         formin         30         2.23         1.50/16         1+         322         2.01         1.62         1.45         2.1         F           70         formid         30         2.23         1.53         1.7         F         3.3         1.56/110         1+         3.22         2.22         1.83         1.7         F         3.3         1.31         1.8         F         F         2.22         1.22         1.22         1.22         1.22         1.22         1.21         1.8         F         F         7         7         7 <td< td=""><td></td><td></td><td>36</td><td>6633</td><td>Primi</td><td>38.6</td><td>34.1</td><td>168/98</td><td>2+</td><td>3564</td><td>severe</td><td>2.32</td><td>1.28</td><td>1.7</td><td>E</td></td<>                                                                                |     |                                       | 36 | 6633 | Primi  | 38.6 | 34.1 | 168/98  | 2+    | 3564 | severe | 2.32 | 1.28 | 1.7  | E   |
| Feb         Strangen          Strangen         Strangen                                                                                         |     |                                       |    |      |        |      |      |         | nil   |      |        |      |      |      |     |
| Formal       Prime       Prime <t< td=""><td>63</td><td>sumathy</td><td>21</td><td>6698</td><td>Primi</td><td>30</td><td>28.3</td><td>162/110</td><td>3+</td><td>5467</td><td>severe</td><td>2.04</td><td>1.02</td><td>4.58</td><td>SCH</td></t<>                                             | 63  | sumathy                               | 21 | 6698 | Primi  | 30   | 28.3 | 162/110 | 3+    | 5467 | severe | 2.04 | 1.02 | 4.58 | SCH |
| 66       Bishbahuu       22       6800       Primi       33       263       16/116       22       211       134       136       134       6         66       Bishbahuu       23       6850       Primi       37.2       23.2       150/940       14       382       2.14       1.36       1.34       6.5         66       Bishbahuu       23       6857       Primi       37.2       23.2       150/94       14       382       2.14       1.51       1.21       FC         70       Chandra       24       6919       Primi       37.3       28.5       168/122       24       3422       8242       2.22       1.53       1.7       E         73       Bastevic       20       6962       Primi       35.6       27.3       164/122       42       202.2       1.53       1.67       6.3       5.64       1.41       1.26       2.45       1.41       1.26       2.45       1.41       1.26       2.45       1.41       1.26       2.45       1.41       1.26       2.45       1.41       1.86       1.45       1.45       1.45       1.45       1.45       1.45       1.45       1.45       1.45       1.45 <td>64</td> <td>bazirunisha</td> <td>22</td> <td>6741</td> <td>Primi</td> <td>37.2</td> <td>32.2</td> <td>162/122</td> <td>3+</td> <td>5246</td> <td>severe</td> <td>2.17</td> <td>1.05</td> <td>5.72</td> <td>SCH</td>                                                                                                                    | 64  | bazirunisha                           | 22 | 6741 | Primi  | 37.2 | 32.2 | 162/122 | 3+    | 5246 | severe | 2.17 | 1.05 | 5.72 | SCH |
| org         org <thorg< th=""> <thorg< th=""> <thorg< th=""></thorg<></thorg<></thorg<>                                                                                                                                                                                                                   | 65  | karpagam                              | 34 | 6762 | Primi  | 38.1 | 28.3 | 154/98  | nil   | 56   |        | 2.21 | 1.31 | 2.1  |     |
| isis         isis <th< td=""><td>66</td><td>dilasthbanu</td><td>22</td><td>6809</td><td>Primi</td><td>33</td><td>26.3</td><td>164/116</td><td>2+</td><td>2521</td><td>severe</td><td>2.21</td><td>1.33</td><td>1.8</td><td>E</td></th<> | 66  | dilasthbanu                           | 22 | 6809 | Primi  | 33   | 26.3 | 164/116 | 2+    | 2521 | severe | 2.21 | 1.33 | 1.8  | E   |
| eig       e                                                                                                                                                                                                                                                                                                                                                     | 67  | vijayalakshmi                         | 20 | 6860 | Primi  | 39   | 23.1 | 154/90  | nil   | 123  |        | 2.14 | 1.16 | 1.34 | E   |
| Tot         Canadian         Primi         34.2         26.1         144/98         1         120         218         121         212         E           71         kumutha         19         6927         Primi         37.3         28.5         168/122         21         3421         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         124         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123                                                                                                                                                                                                                                                          | 68  | srilekha                              | 23 | 6819 | Primi  | 37.2 | 23.2 | 150/94  | 1+    | 382  |        | 2.43 | 1.32 | 3.23 | SCH |
| 17         Isumutha         19         6922         Primi         37.3         28.5         168/122         2-         3422         severe         2.21         1.21         2.13         F.           73         kalaselvi         25         6962         Primi         35.6         27.3         164/120         2+         2622         severe         2.21         1.31         1.8         C           74         saganthi         20         6936         Primi         33.2         25.1         152/10         1+         453         severe         2.14         1.4         6.24         S.4         1.41         1.87         E           76         immilarsi         24         7019         Primi         32.1         2.5         1.43/92         1+         324         1.42         1.44/92         1.4         324         1.43         32.4         1.41         1.47         E         2.1         1.4         3.3         SCH         1.4         1.44/92         1.4         1.42         1.4         1.4         1.4         1.4         1.4         1.3         3.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4 </td <td>69</td> <td>shenbagm</td> <td>23</td> <td>6857</td> <td>Primi</td> <td>32.1</td> <td>26.2</td> <td>144/90</td> <td>1+</td> <td>321</td> <td></td> <td>2.01</td> <td>1.45</td> <td>2.1</td> <td>E</td>                                   | 69  | shenbagm                              | 23 | 6857 | Primi  | 32.1 | 26.2 | 144/90  | 1+    | 321  |        | 2.01 | 1.45 | 2.1  | E   |
| 12         gomsthy         18         6854         Primi         36.2         26.3         148/94         trace         13.2         2.32         15.3         1.7         E           73         kalaneku/         25         6962         Primi         33         26.1         164/120         1         455         severe         2.21         1.1         1.8         F           76         barma         32         7000         62A1         38.2         152/90         1.4         326         2.45         1.4         1.8         7           76         farmalaras         24         7010         Primi         2.1         2.5         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.8         1.7         F         7         1.7         1.7         1.8         1.87         1.8         1.87         1.8         1.83         2.2         2.7         1.70/124         3+         2.42         1.48/92         1.9         1.4         1.97         1.8         1.83         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8                                                                                                                                                                                                                                                              | 70  | chandra                               | 24 | 6919 | Primi  | 34.2 | 26.1 | 144/98  | 1+    | 120  |        | 2.18 | 1.51 | 2.12 | E   |
| T2         kalaiselvi         25         6962         Primi         35.6         27.3         164/122         2+         2622         severe         2.21         1.31         1.8         £           74         suganthi         20         6936         Primi         33         26.1         164/110         1+         453         severe         2.21         1.31         1.8         £           76         tamilarasi         24         7019         Primi         32.1         25.1         152/00         1+         320         2.51         1.33         356           78         takthubanu         18         7063         Primi         31.2         28.6         146/02         2+         2500         2.12         1.03         3.12         SCH           80         aruna         28         7100         Primi         32         23.2         1.44         1.62/112         1+         763         severe         1.81         1.08         6.33         SCH           82         radha         27         7202         Primi         32         28.4         1.64/122         1+         2.8         1.40         1.98         1.42         1.82         3.5                                                                                                                                                                                                                                                                     | 71  | kumutha                               | 19 | 6927 | Primi  | 37.3 | 28.5 | 168/122 | 2+    | 3422 | severe | 2.21 | 1.21 | 2.13 | E   |
| 174         suganthi         20         6936         Primi         33         26.1         164/110         1+         433         severe         1.44         1.12         6.24         SCH                                                                                                                                                                                                                                                   | 72  | gomathy                               | 18 | 6854 | Primi  | 36.2 | 26.3 | 148/94  | trace | 132  |        | 2.32 | 1.53 | 1.7  | E   |
| T5         bama         32         7000         G211         38.2         29.2         154/116         1*         356         2.45         1.41         187         E           76         furmilarai         24         7019         Primi         3.1.         25.1         152/90         1*         320         2.15         1.43         1.67         E           77         nirmala         34         7043         G2P111         3.3.2         X248/92         2*         2500         2.12         1.33         3.12         SCM           78         teresa         31         7003         Primi         3.2.         2.2.4         170/124         3*         5421         severe         1.81         1.48         5.4         SCM         SCM           82         radha         32         7009         Primi         3.2         2.2.1         166/112         1*         420         severe         1.81         1.68         6.43         SCM           82         radha         32         738         2.4         1.64/122         1*         4.41         1.98         4.1         1.93         3.2         SCM           84         devin         1702                                                                                                                                                                                                                                                                              | 73  | kalaiselvi                            | 25 | 6962 | Primi  | 35.6 | 27.3 | 164/122 | 2+    | 2622 | severe | 2.21 | 1.31 | 1.8  | E   |
| Té         tamilarasi         24         7019         Primi         32.1         25.1         152/90         1+         320         2.15         1.43         1.67         E           Tr         Inrmala         34         7043         GP111         36.3         34.2         144/92         1+         320         1.13         .23         SCH           T8         terses         31         7063         GPrimi         32.2         22         170/124         3+         5421         severe         1.87         0.98         4.54         SCH           80         aruna         23         7009         Primi         38.2         24.2         148/94         trace         210         2.1         1.4         1.98         E           81         andmini         21         7102         Primi         32.2         2.84         160/102         trace         120         2.08         1.2         3.23         SCH           84         adevi         21         72.3         Primi         32.2         SCH         1.02         1.2         3.23         SCH           84         admini         21         712         Primi         32.2         SCH                                                                                                                                                                                                                                                                               | 74  | suganthi                              | 20 | 6936 | Primi  | 33   | 26.1 | 164/110 | 1+    | 453  | severe | 2.14 | 1.2  | 6.24 | SCH |
| 77       nimala       34       7043       G2P111       36.3       34.2       148/92       1+       324       1.92       1.1       3.23       SCH         78       teresa       31       705       Primi       31.2       22.6       710/124       3+41       Severe       1.87       0.98       45.45       SCH         80       aruna       23       7009       Primi       38.2       24.2       148/94       trace       121       1.4       1.98       E         81       andhini       21       7102       Primi       38.2       24.2       148/94       trace       121       1.44       1.98       E       21.1       1.44       1.98       E       21.1       1.44       1.98       E       21.1       1.44       1.98       E       22.1       1.64       1.64       1.64       1.64       1.64       1.64       1.64       1.64       2.01       1.53       2.2       2.64       1.60/12       1.72       2.84       1.60/12       1.72       2.84       1.60/12       1.72       2.83       2.62       1.64       1.64       3.51       1.54       5.64         84       dearuna       20       712.1<                                                                                                                                                                                                                                                                                                                                        | 75  | bama                                  | 32 | 7000 | G2A1   | 38.2 | 29.2 | 154/116 | 1+    | 356  |        | 2.45 | 1.41 | 1.87 | E   |
| 78         teress         31         7063         Primi         31.2         28.6         146/92         2+         2500         2.12         1.03         3.12         SCH           79         skithabaru         18         7118         Primi         29.2         27         170/124         3+         5421         severe         1.87         0.88         4.54         SCH           83         andhini         21         7009         Primi         39         29.7         152/82         trace         21.3         1.4         1.98         6.43         SCH           84         devi         21         7155         Primi         29         3.1.4         162/112         1+         420         severe         1.81         1.65         5.48         SCH           84         askashmi         20         717         Primi         37.2         28.4         150/102         trace         1.40         2.01         1.32         3.32         SCH           85         varalakshmi         20         7228         Primi         3.32         SCH         88         laktmin         2.1         1.32         3.32         SCH           88         lakthin                                                                                                                                                                                                                                                                         | 76  | tamilarasi                            | 24 | 7019 | Primi  | 32.1 | 25.1 | 152/90  | 1+    | 320  |        | 2.15 | 1.43 | 1.67 | E   |
| 79       sakithabanu       18       7118       Primi       29.2       27       170/124       3+       5421       severe       1.87       0.98       4.54       SCH         80       aruna       23       7009       Primi       38.2       24.2       144/94       trace       221       1.97       1.82       2.1       4       1.4       1.98       E         81       nandhini       22       7059       G2P111       37.2       28.4       166/112       1+       763       severe       1.87       0.98       6.52         84       devi       21       7202       Primi       36.2       35.2       164/122       242       severe       1.87       0.97       6.32       SCH         85       aranakihmi       20       711       Primi       32.2       154/122       1.24       248       severe       1.91       1.83       3.25       SCH         86       aruna       20       723       Primi       31.3       2.64       140/92       1.40       2.01       1.32       3.22       SCH       1.64/10/90       1+       321       2.22       1.12       3.23       SCH       3.33       2.64                                                                                                                                                                                                                                                                                                                                                  | 77  | nirmala                               | 34 | 7043 | G2P1L1 | 36.3 | 34.2 | 148/92  | 1+    | 324  |        | 1.92 | 1.1  | 3.23 | SCH |
| 80         aruna         23         7009         Primi         38.2         24.2         148/94         trace         221         1.97         1.28         2.1         E           81         nandhini         21         7102         Primi         39         29.7         152/82         trace         120         22.1         1.4         1.98         E           82         radha         32         7089         G2P111         37.2         28.4         166/112         1+         420         severe         1.81         1.06         6.43         SCH           84         ardian         12         7202         Primi         29.2         28.4         150/102         Tree         1.25         2.08         1.2         2.33         SCH           85         varalischmi         20         72.3         Primi         37.3         34.2         152/98         trace         140         2.01         1.32         3.32         SCH           88         lackinmi         23         7228         G2P111         38.2         26.7         14/96         nil         68         2.23         1.91         2.1         1.32         3.32         SCH <td< td=""><td>78</td><td>teresa</td><td>31</td><td>7063</td><td>Primi</td><td>31.2</td><td>28.6</td><td>146/92</td><td>2+</td><td>2500</td><td></td><td>2.12</td><td>1.03</td><td>3.12</td><td>SCH</td></td<>                                                                   | 78  | teresa                                | 31 | 7063 | Primi  | 31.2 | 28.6 | 146/92  | 2+    | 2500 |        | 2.12 | 1.03 | 3.12 | SCH |
| B1         nandhini         21         7102         Primi         39         29.7         152/82         trace         120         2.1         1.4         1.98         E           82         randhini         2         7155         Primi         32.2         28.4         166/112         1+         420         severe         1.6         1.6         5.48         SCH           83         nandhini         20         7171         Primi         32.2         35.2         164/122         2+         28.8         severe         1.87         0.97         6.32         SCH           86         aruan         19         715.8         Primi         32         28.1         140/92         1+         241         1.98         1.45         E           87         hemalatha         21         72.3         Primi         33.2         26.7         144/96         nil         68         severe         1.91         0.98         3.32         SCH           90         prasana         20         7243         Primi         31.2         26.3         142/90         1+         321         2.43         1.12         3.65         SCH           91         sotthi                                                                                                                                                                                                                                                                        | 79  | sakithabanu                           | 18 | 7118 | Primi  | 29.2 | 27   | 170/124 | 3+    | 5421 | severe | 1.87 | 0.98 | 4.54 | SCH |
| 82         radha         32         7089         G2P1L1         37.2         28.4         166/112         1+         420         severe         1.81         1.08         6.43         SCH           83         nandhini         22         7155         primi         30         35.2         164/122         22.4         248.4         severe         1.87         1.06         5.48         SCH           84         devi         21         7202         Primi         32.2         2.8.1         140/92         1+         241         1.98         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.43         2.1         2.33         SCH         32.3         SCH         32.3         SCH         32.4         1.25         Nath         32.3         SCH         33.4         1.270         Nath         32.1         1.40         1.41         32.1         2.20         1.15         1.7         F         91         9.8         A3.4         1.40         1.41         1.22         1.16         1.16                                                                                                                                                                                                                                          | 80  | aruna                                 | 23 | 7009 | Primi  | 38.2 | 24.2 |         | trace | 221  |        | 1.97 | 1.28 | 2.1  | E   |
| 83         nandhini         22         7155         Primi         29         31.4         162/112         1+         763         sever         1.96         1.16         5.48         SCH           84         devi         21         7202         Primi         362         252         164/122         2+         2482         severe         1.87         0.97         6.32         SCH           85         varalaskimi         20         7171         Primi         322         28.1         140/92         1+         241         1.98         1.45         1.45         E           87         hemslatha         21         7233         Primi         33.2         SCH         140/90         nil         89         2.22         1.19         2.1         E           90         presanna         20         7243         Primi         35.2         26.7         144/96         nil         68         2.43         1.51         1.7         E           91         sevira         35.7         24700         1+         112         2.43         1.51         1.1         2.43         1.51         1.1         2.43         1.51         1.1         2.55         SCH                                                                                                                                                                                                                                                                       | 81  | nandhini                              | 21 | 7102 | Primi  | 39   | 29.7 | 152/82  | trace | 120  |        | 2.1  | 1.4  | 1.98 | E   |
| 83         nandhini         22         7155         Primi         29         31.4         162/112         1+         763         severe         1.96         1.16         5.48         SCH           84         devi         21         7202         Primi         362.         156/122         2+         2482         severe         1.87         0.97         6.32         SCH           85         varalashim         20         7158         Primi         32.2         28.1         140/92         1+         241         1.98         1.45         1.45         E           86         aruna         19         7158         Primi         32.2         27.3         172/11         1+         864         severe         1.91         0.88         4.33         SCH           89         anitha         20         7228         CP111         32.4         2.57.         144/96         nil         68         2.43         1.51         1.7         E           91         savithri         24         7315         Primi         31.2         26.3         142/90         1+         112         2.16         1.6         1.97         E         9         9         9                                                                                                                                                                                                                                                                          | 82  | radha                                 | 32 | 7089 | G2P1L1 | 37.2 |      | -       | 1+    | 420  | severe | 1.81 | 1.08 |      | SCH |
| 84         devi         21         7202         Primi         36.2         35.2         164/122         2+         2482         severe         1.87         0.97         6.32         SCH           85         variakshmi         20         7171         Primi         29.4         28.4         140/92         1+         24.1         1.98         1.2         3.23         SCH           86         aruna         19         7158         Primi         37.3         34.2         152/98         trace         140         2.01         1.32         3.32         SCH           88         lakshmi         23         722.8         G2P111         38.2         26.7         144/96         nil         68         severe         1.9         0.8         4.83         SCH           90         prasanna         20         7326         Primi         38.2         26.7         144/96         nil         68         2.43         1.51         1.7         E           91         setM         35         734         Primi         31.2         2.66         1.6         1.97         E         1.12         3.15         P.16         1.97         E         1.97         E                                                                                                                                                                                                                                                                       | 83  | nandhini                              | 22 | 7155 | Primi  | 29   | 31.4 |         | 1+    | 763  | severe | 1.96 | 1.16 | 5.48 | SCH |
| 85         varalakshmi         20         7171         Primi         29.4         28.4         150/102         trace         125         2.08         1.2         3.23         SCH           86         aruna         19         7158         Primi         32         28.1         140/92         1+         241         1.98         1.45         1.45         1.45         1.45         1.82         3.23         SCH           88         lashmi         23         7228         G2P1L1         3.82         27.3         172/112         1+         864         severe         1.91         0.98         4.83         SCH           89         anitha         20         7228         G2P1L1         3.62         26.7         14/96         nil         68         2.43         1.12         3.65         SCH           90         prasanna         20         7335         Primi         31.2         26.6         140/90         1+         321         2.43         1.12         3.65         SCH           91         sorthrin         21         3.7.4         28.3         142/90         1+         321         2.14         1.21         2.25         SCH         3.55         <                                                                                                                                                                                                                                                            |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 86         aruna         19         7158         Primi         32         28.1         14/92         1+         241         1.98         1.45         1.45         E           87         hemalatha         21         7233         Primi         37.3         34.2         152/98         trace         140         2.01         1.32         3.32         SCH           88         lashmi         23         7228         G2P1L1         38.2         26.7         144/96         nil         89         2.22         1.19         2.1         E           90         prasanna         20         7326         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E           91         selvi         24         7315         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E           92         savithri         24         7356         G2P1L0         36.6         24.1         160/92         trace         123         savithri         20         7424         Primi         35.2         28.3         162/10         2+         254                                                                                                                                                                                                                                                                |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| Bernalatha         21         7233         Primi         37.3         34.2         152/98         trace         140         2.01         1.32         3.32         SCH           88         lashmi         23         7228         GZP1L1         38.2         27.3         172/112         1+         864         severe         1.91         0.98         4.83         SCH           89         anitha         20         7243         Primi         38.2         26.7         144/96         nil         68         2.43         1.51         1.7         E           91         selvi         35         7314         Primi         38.2         26.5         144/96         nil         68         2.43         1.51         1.7         E           91         selvi         35         7314         Primi         31.2         26.3         142/90         1+         122         2.16         1.6         1.97         E           92         avithri         3736         G2P110         36.3         21         150/92         trace         123         2.1         1.21         3.25         SCH           95         perma         24         740         Primi                                                                                                                                                                                                                                                                              |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 88         lakshmi         23         7228         G2P111         38.2         27.3         172/112         1+         864         severe         1.91         0.98         4.83         SCH           89         anitha         20         7243         Primi         31.3         26.4         140/92         nil         89         2.22         1.19         2.1         E           90         prasanna         20         7326         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E           91         selvi         35         7308         G2P111         37.4         28.3         142/90         1+         112         2.16         1.6         1.97         E           93         brindha         25         7308         G2P110         36.6         24.1         160/92         trace         1.23         2.1         1.2         2.26         1.31         2.1         E         2.9         1.2         2.06         1.31         2.1         E         2.9         1.2         2.06         1.31         2.1         E         2.0         1.33         2.1         1.2         2.27                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 88         anitha         20         7243         Primi         31.3         26.4         140/92         nil         89         2.22         1.19         2.1         E           90         prasanna         20         7326         Primi         38.2         26.7         144/96         nil         68         2.43         1.51         1.7         E           91         selvi         25         7314         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E           92         svithri         24         7156         Primi         37.4         28.3         142/90         1+         112         2.16         1.6         1.97         E           93         brincha         25         7364         Primi         36.6         24.1         160/92         trace         123         2.1         1.2         3.25         SCH           95         perma         20         7424         Primi         36.3         32         162/110         2+         2542         severe         1.97         1.21         5.25         SCH           97         savithri         20                                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      | -       |       |      | severe |      |      |      |     |
| 90         prasanna         20         7326         Primi         38.2         26.7         144/96         nil         68         2.43         1.51         1.7         E           91         seki         35         7314         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E.8         5.5         SCH           92         swithri         24         7315         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E.           93         brindha         25         7364         Primi         29         23.1         154/114         1+         387         2.19         1.21         4.22         SCH           95         payanthi         23         7375         G2P110         36.6         24.1         150/92         1+         224         2.06         1.3         2.1         1.2         5.2         SCH           97         savithri         20         7424         Primi         35.2         28.3         140/92         1+         424         2.08         0.9         3.43         SCH                                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      |         |       |      | Severe |      |      |      |     |
| 91         selvi         35         7314         Primi         35.6         28.5         140/90         1+         321         2.43         1.12         3.65         SCH           92         savithri         24         7315         Primi         31.2         26.3         142/90         1+         112         2.11         1.43         2.1         E           93         brindha         25         7364         Primi         37.4         28.3         142/90         1+         112         2.16         1.6         1.97         E           94         bruveneswari         25         7364         Primi         37.4         24.2         150/92         1+         321         2.06         1.31         2.1         E         SCH           95         prema         24         7156         Primi         36.6         24.1         150/92         t+         321         2.06         1.31         2.1         E         SCH           97         savithri         20         7424         Primi         35.4         29.3         152/96         1+         424         1.02         2.41         1.2         1.7         E         100         vaktha                                                                                                                                                                                                                                                                              |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 92         savithri         24         7315         Primi         31.2         26.3         142/92         trace         102         2.1         1.43         2.1         E           93         prindha         25         7308         G2P111         37.4         28.3         142/90         1+         112         2.16         1.6         1.97         E           94         bhuvaneswari         25         7364         Primi         29         23.1         154/114         1+         387         2.19         1.21         4.22         SCH           95         perema         24         7156         Primi         36.6         24.1         160/92         trace         123         2.1         1.2         3.25         SCH           97         savithri         20         7400         Primi         35.2         28.3         140/92         1+         102         2.41         1.21         1.7         E           100         vaktha         24         7494         Primi         35.2         28.3         140/92         1+         114         2.41         1.3         2.12         E           101         mary         24         7441                                                                                                                                                                                                                                                                                 |     | •                                     |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 93         brindha         25         7308         G2P1L1         37.4         28.3         142/90         1+         112         2.16         1.6         1.97         E           94         bhuvaneswari         25         7364         Primi         29         23.1         154/114         1+         387         2.19         1.21         4.22         SCH           95         paynthi         23         7375         G2P1L0         36.6         24.1         160/92         trace         123         2.11         1.2         3.25         SCH           97         savithi         20         7424         Primi         36.3         32         162/110         2+         2542         severe         1.97         1.21         5.28         SCH           98         abirami         20         7400         Primi         35.2         28.3         140/92         1+         424         2.08         0.99         3.43         SCH           100         vaktha         24         7441         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         E         1.3         1.42         E         1.01<                                                                                                                                                                                                                                                                |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 94         bhuvaneswari         25         7364         Primi         29         23.1         154/114         1+         387         2.19         1.21         4.22         SCH           95         prema         24         7156         Primi         37.4         24.2         150/92         1+         321         2.06         1.31         2.1         E           96         jayanthi         20         7424         Primi         36.3         32         162/110         2+         2542         severe         1.97         1.21         5.28         SCH           97         savithi         20         7424         Primi         35.4         29.3         152/96         1+         424         2.08         0.99         3.43         SCH           99         keerthika         20         7379         Primi         35.2         28.3         140/92         1+         102         2.41         1.3         2.12         E           100         vaktha         24         7441         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         E         1.02         1.23         1.22         E                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 95         prema         24         7156         Primi         37.4         24.2         150/92         1+         321         2.06         1.31         2.1         E           96         jayanthi         23         7375         G2P1L0         36.6         24.1         160/92         trace         123         2.1         1.2         3.25         SCH           97         savithri         20         7424         Primi         36.3         32         162/110         2+         2542         severe         1.97         1.21         5.28         SCH           98         abirami         20         7400         Primi         35.2         28.3         140/92         1+         102         2.41         1.21         1.7         E           100         vaktha         24         7494         Primi         35.2         34.5         144/98         nil         87         2.27         1.42         1.35         E           101         mary         24         7441         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         2.5         5.6         SCH           102                                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 96         jayanthi         23         7375         G2P1L0         36.6         24.1         160/92         trace         123         2.1         1.2         3.25         SCH           97         savithri         20         7424         Primi         36.3         32         162/110         2+         2542         severe         1.97         1.21         5.28         SCH           98         bairami         20         7400         Primi         35.2         28.3         140/92         1+         424         2.08         0.99         3.43         SCH           100         vaktha         24         7441         G2A1         34.6         26.5         164/124         1+         652         severe         2.02         1.23         6.24         SCH           101         mary         24         7441         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         E           103         nagamleeswari         22         7517         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         L5         1.5         3.25 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                             | -   |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 97       savithri       20       7424       Primi       36.3       32       162/110       2+       2542       severe       1.97       1.21       5.28       SCH         98       abirami       20       7400       Primi       35.4       29.3       152/96       1+       424       2.08       0.99       3.43       SCH         99       keerthika       20       7379       Primi       35.2       28.3       140/92       1+       102       2.41       1.21       1.7       E         100       vaktha       24       7494       Primi       35.2       34.5       144/98       nil       87       2.27       1.42       1.35       E         101       mary       24       7444       Primi       36.2       27.3       142/98       1+       314       2.41       1.3       2.12       E         102       nagamleeswari       22       7674       Primi       32       31.2       164/120       1+       564       severe       2.12       1.5       5.23       SCH         105       backiyalakshmi       23       7723       G2P111       37.4       27.4       154/98       2+       24                                                                                                                                                                                                                                                                                                                                                        |     | •                                     |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 98         abirami         20         7400         Primi         35.4         29.3         152/96         1+         424         2.08         0.99         3.43         SCH           99         keerthika         20         7379         Primi         35.2         28.3         140/92         1+         102         2.41         1.21         1.7         E           100         vaktha         24         7449         Primi         35.2         34.5         144/98         nil         87         2.27         1.42         1.35         E           101         mary         24         7441         G2A1         34.6         26.5         164/124         1+         652         severe         2.02         1.23         6.24         SCH           102         nirmala         29         7517         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         E           103         nagamleeswari         22         7721         Primi         32.         2.83         150/96         2+         2421         2.82         1.3         1.4         E           105         backiyalakshmi         3                                                                                                                                                                                                                                                                        |     |                                       |    |      |        |      |      |         |       |      | covoro |      |      |      |     |
| 99         keerthika         20         7379         Primi         35.2         28.3         140/92         1+         102         2.41         1.21         1.7         E           100         vaktha         24         7494         Primi         35.2         34.5         144/98         nil         87         2.27         1.42         1.35         E           101         mary         24         7441         G2A1         36.2         27.3         142/98         1+         314         2.41         1.3         2.12         E           103         nagamleeswari         22         7674         Primi         32         31.2         164/120         1+         564         severe         2.12         1.25         5.62         SCH           104         jansirani         22         7721         Primi         35.5         28         146/94         1+         342         2.15         1.5         3.23         SCH           105         backiyalakshmi         26         7486         G2P111         37.4         27.4         154/98         2+         2421         2.82         1.31         1.4         E           106         roobini <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>severe</td><td></td><td></td><td></td><td></td></td<>                                                                                                                 |     |                                       |    |      |        |      |      |         |       |      | severe |      |      |      |     |
| 100       vaktha       24       7494       Primi       35.2       34.5       144/98       nil       87       2.27       1.42       1.35       E         101       mary       24       7441       G2A1       34.6       26.5       164/124       1+       652       severe       2.02       1.23       6.24       SCH         102       nirmala       29       7517       G2A1       36.2       27.3       142/98       1+       314       2.41       1.3       2.12       E         103       nagamleeswari       22       7674       Primi       32       31.2       164/120       1+       564       severe       2.12       1.25       5.62       SCH         104       jasirani       22       7721       Primi       35.5       28       146/94       1+       342       2.15       1.5       3.23       SCH         105       backiyalashmi       23       7723       G2P1L1       37.4       27.4       154/98       2+       2421       2.82       1.33       1.4       E         106       roobini       26       7886       G2P1L1       37.4       27.4       154/98       1+       321                                                                                                                                                                                                                                                                                                                                                        |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 101       mary       24       7441       G2A1       34.6       26.5       164/124       1+       652       severe       2.02       1.23       6.24       SCH         102       nirmala       29       7517       G2A1       36.2       27.3       142/98       1+       314       2.41       1.3       2.12       E         103       nagamleeswari       22       7674       Primi       32       31.2       164/120       1+       564       severe       2.12       1.25       5.62       SCH         104       jansirani       22       7721       Primi       35.5       28       146/94       1+       342       2.15       1.5       3.23       SCH         105       backiyalakshmi       23       7723       G2P1L1       37.2       28.3       150/96       2+       2421       2.82       1.3       1.4       E         106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.33       3.2       SCH         109       anitha       31       7822       G2P1L1       38.3       27.1       154/100       nil       <                                                                                                                                                                                                                                                                                                                                                    |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 102       nirmala       29       7517       G2A1       36.2       27.3       142/98       1+       314       2.41       1.3       2.12       E         103       nagamleeswari       22       7674       Primi       32       31.2       164/120       1+       564       severe       2.12       1.25       5.62       SCH         104       jansirani       22       7721       Primi       35.5       28       146/94       1+       342       2.15       1.5       3.23       SCH         105       backiyalakshmi       23       7723       G2P1L1       37.4       27.4       154/98       2+       2421       2.82       1.3       1.4       E         106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.5       4.12       SCH         107       anitha       31       7822       Primi       33.3       26.3       146/98       1+       321       2.43       1.65       1.3       E         109       ranjni       21       8109       Primi       33.3       26.3       140/98       1+       321       2.43                                                                                                                                                                                                                                                                                                                                                        |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 103       nagamleeswari       22       7674       Primi       32       31.2       164/120       1+       564       severe       2.12       1.25       5.62       SCH         104       jansirani       22       7721       Primi       35.5       28       146/94       1+       342       2.15       1.5       3.23       SCH         105       backiyalakshmi       23       7723       G2P1L1       37.2       28.3       150/96       2+       2421       2.82       1.3       1.4       E         106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.5       4.12       SCH         107       anitha       31       7822       Primi       32.3       28.3       144/92       1+       423       2.41       1.23       1.23       E         108       veni       29       8022       G2P1L1       38.3       27.1       154/100       nil       87       3.12       1.35       3.2       SCH         109       ranjini       21       8109       Primi       33.2       26.3       146/98       1+       321                                                                                                                                                                                                                                                                                                                                                               |     |                                       |    |      |        |      |      |         |       |      | severe |      |      |      |     |
| 104       jansirani       22       7721       Primi       35.5       28       146/94       1+       342       2.15       1.5       3.23       SCH         105       backiyalakshmi       23       7723       G2P1L1       37.2       28.3       150/96       2+       2421       2.82       1.3       1.4       E         106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.5       4.12       SCH         107       anitha       31       7822       Primi       32.3       28.3       144/92       1+       423       2.41       1.23       1.23       E         108       veni       29       8022       G2P1L1       38.3       27.1       154/100       nil       87       3.12       1.35       3.2       SCH         109       ranjini       21       8109       Primi       33.3       26.3       146/98       1+       321       2.43       1.65       1.3       E         110       dhanalakshmi       29       7945       G3P2L2       34.2       29.3       160/114       1+       673       severe       2                                                                                                                                                                                                                                                                                                                                                        |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 105       backiyalakshmi       23       7723       G2P1L1       37.2       28.3       150/96       2+       2421       2.82       1.3       1.4       E         106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.5       4.12       SCH         107       anitha       31       7822       Primi       32.3       28.3       144/92       1+       423       2.41       1.23       1.23       E         108       veni       29       8022       G2P1L1       38.3       27.1       154/100       nil       87       3.12       1.35       3.2       SCH         109       ranjini       21       8109       Primi       33.3       26.3       146/98       1+       321       2.43       1.65       1.3       E         110       dhanalakshmi       29       7945       G3P2L2       34.2       29.3       160/114       1+       673       severe       2.1       1.23       5.24       SCH         111       nuzrathbegum       19       8006       Primi       31.2       26.3       144/92       1+       342                                                                                                                                                                                                                                                                                                                                                           |     | , , , , , , , , , , , , , , , , , , , |    |      |        |      |      | -       |       |      | severe |      |      |      |     |
| 106       roobini       26       7486       G2P1L1       37.4       27.4       154/98       2+       2452       3.21       1.5       4.12       SCH         107       anitha       31       7822       Primi       32.3       28.3       144/92       1+       423       2.41       1.23       1.23       E         108       veni       29       8022       G2P1L1       38.3       27.1       154/100       nil       87       3.12       1.35       3.2       SCH         109       ranjini       21       8109       Primi       33.3       26.3       146/98       1+       321       2.43       1.65       1.3       E         110       dhanalakshmi       29       7945       G3P2L2       34.2       29.3       160/114       1+       673       severe       2.1       1.23       5.24       SCH         111       nuzrathbegum       19       8006       Primi       31.2       26.3       140/98       1+       342       2.3       1.2       1.6       3.1       SCH         113       banupriya       22       8151       Primi       36.1       28.3       144/92       1+       42                                                                                                                                                                                                                                                                                                                                                        |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 107anitha317822Primi32.328.3144/921+4232.411.231.23E108veni298022G2P1L138.327.1154/100nil873.121.353.2SCH109ranjini218109Primi33.326.3146/981+3212.431.651.3E110dhanalakshmi297945G3P2L234.229.3160/1141+673severe2.11.235.24SCH111nuzrathbegum198006Primi31.226.3140/981+3423.121.41.63E112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228330G3P2L238.128.3144/921+4203.011.31.5E115swapna228379G3P2L238.128.3144/921+420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 108veni298022G2P1L138.327.1154/100nil873.121.353.2SCH109ranjini218109Primi33.326.3146/981+3212.431.651.3E110dhanalakshmi297945G3P2L234.229.3160/1141+673severe2.11.235.24SCH111nuzrathbegum198006Primi31.226.3140/981+3423.121.41.63E112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/921+4203.011.31.5E116sasikala228379G3P2L13929.3150/1021+3123.121.433.12SCH117dilsath228379G3A237.126.4144/981+102 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 109ranjini218109Primi33.326.3146/981+3212.431.651.3E110dhanalakshmi297945G3P2L234.229.3160/1141+673severe2.11.235.24SCH111nuzrathbegum198006Primi31.226.3140/981+3423.121.41.63E112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/921+3213.41.52.21E117dilsath228379G3P2L13929.3150/1021+3123.121.433.12SCH117dilsath228379G3P2L13929.3150/1021+3123.121.433.12SCH118sangeetha278337Primi35.327.3152/961+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 110dhanalakshmi297945G3P2L234.229.3160/1141+673severe2.11.235.24SCH111nuzrathbegum198006Primi31.226.3140/981+3423.121.41.63E112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3123.121.433.12SCH118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                       |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 111nuzrathbegum198006Primi31.226.3140/981+3423.121.41.63E112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                       |    |      |        |      |      | -       |       |      |        |      |      |      |     |
| 112banupriya228151Primi36.128.3144/921+3522.121.63.1SCH113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+3212.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.52 </td <td></td> <td>severe</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                       |    |      |        |      |      |         |       |      | severe |      |      |      |     |
| 113shabana218312G5P2L2A22929148/941+4232.31.22.13E114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 0                                     |    |      |        |      |      |         |       |      |        |      |      |      |     |
| 114sermakani348258G3P2L137.327.3144/921+4211.981.23.76SCH115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                       |    |      |        |      |      | ,       | 1+    |      |        |      |      |      |     |
| 115swapna228327G3A238.226.2142/981+4203.011.31.5E116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                       |    |      |        |      |      | -       | 1+    |      |        |      |      |      | E   |
| 116sasikala228380G3P2L238.128.3144/982+26022.11.23.21SCH117disath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114 | sermakani                             | 34 | 8258 | G3P2L1 | 37.3 | 27.3 | 144/92  | 1+    | 421  |        | 1.98 | 1.2  | 3.76 | SCH |
| 117dilsath228379G3P2L13929.3150/1021+3213.41.52.21E118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                       | 22 | 8327 | G3A2   | 38.2 | 26.2 |         | 1+    | 420  |        | 3.01 | 1.3  | 1.5  | E   |
| 118sangeetha278337Primi35.327.3152/961+3123.121.433.12SCH119jakulin328495G3A237.126.4144/981+1023.51.522.14E120riswana218437Primi32.126.3142/901+1222.341.33.5SCH121geetha323579G3P2L231.229.3146/921+3212.521.023.56SCH122devi228528Primi34.627.4150/921+3641.961.523.62SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116 | sasikala                              | 22 | 8380 | G3P2L2 | 38.1 | 28.3 | 144/98  | 2+    | 2602 |        | 2.1  | 1.2  | 3.21 | SCH |
| 119       jakulin       32       8495       G3A2       37.1       26.4       144/98       1+       102       3.5       1.52       2.14       E         120       riswana       21       8437       Primi       32.1       26.3       142/90       1+       122       2.34       1.3       3.5       SCH         121       geetha       32       3579       G3P2L2       31.2       29.3       146/92       1+       321       2.52       1.02       3.56       SCH         122       devi       22       8528       Primi       34.6       27.4       150/92       1+       364       1.96       1.52       3.62       SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117 | dilsath                               | 22 | 8379 | G3P2L1 | 39   | 29.3 | 150/102 | 1+    | 321  |        | 3.4  | 1.5  | 2.21 | E   |
| 120       riswana       21       8437       Primi       32.1       26.3       142/90       1+       122       2.34       1.3       3.5       SCH         121       geetha       32       3579       G3P2L2       31.2       29.3       146/92       1+       321       2.52       1.02       3.56       SCH         122       devi       22       8528       Primi       34.6       27.4       150/92       1+       364       1.96       1.52       3.62       SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118 | sangeetha                             | 27 | 8337 | Primi  | 35.3 | 27.3 | 152/96  | 1+    | 312  |        | 3.12 | 1.43 | 3.12 | SCH |
| 121 geetha         32         3579         G3P2L2         31.2         29.3         146/92         1+         321         2.52         1.02         3.56         SCH           122 devi         22         8528         Primi         34.6         27.4         150/92         1+         364         1.96         1.52         3.62         SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119 | jakulin                               | 32 | 8495 | G3A2   | 37.1 | 26.4 | 144/98  | 1+    | 102  |        | 3.5  | 1.52 | 2.14 | Е   |
| 122         devi         22         8528         Primi         34.6         27.4         150/92         1+         364         1.96         1.52         3.62         SCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120 | riswana                               | 21 | 8437 | Primi  | 32.1 | 26.3 | 142/90  | 1+    | 122  |        | 2.34 | 1.3  | 3.5  | SCH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121 | geetha                                | 32 | 3579 | G3P2L2 | 31.2 | 29.3 | 146/92  | 1+    | 321  |        | 2.52 | 1.02 | 3.56 | SCH |
| 123 pravthy 20 8616 Primi 29.3 26.3 142/98 1+ 384 2.51 1.03 2.1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122 | devi                                  | 22 | 8528 | Primi  | 34.6 | 27.4 | 150/92  | 1+    | 364  |        | 1.96 | 1.52 | 3.62 | SCH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123 | pravthy                               | 20 | 8616 | Primi  | 29.3 | 26.3 | 142/98  | 1+    | 384  |        | 2.51 | 1.03 | 2.1  | E   |

| 424 |                       | 25       | 0557         | 63541.0        | 27           |              | 444/06           |             | 242        |        | 2.64        |             | 4 70        | -        |
|-----|-----------------------|----------|--------------|----------------|--------------|--------------|------------------|-------------|------------|--------|-------------|-------------|-------------|----------|
| -   | deepa                 | 25       | 8557         | G2P1L0         | 37           | 27           | 144/96           | trace       | 213        |        | 2.61        | 1.1         | 1.73        | E        |
| 125 | usha                  | 22       | 8795         | Primi          | 35.3         | 26           | 152/98           | trace       | 267        |        | 2.67        | 1.7         | 4.2         | SCH      |
|     | mythili               | 21       | 8803         | Primi          | 37.4         | 27.2         | 144/94           | 1+          | 332        |        | 2.34        | 1.2         | 1.82        | E        |
|     | chitra                | 22       | 8849         | Primi          | 29.4         | 27.3         | 164/110          | 1+          | 624        | severe | 2.01        | 1.32        | 5.41        | SCH      |
| -   | durgadevi             | 26       | 8894         | Primi          | 38.2         | 28.3         | 150/94           | nil         | 102        |        | 2.31        | 1.22        | 3.21        | SCH      |
|     | jeevitha              | 29       | 9035         | Primi          | 38.1         | 27.3         | 142/94           | 1+          | 129        |        | 1.92        | 1.2         | 1.23        | E        |
|     | karimunisha           | 23<br>27 | 9042         | Primi          | 37.2         | 26.3         | 148/96           | trace       | 142        |        | 1.82        | 1.43        | 3.12        | SCH      |
| -   | velankanni<br>lavanya | 27       | 9036<br>9153 | Primi<br>Primi | 38.1<br>29.2 | 28.3<br>29.3 | 140/96<br>152/92 | 1+          | 105<br>183 |        | 2.13<br>2.4 | 1.24<br>1.5 | 3.6<br>1.25 | SCH<br>E |
| -   | menaka                | 21       | 9288         | G2P1L1         | 37.1         | 29.3         | 132/92           | trace<br>1+ | 142        |        | 2.4         | 1.5         | 1.25        | E        |
|     | jothilakshmi          | 20       | 9018         | Primi          | 32.2         | 28.1         | 142/92           | 1+          | 104        |        | 2.13        | 1.04        | 3.17        | SCH      |
|     | fathima               | 20       | 9317         | G3P1L1A1       | 36.4         | 27.2         | 154/94           | trace       | 182        |        | 2.15        | 1.52        | 3.25        | SCH      |
|     | aarthi                | 24       | 8875         | G3P2L1         | 37.2         | 26.4         | 150/98           | 2+          | 2824       |        | 2.13        | 1.72        | 4.21        | SCH      |
|     | priya                 | 23       | 9486         | Primi          | 29.5         | 28.4         | 142/94           | trace       | 2024       |        | 2.23        | 1.72        | 5.97        | SCH      |
|     | sakilabanu            | 27       | 9493         | Primi          | 38.4         | 27.3         | 154/98           | 2+          | 2802       |        | 1.98        | 1.2         | 2.1         | E        |
|     | thajunisha            | 26       | 9267         | G2P1L1         | 36.3         | 28.5         | 144/92           | nil         | 125        |        | 2.22        | 1.03        | 1.2         | E        |
| 140 | premalatha            | 31       | 9505         | Primi          | 34.6         | 32.1         | 164/110          | 1+          | 464        | severe | 1.9         | 1.31        | 6.74        | SCH      |
| 141 | lakshmi               | 31       | 9520         | G3P2L1         | 35.6         | 34.3         | 164/114          | 1+          | 673        | severe | 2.08        | 1.24        | 7.63        | SCH      |
| -   | priyanka              | 20       | 9630         | Primi          | 35.3         | 28.3         | 142/92           | 1+          | 263        | 567676 | 2.71        | 1.21        | 3.4         | SCH      |
|     | nagadarshini          | 32       | 8155         | G2P1L2         | 36.1         | 35.3         | 144/92           | 1+          | 203        |        | 2.03        | 1.52        | 1.8         | E        |
| -   | radhika               | 23       | 9656         | Primi          | 29.3         | 29.3         | 154/104          | 2+          | 2602       |        | 3.04        | 1.04        | 4.1         | SCH      |
| -   | radhudevi             | 32       | 9650         | Primi          | 38.2         | 36.3         | 152/96           | 1+          | 321        |        | 1.72        | 1.09        | 1.4         | E        |
|     | uma                   | 20       | 9676         | Primi          | 31.3         | 27.4         | 150/94           | 1+          | 352        |        | 2.43        | 0.92        | 1.2         | E        |
|     | gayatri               | 27       | 9605         | Primi          | 37.2         | 38.5         | 166/114          | 2+          | 2724       | severe | 2.14        | 1.05        | 6.24        | SCH      |
|     | fathima               | 24       | 9881         | Primi          | 36.3         | 27.3         | 144/92           | trace       | 283        |        | 2.1         | 0.98        | 3.87        | SCH      |
| -   | manjula               | 19       | 9694         | Primi          | 30.3         | 36.3         | 148/98           | 1+          | 252        |        | 2.01        | 1.2         | 2.89        | E        |
|     | prasanna              | 24       | 9931         | Primi          | 38.2         | 23.4         | 144/94           | 1+          | 283        |        | 1.97        | 1.42        | 2.1         | E        |
|     | ramya                 | 22       | 9839         | G2A1           | 31.2         | 25.2         | 142/94           | 1+          | 234        |        | 1.82        | 0.94        | 2.13        | E        |
|     | meena                 | 30       | 10140        | G3P1L1A1       | 36.2         | 31.2         | 142/98           | 1+          | 263        |        | 2.3         | 1.32        | 2.12        | E        |
|     | mamtha                | 26       | 8941         | Primi          | 32.3         | 33.4         | 146/98           | 1+          | 302        |        | 2.53        | 1.42        | 1.63        | E        |
| 154 | sumithra              | 22       | 10036        | G2P1L1         | 34.2         | 32.1         | 146/94           | trace       | 289        |        | 2.14        | 1.03        | 3.42        | SCH      |
| 155 | archana               | 31       | 10132        | G2P1L1         | 37.4         | 34.2         | 142/98           | 1+          | 329        |        | 2.04        | 1.04        | 2.12        | E        |
| 156 | hemavathy             | 23       | 9621         | Primi          | 38.4         | 36.2         | 152/92           | 1+          | 342        |        | 2.41        | 1.21        | 3.12        | SCH      |
| -   | shabana               | 22       | 10204        | Primi          | 29.7         | 31.2         | 146/92           | 1+          | 283        |        | 2.03        | 1.31        | 2.12        | E        |
| -   | venmathy              | 32       | 8937         | Primi          | 34.2         | 37.2         | 152/98           | trace       | 293        |        | 2.83        | 1.05        | 2.12        | E        |
| 159 | gowri                 | 34       | 10307        | Primi          | 35.4         | 21.4         | 152/98           | 1+          | 342        |        | 1.87        | 0.95        | 4.52        | SCH      |
| 160 | subashini             | 21       | 10240        | G3P1L1A1       | 39           | 22           | 152/92           | trace       | 282        |        | 3.21        | 0.94        | 1.42        | E        |
| 161 | stella                | 21       | 10380        | Primi          | 34.5         | 32.2         | 156/98           | trace       | 243        |        | 2.32        | 1.23        | 1.62        | E        |
| 162 | gnanaselvi            | 33       | 10385        | G2P1L1         | 36.2         | 26.4         | 148/92           | 1+          | 342        |        | 2.1         | 0.98        | 4.3         | SCH      |
| 163 | manjula               | 21       | 10416        | G2P1L1         | 35.6         | 24.1         | 142/94           | 1+          | 271        |        | 2.63        | 1.52        | 2.12        | E        |
| 164 | vanitha               | 20       | 10389        | Primi          | 30.1         | 31.2         | 152/96           | 1+          | 361        |        | 1.92        | 1.34        | 3.14        | SCH      |
| 165 | nancy                 | 20       | 10413        | G3A2           | 37.2         | 32.1         | 146/92           | trace       | 213        |        | 1.95        | 1.52        | 1.23        | E        |
| 166 | anbina                | 30       | 10412        | G3P1L1A1       | 29.6         | 36.3         | 148/100          | 1+          | 321        |        | 1.98        | 1.62        | 3.21        | SCH      |
| 167 | geetha                | 25       | 10422        | Primi          | 38.2         | 23.1         | 142/98           | trace       | 126        |        | 2.03        | 1.05        | 1.23        | E        |
| 168 | durgadevi             | 23       | 10407        | Primi          | 36.3         | 32.4         | 142/98           | 1+          | 128        |        | 2.08        | 1.36        | 1.42        | E        |
| 169 | gracy                 | 30       | 10142        | Primi          | 36.2         | 24.2         | 152/98           | 1+          | 320        |        | 2.18        | 1.52        | 3.42        | SCH      |
| 170 | ranjini               | 21       | 10362        | Primi          | 30.3         | 34.5         | 170/110          | 2+          | 3524       | severe | 2.06        | 1.15        | 4.01        | SCH      |
| 171 | puspha                | 31       | 10400        | G2P1L1         | 38.2         | 33.4         | 152/94           | trace       | 218        |        | 2.42        | 1.29        | 1.5         | E        |
| 172 | yuvarani              | 21       | 10395        | G2P1L1         | 28.6         | 23.1         | 152/94           | 1+          | 214        |        | 2.21        | 1.62        | 2.12        | E        |
| 173 | veena                 | 27       | 10399        | Primi          | 37.1         | 35.4         | 148/100          | 1+          | 283        |        | 2.43        | 1.29        | 2.41        | E        |
| 174 | nadhiya               | 26       | 10405        | Primi          | 32.2         | 21.4         | 142/100          | 1+          | 246        |        | 2.73        | 1.02        | 3.56        | SCH      |
| 175 | kanchana              | 26       | 10372        | G3P2L2         | 36.3         | 36.4         | 154/98           | trace       | 282        |        | 1.96        | 1.62        | 2.12        | E        |
| 176 | anitha                | 22       | 10280        | G3P1L1A1       | 34.6         | 33.2         | 152/98           | 1+          | 302        |        | 2.03        | 0.98        | 1.82        | E        |
| 177 | narmadha              | 23       | 10365        | G2P1L1         | 31.5         | 21.5         | 142/100          | 1+          | 320        |        | 2.06        | 1.62        | 1.23        | E        |
| 178 | jarina                | 24       | 10278        | Primi          | 34.5         | 32.2         | 164/112          | 2+          | 2523       | severe | 2.51        | 1.42        | 4.92        | SCH      |
| 179 | sridevi               | 23       | 10387        | Primi          | 33.1         | 21.3         | 148/98           | 1+          | 324        |        | 2.42        | 1.25        | 3.42        | SCH      |
| 180 | murugeswari           | 22       | 10355        | Primi          | 36.2         | 32.3         | 152/92           | trace       | 242        |        | 2.02        | 1.62        | 3.26        | SCH      |
| 181 | prabavathy            | 26       | 10316        | Primi          | 35.2         | 24.2         | 142/98           | 1+          | 320        |        | 2.43        | 1.32        | 3.41        | SCH      |
| 182 | anish                 | 21       | 10339        | Primi          | 36.3         | 34.2         | 152/98           | trace       | 212        |        | 2.83        | 1.52        | 2.43        | E        |
| 183 | rasheeda              | 26       | 10269        | Primi          | 32.5         | 32.3         | 142/100          | 1+          | 242        |        | 213         | 1.26        | 1.43        | E        |
| 184 | muthu                 | 27       | 10338        | Primi          | 28.4         | 34.3         | 162/114          | 2+          | 3569       | severe | 1.92        | 1.32        | 4.82        | SCH      |
| 185 | navamani              | 24       | 10220        | G3P2L1         | 38.4         | 24.3         | 142/98           | 1+          | 242        |        | 2.05        | 1.3         | 2.1         | E        |
| 186 | nayaki                | 24       | 9268         | Primi          | 37.2         | 33.4         | 170/112          | 2+          | 2622       | severe | 1.95        | 1.21        | 6.02        | SCH      |

|     |              |    |       |             | 1    |      |         |       |      | 1      |      |      |      |     |
|-----|--------------|----|-------|-------------|------|------|---------|-------|------|--------|------|------|------|-----|
| 187 | chitra       | 22 | 10369 | Primi       | 34.6 | 23.4 | 152/98  | trace | 273  |        | 2.41 | 1.62 | 2.23 | E   |
| 188 | sudha        | 23 | 10090 | G2P1L1      | 31.5 | 25.3 | 142/98  | 1+    | 362  |        | 2.15 | 1.52 | 2.11 | E   |
| 189 | anandhi      | 23 | 10143 | G2P1L1      | 36.4 | 24.2 | 152/94  | 1+    | 284  |        | 2.41 | 1.26 | 1.42 | Е   |
| 190 | navtha       | 22 | 9920  | G3P1L1A1    | 37.2 | 33.2 | 164/120 | 3+    | 5208 | severe | 2.41 | 1.26 | 5.62 | SCH |
| 191 | vijayakumari | 24 | 10288 | Primi       | 29.3 | 34.3 | 142/96  | 2+    | 2622 |        | 2.31 | 1.24 | 1.42 | E   |
| 192 | kokila       | 25 | 10282 | Primi       | 36.3 | 23.1 | 152/102 | 1+    | 382  |        | 2.51 | 1.52 | 1.32 | E   |
| 193 | sudha        | 24 | 10318 | Primi       | 37.4 | 35.4 | 142/94  | trace | 240  |        | 2.51 | 1.25 | 2.1  | E   |
| 194 | gowri        | 25 | 10306 | Primi       | 38.4 | 32.2 | 142/96  | 1+    | 1424 |        | 2.16 | 1.52 | 1.42 | E   |
| 195 | nishanthi    | 23 | 10300 | Primi       | 38.4 | 35.6 | 144/94  | 1+    | 320  |        | 3.04 | 1.38 | 2.9  | E   |
| 196 | saidhani     | 25 | 10229 | Primi       | 36.2 | 24.3 | 152/94  | trace | 128  |        | 2.4  | 1.19 | 2.33 | E   |
| 197 | priyanka     | 20 | 1034  | Primi       | 35.2 | 24.4 | 148/102 | trace | 268  |        | 3.21 | 1.26 | 1.02 | E   |
| 198 | karpagam     | 20 | 10188 | Primi       | 34.2 | 35.4 | 152/94  | trace | 204  |        | 1.94 | 1.52 | 1.94 | E   |
| 199 | saridha      | 28 | 10284 | <u>G3A2</u> | 33.5 | 23.4 | 152/92  | 1+    | 242  |        | 2.52 | 1.62 | 2.14 | E   |
| 200 | yasodha      | 20 | 10723 | Primi       | 37.3 | 37.4 | 142/92  | 1+    | 273  |        | 2.31 | 1.23 | 2.22 | E   |