A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS

Dissertation submitted in partial fulfilment of the requirements for the degree of

M.Ch. (Plastic Surgery) – Branch III

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY
CHENNAI

AUGUST 2013
DECLARATION

I solemnly declare that this dissertation “A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS” was prepared by me in the Department of Plastic, Reconstructive and Maxillofacial Surgery, Madras Medical College and Government General Hospital, Chennai under the guidance and supervision of the Professor and Head of the Department of Plastic, Reconstructive and Maxillofacial Surgery, Madras Medical College and Government General Hospital, Chennai between 2010 and 2013.

This dissertation is submitted to the Tamilnadu Dr. MGR Medical University, Chennai in partial fulfilment of the university requirements for the award of degree of M.Ch. Plastic Surgery.

Place: Chennai

Date:
ACKNOWLEDGEMENT

I gratefully acknowledge and sincerely thank The Dean, Madras Medical College, Chennai, for granting me permission to utilize the facilities of the institution for my study.

I am extremely grateful to my teacher and guide Prof. R. Gopinath M.S., M.Ch. Professor and Head of the Department of Plastic, Reconstructive and Maxillo-Facial surgery Madras Medical College, Chennai, who helped me in all stages of my study. I am thankful to him for his timely suggestions, unending patience, constant encouragement and scholarly guidance.

I also thank my co guides Prof. Udesh Ganapathy M. Ch. and Prof. K. Gopalakrishnan M. Ch. for their encouragement and expert guidance.

I also thank retired Prof. K. V. Alala Sundaram M. Ch. for guiding me in the initial stages of this study.

I express my thanks to Dr. S. Sridevi M.S., M.Ch., Dr. K. Boopathy M.S., M.Ch., Dr T. M. Balakrishnan M.S., M.Ch., Dr. K. Saravanan M.S., M.Ch., Dr.C.Selvakumar M.S., M.Ch., Dr. K. Mahadevan M.S., M.Ch. and Dr. R. Vivek M.S., M.Ch. for their sustained encouragement in my study and work.

I sincerely thank my fellow postgraduates for their help and support which made this study possible.

I dedicate this study to my wife who lent both technical and moral support and was instrumental in the completion of this study.

I am extremely grateful to my parents for their support and encouragement.

Last but not least, I thank all my patients, without their help and co-operation this study would not have been possible.
CONTENTS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>AIM OF THE STUDY</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>MATERIALS & METHODS</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>SURGICAL ANATOMY</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>SURGICAL TECHNIQUE</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>OBSERVATION AND RESULTS</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>DISCUSSION</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>CONCLUSION</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ethical committee clearance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plagiarism result</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Patient Consent Form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Proforma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master chart</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

The scalp being the superior border of the body, is many a times exposed to insults from the environment. As the scalp usually lacks clothing coverage, it is more commonly susceptible to burns and other trauma that cause extensive disfigurement and scarring. It is also the site for a variety of benign and malignant neoplasms, due to prolonged sun exposure.

The factors influencing decision making in the repair of scalp defects are their size, depth and location.1 Another vital factor in deciding the management is the nature of the defect. In case of a tumour excision the bone may be removed sometimes requiring a complex reconstructive technique. The type of flap needed to cover the defect is also influenced by the integrity of the surrounding scalp tissue.2

Advancement, transposition and rotation flaps are the work horse flaps for reconstructing these defects. The design of these flaps should consider the preservation of the hairline, aesthetic re-directioning of the hair follicles, the inclusion of major vascular pedicles, and tensionless wound closure.1
Primary closure is the best option for small defects less than 3 cm in diameter but the location of the defect has to be taken into consideration.³

Total scalp avulsions are devastating injuries that are often caused by long hair getting caught in machinery. The best treatment for scalp avulsion is immediate replantation of the avulsed tissue using microsurgical techniques.

Closure of defects using split-thickness skin grafts is quick and effective. Skin grafting is technically easy and donor site morbidity is minimal.

In case of small and medium size defects local flaps are believed to be the workhorse flaps. These flaps encompass the skin, subcutaneous tissue, and galea aponeurotica. Local flaps are best raised over named vascular pedicles. Skin graft cover for the donor defect once a large scalp flap has been raised is probably the safest procedure.⁴

Unilateral and bilateral rotation flaps are very useful for covering defects in the hair-bearing scalp. Bilateral flaps decrease the wound tension by distributing it over a wider area than single flaps. Forehead defects can also be reconstructed
using rotation flaps producing an aesthetic appearance but can desensitise the adjacent skin.

Transposition flaps are used in the reconstruction of temporal or glabellar defects. Small defects may be covered with a single transposition flap and the donor defect can be closed primarily. This is not possible in case of large defects for which larger flaps are designed. Either a bilobed transposition flap or multiple rhomboid flaps may be designed in these situations.

Multiple flaps have been shown to distribute the tension over the wound. But, multiple rhomboid flaps produce a complicated scar that is difficult to hide along the relaxed skin tension lines.

Orticochea flaps, also called "banana peel flaps," when described initially used four large scalp flaps, each based on a known vascular pedicle. This method allows reconstruction of defects as large as 30% of total scalp area.5

A modification of the Orticochea relies on three flaps, two of them are based on the superficial temporal vascular pedicles and a single posterior nape of neck flap based on the
occipital vascular pedicle. The coverage can be increased using multiple scoring incisions in the galea aponeurotica that overcomes the resistance to stretch. This method allows coverage up to 25% of the scalp.5

Free tissue transfer provides single-procedure closure of large defects and complicated wounds extending up to the bone. They also provide robust vascularity to the recipient site helping better wound healing especially in cases of defects resulting from radiation exposure and infection.

The disadvantages of free flaps are that they are time consuming, cause significant donor site morbidity, and are expensive for the patient. Therefore, free flaps are indicated only when other simpler reconstructive techniques such as skin grafts, local scalp flaps, or healing by secondary intention cannot be done.

The radial forearm flap is a good choice for resurfacing small defects in which reconstruction of bone is not required.

Another good option for covering such soft tissue only defects is the anterolateral thigh flap.
The latissimus dorsi free flap with its long dominant pedicle and its soft pliable nature is an ideal method of reconstructing large scalp defects.

The reconstruction of scalp defects can be successful if the decision making is based on a good knowledge of anatomy, a meticulous evaluation of the defect, and consideration of the relevant patient factors and the knowledge of the varied reconstructive methods available.

Preoperative planning is important. The planning must be tailored to the individual defect as no single method is available for covering scalp defect.

A successful reconstruction must result in less morbidity, decreased hospitalization time, good aesthetic appearance, preserving the hairline without violating the body contour.
AIM OF THE STUDY:

1. To analyze scalp defects and to discuss the various established reconstructive options available and their application.

2. To evaluate the outcomes of various surgical procedures following scalp reconstruction.
REVIEW OF LITERATURE

The repair of scalp wounds follows a reconstructive ladder according to the size of the defect. The early history of scalp wound management consisted mainly of spontaneous granulation and re-epithelialization. This was later followed by direct approximation of the wound edges to hasten healing.

During the past several years, a better understanding of the blood supply of local scalp flaps, introduction of the technique of tissue expansion, and the advent of microvascular free tissue transfer has greatly improved the ability of plastic surgeons to reconstruct scalp defects. ³

In the reconstructive ladder, primary skin closure of small defects is the first option when possible. Other options available for reconstruction are split or full thickness skin grafting, local scalp flaps with or without expansion of adjacent tissue, occasionally regional flaps and free tissue transfer in that order.

Primary closure is a simple method of defect closure with good aesthetic and functional results in small defects, but as the size of the defect increases, primary closure becomes a
more challenging option. Samuel J. Lin et al in 2008 stated that size of the defect is not the only criteria; the tissue that is being advanced for closure and its quality should also be given important consideration.³

Scalp tissue that has undergone radiation will be stiff and is unlikely to advance and close if there is even mild amount of tension in the suture line. Although scalp tissue can bear significant amount of tension during wound approximation, the rigidity which is an inherent nature of the scalp tissue limits the undermining and advancement of wound edges compared to other parts of the body which have comparatively more lax skin. Hoffman JF in 2001 stated that only defects that are not more than 3 cm in diameter can be closed primarily due to the limited elasticity seen in scalp tissue.⁶

Whenever the wound bed is found to be well vascularised split or full thickness skin grafts can be considered as a good option for scalp tissue reconstruction. Netolitzky in 1871 was the first person to reconstruct a scalp defect with skin graft.⁷ In 1908 Robinson found that when the pericranium is intact skin grafting can be done without waiting for the defect to granulate.⁸
Small scalp defects can be resurfaced easily using local scalp flaps or skin grafts (Gillies, 1944; Conley, 1964). However deep defects which are extensive and involving the dura are a challenge for the reconstructive surgeon. Yoon S et al in 2011 reported that a single-stage acellular dermal matrix and split-thickness skin graft reconstruction represents a simple and valuable surgical approach to achieve a durable scalp coverage without requiring donor-site or prolonged treatment.

Furnas H et al in 1990 reported the disadvantages of skin graft like impaired colour, and texture especially when it is meshed. He also stated that skin grafting can be done only after several weeks giving time for granulation tissue to appear thereby producing sufficient wound healing conditions. This is especially needed when there is a huge defect lacking periosteum and the underlying bone is exposed with the outer cortical table drilled to produce multiple perforations.

Robson MC et al in 1989 reported that whenever the resected area is undergoing postoperative radiotherapy split or full thickness skin grafting should not be used as a reconstructive option.
He also stated that postoperative radiation interferes with the healing of skin graft and the chances of developing radiation ulcer are increased manifold. When there is osteoradionecrosis or preoperatively the resection site has been exposed to radiotherapy then defect coverage with skin grafts is a relative contraindication.12

The indications and technique of tissue expansion for scalp reconstruction are discussed by Argenta et al, Manders et al and Wieslander.7 Radovan popularized tissue expansion of the scalp, enabling recruitment of more hair bearing adjacent scalp.8

Cemil Dalay et al in 2006 conducted a study on 15 patients and concluded that tissue expansion procedure led to an increase in hairy areas in the late phase in six of his cases.13

Tissue expansion requires a good amount of adjacent tissue that can be expanded, patient should be able to tolerate multiple surgical procedures, and calvarial bone coverage should be stable during the expansion period. But in situations such as malignant scalp tumours where immediate resection
and reconstruction of the scalp tissue is needed tissue expansion is contraindicated.3

Tissue expansion is not a treatment option for malignant scalp tumours such as squamous cell carcinoma or for infected and post traumatic scalp defects as the procedure takes several weeks. In these cases, tissue expanders play an important role in the secondary treatment for aesthetic improvement after reconstruction of the defect.4

Manders EK et al in 1984 stated in their study that patients with scalp defects up to 50\% of the scalp may undergo expansion of adjacent scalp as an option for reconstruction.14

Leedy JE et al in 2005 in his algorithmic approach concluded that the scalp tissue at the end of the expansion must be at least 20\% larger than the original defect to give allowance for recoil of tissues during advancement or rotation.15

Kazanjian and others espoused the use of local flaps.8 They found that local flaps were the best option in small to moderate scalp defects. Lutz BS et al in 1998 reported that
local flaps can be employed with great success in defects involving the hair-bearing regions.16

Demir Z et al in 2003 reported that scalp flaps are advantageous in that they are technically simple and 2 or 3 local flaps can be raised if needed if the defect to be covered is large.17

Garcia – del Campo JA et al in 2008 conducted a study and found that local flap techniques lead to shortening of surgical time compared to the other techniques and the donor site morbidity in the skin graft donor site is minimal resulting in a satisfactory cosmetic outcome.1

Cornelia Mueller et al in 2012 stated that local flaps have pleasant outcome.18 Bzhko IP et al in 1992 and Ioannides C et al in 1999 found that the main disadvantages of local flap reconstruction techniques are that they require adjacent normal scalp tissue and they are unsuitable for covering defects in the non-hair bearing forehead region. Also local flaps are insufficient to cover the deep defects of the scalp as the tissue is insufficient.19, 20
The introduction of free tissue transfer for head and neck reconstructive surgery has immensely increased the repertoire of techniques available for reconstructing scalp and forehead defects.21

Free tissue transfer of the scalp was first introduced by Mclean in the year 1972 when he covered a scalp wound with omentum. Broad excision of many scalp malignancies results in removal of underlying periosteum as well, leaving the subsequent wound unsuitable for skin grafting.8

Camelia Tamas et al in 2005 conducted a study on 14 patients with scalp defects and concluded that the use of a rotation flap, a transposition flap or other types of reconstructive procedure is more often decided by the nature and size of the scalp defect.2

Pennington DG et al in 1989 concluded that free microvascular tissue transfer is a safe and reliable method to reconstruct large defects of the forehead and scalp after resection of a tumour.22

Hussussian CJ et al in 2002 found that microvascular free tissue transfer has the advantage of covering large
wounds with flaps with robust vascularity in a single-stage procedure, and they are a robust form of scalp defect closure.23

Cornelia Katharina Mueller et al in 2009 reported that comorbid illnesses, like diabetes or renal failure, habits such as smoking, or prior radiotherapy are predictors of a free flap failure.24

Poeschl PW et al in 2003 found that free flap harvest produces a donor site that is at a distant part in the body and donor-site morbidity has been described to be more than that at the site of the defect.25

Thorwarth M et al in 2008 noted that the flap harvest and the recipient vessel preparation increases intraoperative time and also increases postoperative medical complications. Also, the free flap reconstruction is usually bulky and the reconstruction of defects in the non-hair bearing region produces a poor aesthetic outcome.26

Corradino B et al in 2010 concluded that in case of reconstruction following resection of a malignancy, risk of leaving a residual tumour under the free flap remains.27 Charis
Ioannides et al in 1999 stated that in cases with large scalp defects, free flaps can be the best option to give the best reconstructive and aesthetic result.20
MATERIALS & METHODS

A clinical study was conducted in the Department of Plastic Reconstructive and Maxillofacial Surgery, Madras Medical College and Rajiv Gandhi Government Hospital over a period of 28 months from October 2010 to January 2013.

STUDY POPULATION

The study population in the present study were the patients who visited the hospital for scalp reconstruction.

INCLUSION CRITERIA

The patients with scalp defects due to trauma, infection, burns and cancer resection were included in the study.

EXCLUSION CRITERIA

Those patients who were not willing to participate were excluded from the study.

ETHICAL CLEARANCE

The ethical clearance was given by the Institutional Ethics committee, Madras Medical College.

INFORMED AND WRITTEN CONSENT

Informed and written consent was obtained from all patients prior to the start of the study.
SAMPLE SIZE

A sample size of 20 patients requiring scalp reconstruction procedures was taken.

COLLECTION OF DATA

The data was collected with a proforma regarding patient, defect and treatment related parameters. All the details of the patient that were relevant to the study were collected during the preoperative, surgical and postoperative periods and during follow which was later analyzed.

Procedure

- Detailed history was recorded and all patients were examined clinically.
- Based on etiology, surgery was planned either emergency or elective.
- Patients were taken for surgery under GA and the patient was positioned on the operating table in lateral or prone or supine posture.
- Based on the size of scalp defect, reconstruction was done by:
 - Primary closure
 - Replantation
 - Skin grafting:
• Split thickness or full thickness graft

➢ Local flap techniques:
 • Rotation flap
 • Transposition flap
 • Advancement flap

➢ Free flap techniques:
 • Radial forearm flap
 • Antero lateral thigh flap
 • Latissimus dorsi free flap

• Monitoring flap for viability and any complications

Follow up Procedure:
 • At weekly interval for one month followed by once a month for 6 months.

Assessment of Outcome:

Post-operative complications were assessed. It can be either donor-site or recipient-site problems.

❖ Donor-site complications are
 • wound infection
 • seroma and
 • hematoma
Recipient site complications include

- wound infection
- hematoma
- flap necrosis
- dehiscence
- skin graft failure

STATISTICAL ANALYSIS

The data collected were analysed at the end of the study.
SURGICAL ANATOMY

Knowledge regarding the anatomy of the scalp is required for designing the scalp flaps as they have to be designed on one or two major blood vessels to allow maximum rotation thereby aiding closure of the defect.

The scalp can be defined as the anatomical area covering the skull extending anteriorly from the superior orbital rims up to the superior nuchal line posteriorly. This anatomic area is further divided into non–hair bearing and hair-bearing regions.

The scalp tissue within this region consists of 5 layers: skin, subcutaneous tissue, galea aponeurotica, loose areolar tissue, and pericranium. These layers can be remembered easily using the mnemonic "SCALP". The scalp skin is the thickest skin available in the body. Its thickness ranges from 3 millimetres to 8 millimetres. The
outer layer of thick skin is found firmly fixed to the underlying subcutaneous tissue layer. This layer is highly vascularized and acts as a bridge of fibrous tissue that keeps the skin anchored tightly to the galea aponeurotica below.

The galea aponeurotica is basically a part of the superficial musculo-aponeurotic system or the SMAS layer of the scalp which is nothing but a membranous extension connecting the occipitalis posteriorly and frontalis anteriorly.\(^7\)

The galea aponeurotica gains clinical importance especially in cases of coronal defects that occur through the galea as the frontalis and occipitalis muscles antagonise each other resulting in separation and wide dehiscence of the wound edges. However, if the galea remains intact, retraction of the wound edges does not occur much. Whenever scalp defects are being reconstructed, limiting the separation of the aponeurotica layer from the overlying skin is of paramount importance as this may devascularise the skin.

Laterally, the galea aponeurotica is continuous with the superficial temporal fascia or the temporoparietal fascia. The superficial temporal fascia is a highly vascular layer that encloses many key structures, mainly the superficial temporal
artery and vein, the auriculotemporal nerve, and the frontal branch of the facial nerve.³

Under the aponeurotic layer is a layer of loose connective tissue or loose areolar tissue. This layer allows relative free movement between the galea aponeurotica and the underlying deepest layer, the pericranium. It is also the point of separation in cases of post traumatic scalping injuries.³

The pericranium is a layer that is made of highly dense connective tissue that is tightly fixed to the underlying calvarial bones by means of fibrous connections called Sharpey fibres. These fibres are usually easy to strip away from the underlying calvaria but they are usually strongly adherent in areas of the cranial sutures. At the level of the superficial temporal line the pericranium divides into two layers, the deep temporal fascia or the temporalis muscle fascia and the pericranium of temporal bone. The two layers enclose the temporalis muscle. The temporalis fascia splits and covers the superficial temporal fat pad inferior to the temporalis muscle, and then it gets inserted in the zygomatic arch.⁴
Five major paired vessels from the carotid system enter the scalp symmetrically and interconnect to form an extensive network covering the entire cranium.\(^7\)

The scalp is arbitrarily divided into four vascular territories. The *anterior* territory includes the supraorbital and supratrochlear arteries, end vessels of the ophthalmic artery from the internal carotid system. The supraorbital vessel frequently leaves the orbit through a small foramen located vertically above the medial limbus in the supraorbital margin. The supratrochlear vessel emerges from a point sited on a vertical line above the medial canthus.\(^7\)

The lateral territory is supplied by the superficial temporal artery, which is the longest scalp vessel and supplies the largest area.\(^7\)

The posterior scalp territory is made up of the two lateral and the two medial occipital artery branches, which enter the scalp at the supranuchal line and course superiorly. The posterolateral territory receives its blood supply from the posterior auricular artery and its branches.\(^7\)
The arteries of the scalp take their origin from the periphery of the scalp and then they ascend towards the vertex. Therefore, the main scalp flaps raised for the reconstruction of the scalp have to be based peripherally. This highly vascular network of the scalp provides the chance for a free tissue transfer or scalp replantation.

The arteries of the scalp and their accompanying veins originate peripherally and ascend to the dome in bilateral fashion; thus, it is preferable to base scalp flaps peripherally. In the younger patient, there is widespread anastomosis of the end vessels at the vertex, which provides greater latitude of safety in flap design, even permitting retrograde flaps based on this rich vascularity at the vertex. This latter advantage is not enjoyed by the older patient in whom arteriosclerosis diminishes these end vessels.
Vascular supply of Scalp

The collateral circulation of the scalp is so ample that a single arterial microsurgical anastomosis is sufficient to maintain viability of the entire scalp, although the frequency of midline crossover decreases after the sixth decade of life.

SURGICAL TECHNIQUE

There are many options available for the reconstruction of scalp defects. Each method has its own role in the reconstructive ladder with its own disadvantages and advantages. What can be the best method of reconstruction for a particular scalp defect can be an impossible choice for another defect.

Thus many factors have to be taken into account before deciding on the method of reconstruction for a particular defect. Stable coverage of the defect and good contour are the main goals in scalp reconstruction.

Primary closure

In case of small scalp defects, primary skin closure is the best option available. If primary closure is used as the reconstructive option, any galeal defect should be closed initially using buried absorbable sutures and wound edges must be approximated using suture materials.

Simple undermining of tissues underneath the aponeurotic layer might decrease tension aiding in the closure of few small
defects but usually undermining does not produce a significant improvement in the case of large scalp defects.

Stretching of the adjacent scalp tissue has shown to provide some extra scalp tissue length. This method relies on the biomechanical properties of the skin such as "creep and stress relaxation". After the skin has been constantly stretched for a minimum period of at least 5 minutes using skin hooks the above biomechanical properties of the scalp skin allows for some amount of permanent skin stretching, but most of the immediate gain in stretch are usually lost.22

Adequate scalp tissue advancement can occasionally be gained by the use of releasing incisions over the galea or galeatomies. The surgeon has to carefully place these releasing incisions parallel to the adjacent blood supply.

There is controversy in regards to the way these incisions have to be spaced. Some authors suggest leaving 1 to 2 cm intervals while others recommend a 0.5 to 1 cm interval. In both these methods, the basic principle is the same i.e. the releasing incisions separate the fibrous structure of the galea which is usually tough thereby allowing for some amount of stretching of the scalp skin.
All the above mentioned techniques for primary wound closure are of limited use when closing any defect that is large in size. Thus, they usually produce a poor outcome by creating excessive wound tension or by producing a precarious blood supply for the healing wound.

Pre – Op

Post - Op

Replantation

First, the scalp hair should be shaved and rinsed thoroughly in running tap water. Next, scalp vessels are identified in both temporal areas. The galea is incised for 2-3 cm to mobilize the vessels. If identified, the supraorbital, supratrochlear and post-auricular vessels are tagged. The
entire posterior margin of the scalp segment is then cauterized with a bipolar.

Next, the patient is anesthetized, the scalp dressing removed, and bleeding vessels are controlled with micro clamps. The scalp is anchored to the head with quilting sutures. All available vessels in the frontal and temporal areas are re-anastomosed. At least one artery and two veins are repaired. Vein grafts are usually not necessary. Nerve repair is not performed, since spontaneous re-innervation occurs.

The following are guidelines for scalp replantation:

- all anastomoses must be outside the zone of injury, requiring vein grafts
- blood loss should be minimized by performing multiple venous anastomoses
- any blood lost must be replaced
- the superficial temporal vessels are most readily accessible for repair by vein grafts, and an entire scalp can survive on a single superficial temporal artery, if necessary
- up to 18 hours of cold ischemia is tolerated without risk to scalp viability
• the hair must be closely clipped to avoid injuring any vessels that may have adhered to it
• arterial anastomoses should be done first if warm ischemia time is >10 hours

Skin grafting and Tissue expansion

Skin grafts may be used for temporary coverage, minimizing wound care issues while preparing the scalp for definitive reconstruction, as during prolonged tissue expansion.

Skin grafting is sufficient for wound closure in several situations, especially in elderly patients whose medical condition does not allow more extensive procedures to be performed or in cases which need close observation and follow up of the wound bed for any tumour recurrence.

Primary coverage with a skin graft, followed by serial excision, is an option for patients not desiring tissue expansion and wanting to maintain a relatively normal hair distribution. Skin grafts may also be used to provide coverage for free muscle flaps to decrease the flap bulk that would otherwise be seen in patients if the muscle and full thickness
skin were transplanted as a single unit as in the case of latissimus or rectus free flaps.

Skin grafts need a good well vascularized wound bed and fail if applied over exposed bone devoid of pericranium. Intact pericranium is a requisite to sufficiently support a graft. Thorough debridement of the wound to remove all necrotic tissue should be done before a skin graft is applied to the wound bed. Meticulous haemostasis of the wound bed should be achieved in order to prevent formation of hematoma underneath the graft, which can increase chances of failure.23

Skin grafts applied over the scalp are usually not meshed to produce better aesthetic results. It also gives the scalp increased resistance to any shearing force.

Skin grafts finally lead to a poor aesthetic outcome as it produces an aesthetic mismatch as far as skin colour, texture and skin thickness are concerned. Poor cosmetic results are more obvious in cases of defects in the hair bearing region of the scalp. Reconstructing defects with local scalp flaps almost always leads to a better aesthetic result when compared to primary split skin grafting.
Skin grafting is usually used as a temporary measure, when tissue expansion of the adjacent scalp tissue is done as a means of buying time. Tissue expansion commonly gives adequate tissue that has good scalp sensation, and matches in
colour, thickness, and hair characteristics. The disadvantage is that it usually requires at least 2 surgical procedures.

The surgeon has to place the tissue expanders in the subgaleal plane via incisions placed at a site as far away from the area that will be expanded. When the defect area is grafted the expander has to be placed away from the junction between normal and skin grafted tissue to prevent dehiscence of the wound. Tissue expanders must never be placed under scarred tissue or tissue that has undergone prior radiation.

Filling of the expander is done every week, in small volumes of about 35-50 mL per week. Usually, the expander is filled up to the point where the patient feels a sensation of tightness or some amount of discomfort. When too much normal saline is infused into the expander warning signs such as discolouration or blanching begin to appear. After 8-10 weeks of weekly expansion, the scalp tissue would have expanded sufficiently to allow wound closure.

Once the scalp has been expanded adequately, the next stage of reconstruction can be done. Initially, the expander is taken out from the fibrous capsule surrounding it. The scalp flap is then raised in the sub-galeal plane and rotated or
transposed as required to cover the defect and closed after placing a suction drain. If a residual defect is still present, re-expansion can be considered as a viable option but it has to be delayed for a period of at least 3 months to allow the wound to heal fully.

Disadvantages of tissue expansion are the prolonged time required for reconstruction, aesthetic unacceptability of the expanded site, chances of infection, risk of expander extrusion, hematoma formation and skin necrosis as a consequence of over expansion.

CRITERIA FOR IDEAL FLAP SELECTION FOR SCALP RECONSTRUCTION:

- Size of the scalp flap should be adequate
- Texture of the flap should be similar to native scalp tissue
The vascular pedicle has to be long and the anatomy should be consistent

Flap dissection should be safe and simple

Two team approach should be a possibility in case of free flaps to conserve time

Donor site morbidity should be minimal

Local flaps

These flaps encompass the skin of the scalp, subcutaneous tissue and galea aponeurotica. Sometimes small defects which are superficial can be resurfaced adequately by a flap raised in the subcutaneous plane only.

Any local scalp flap can be best elevated over a named vascular pedicle. Designing a large flap and then resurfacing the donor defect using a split skin graft is probably the safest reconstruction method available. The final suture line should be planned in such a way that it should not lie over regions where prosthetic materials might get exposed.

The decision to use a transposition or a rotation flap is usually decided by the nature of the defect. Another factor influencing this decision is the size of the defect. When the
defect is large enough, a simple transposition flap ensures the greatest margin of safety because of direct, straight-line flow of the blood supply. A skin graft will be required to resurface the donor site defect. When the defect is small and closure of the secondary wound by primary suture is possible, the rotation flap facilitates the adjustment of tension and uneven wound margins.

Transposition Flaps

This design offers the simplest and safest form of peninsular flap in that the axis of blood supply is compromised minimally. After the site of origin for a transposition flap has been determined, the recipient defect should be converted to an appropriate form, usually a triangular line of excision outside the borders of the defect. This triangle should be right-angled wherein the hypotenuse becomes the near margin of the flap.
The right angle of the defect assumes a position opposite the flap. The apex C should be directed toward the periphery of the scalp. The pivot point D will be located on a linear extension across the base of the flap parallel to AB at a distance from the apex at least equal to AB. From point D, a linear projection is developed parallel to AC. With point D as the axis, an arc is drawn from point A to the intersection with DE. The area ABF is excised after seating the flap in place.

The disadvantage of the traditional transposition flap is the inability to close the donor area. The closure of the donor defect would result in a force in the same direction as the flap movement, which is not possible. Thus, the defect requires supplemental coverage, usually in the form of a skin graft.25

Design and transfer of Transposition flap
Interpolation Flaps

These flaps are similar to the transposition flap but differ in that the axis of blood supply rotates to a greater degree. Although this may introduce the question of vascular compromise, the interpolation flap offers the opportunity to close the donor site primarily, particularly if preceded by skin expansion.
The interpolation flap may be cut in any form and rotated through any arc desired, but it is characterized by “skipping over” normal scalp during the transfer.

Relationship between direction of flap transfer and arterial blood flow

Rotation Flaps

Preparation of the rotation flap again requires conversion of the defect to triangular form. In this case, the triangle must be isosceles with its apex C directed toward the base of the future pedicle of the flap. Apex C should be limited to an angle of 30 degrees to minimize “buckling” at this point after closure. Pivot point D will be located on a projection of line AC. Line CD must be at least 50% longer than AC. Midway between A and D, a point is designated, which becomes the
centre for an arc drawn from B to D that completes the outline for the flap.

This flap offers primary closure of the secondary defect by distributing tension over a wide and linear area.25

\textit{Design and transfer of rotation flap}
Bilateral Rotation flaps
Orticochea flaps, or "banana peel flaps"

Scalp with central or vertex wounds often require multiple flaps to affect closure. Orticochea published his four flap scalp reconstruction technique based on known vascular territories of the scalp. He expanded these flaps by dividing the galea perpendicular to the direction of advancement. He subsequently modified the technique into a three flap reconstruction in 1971. Defects as large as 30% of the cranium can be closed by this three-flap technique, that peels the skin off the skull as one would peel a banana. This takes advantage of the excess skin that can be mobilized from the neck.

The incision that separates the two anterior flaps along the midline should be oblique, so that when the flaps are rotated
and slid back, they will fit up against the posterior transverse flap when it is moved up and forward.

The anterior flaps should be carefully undermined with blunt instruments, and great caution should be used when dissecting their pedicles, because the superficial temporal vessels and the posterior auricular vessels pass deeply and can be easily damaged.

The anterior flaps and the posterior transverse flap once mobilized, should be interpolated and sutured without being submitted to exaggerated tension. When extensive surfaces of the scalp are being reconstructed, it will be necessary to cover small raw zones with free skin grafts.

The advantage of the three-flap technique hinges on the size of flap 3. As half of the scalp is included within one large flap, better vascularity is obtained, and due to the broad pedicle, the flap can undergo a higher degree of traction than all the other smaller flaps. In fact, the flaps can be re-elevated and “re-expanded” 6 to 12 months later to aesthetically close large scalp defects.
The four-flap technique mobilizes the entire scalp and forehead skin to cover extensive scalp losses. Flaps 1 and 2 are stretched longitudinally and transposed over the defect, while flaps 3 and 4 are pulled back and stretched transversely to resurface the new raw areas.²⁵

Free flaps

Free flaps provide variety of tissues in adequate amount for reconstruction of scalp defects. They can be thin skin only flaps or thicker flaps that may comprise muscle or musculocutaneous flaps. Free tissue transfer requires microvascular anastomoses to provide vascularity to the transferred tissue at the recipient site.
Free flap transfer mandates a good general condition of the patient and in order to give good micro vascular anastomoses requires good sized temporal artery and vein as these are the commonly used vessels for anastomoses.

Radial forearm flap

The radial forearm free flap was introduced by Yang et al (1981). It has quickly become the workhorse free flap used in head and neck reconstruction. The radial forearm free flap is, according to Cormack Lamberty classification, a type II fascio-cutaneous flap. This flap can be harvested easily with a long and reliable vascular pedicle which is anatomically consistent and is of large calibre.

The colour and texture match between the forearm and scalp tissue is good, and the skin is also quite durable. The flap area is limited and it can cover only 250 cm² area, which is not adequate for covering large defects. This drawback can be overcome with the use of tissue expanders which can expand the donor site prior to flap harvest.

Other disadvantages of the radial forearm flap are: significant donor site morbidity caused by the split skin
grafting and the risk of exposure of the flexor tendons at the donor site. This flap is indicated in thin and small scalp defects especially those of the forehead which cannot be reconstructed using other flaps such as the anterolateral thigh flap which are bulky and not suitable.\

Radial forearm flap

Anterolateral thigh flap

Song et al (1984) was the first to describe the Anterolateral thigh flap. The anterolateral thigh flap is technically simple to raise and has a long and reliable pedicle. The vessel is of good calibre and is anatomically constant. This flap is indicated in cases with large scalp defects with a length up to 27 cm and breadth up to 18 cm. Primary closure of the donor site can be done provided the flap breadth does not exceed 8 cm. In case of elderly patients it can be closed primarily up
to a width of 13cm.26 Since most of the donor sites can be closed primarily the donor site morbidity is minimised.

Lutz BS in 2002 reported that ALT flap may be customized according to individual patient requirements and can be raised either as a cutaneous flap, myocutaneous flap along with the vastus lateralis or as a chimeric flap.28

As the vascular anatomy is relatively inconstant, flap dissection can be technically difficult. Celik N et al in 2002 and Disa JJ et al in 2001 stated that dissection can be done safely if it is carried out in a retrograde fashion starting from the peripheral skin vessels and moving towards the main vessel.29, 30 In situations where the skin vessels are injured or if the main vessel is absent, it can be raised as an anteromedial thigh flap or as the TFL flap.26 Patient can be completely mobilised on the first post op day.2
Anterolateral thigh flap

Pre Op

Post Op
Latissimus dorsi free flap

The latissimus dorsi free muscle flap is considered by many as the preferable option for reconstruction of large defects of the scalp. The free LD flap was first described by Maxwell et al in 1978.26

The latissimus dorsi muscle is a wide, relatively thin and highly vascular muscle that suits cranioplasty reconstruction with autologous bone or using alloplastic materials.

Bostwick et al in 1979 stated that LD flap can be harvested as a myocutaneous flap, a muscle only flap covered with a split skin graft, as a functioning free muscle transfer or as a flow-through free flap.27 The length of the pedicle is 10 cm if the subscapular vessels are also included while raising the flap. The muscle is usually raised as a muscle only flap without a skin paddle and can be covered with a split-skin graft for reconstructing scalp defects.
OBSERVATION AND RESULTS

A total no of 20 patients were included in the study over a period of 28 months between October 2010 to January 2013. Patient related, defect related and treatment related parameters were collected. Age in years, gender and comorbid illnesses were noted as patient related parameters. Wound aetiology was recorded as defect related factors. Phase of coverage, the mode of reconstruction and complications were taken as treatment related factors.

PATIENT RELATED PARAMETERS:

Table 1: Age range of the study subjects:

<table>
<thead>
<tr>
<th>Age in range</th>
<th>Total no of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 to 30 years</td>
<td>4</td>
</tr>
<tr>
<td>30 to 40 years</td>
<td>6</td>
</tr>
<tr>
<td>40 to 50 years</td>
<td>7</td>
</tr>
<tr>
<td>50 to 60 years</td>
<td>3</td>
</tr>
</tbody>
</table>

Graph 1: Age range of the patients
Comorbidity and Habits:

Among twenty patients, two patients were had diabetes mellitus and were taking regular medications, four patients were smokers, and one patient had the habit of consuming alcohol. (Table 2)

Table 2: Comorbidity and Habits:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic</td>
<td>2</td>
</tr>
<tr>
<td>Smoking</td>
<td>4</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
</tr>
</tbody>
</table>
DEFECT RELATED PARAMETERS:

Table 3: Etiological Incidence

<table>
<thead>
<tr>
<th>S.no</th>
<th>Cause</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Post trauma</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Post excisional</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Post Burns</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Post infectious</td>
<td>4</td>
</tr>
</tbody>
</table>

Graph 3: Aetiology of Defects
TREATMENT RELATED PARAMETERS:

Phases of coverage of the defect:

In the present study highest number of flaps was done in the chronic phase (75%) and least flaps were done in the acute phase (10%).

Table 4: Phases of coverage:

<table>
<thead>
<tr>
<th>Phases</th>
<th>Total no of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute phase (less than 72 hours)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Sub – Acute phase (72 hours – 6 weeks)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Chronic phase (beyond 6 weeks)</td>
<td>15 (75%)</td>
</tr>
</tbody>
</table>

Graph 4: Phases of coverage expressed in Percentage
Table 5: Types of Reconstruction

<table>
<thead>
<tr>
<th>Type of Reconstruction</th>
<th>Number done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin grafting</td>
<td>4</td>
</tr>
<tr>
<td>Rotation flap</td>
<td>10</td>
</tr>
<tr>
<td>Transposition flap</td>
<td>5</td>
</tr>
<tr>
<td>Tissue expansion</td>
<td>1</td>
</tr>
<tr>
<td>Free flap</td>
<td>2</td>
</tr>
</tbody>
</table>

Graph 5: Different types of reconstruction methods

![Graph showing types of reconstruction methods](image)
Table 6: Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>No. of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of completely healed flaps</td>
<td>14</td>
</tr>
<tr>
<td>No. of flaps with wound dehiscence</td>
<td>2</td>
</tr>
<tr>
<td>No. of flaps with partial necrosis</td>
<td>1</td>
</tr>
<tr>
<td>No. of flaps with donor site infection</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Graph 6: Outcomes of the various methods of reconstruction

![Graph showing outcomes of various methods of reconstruction](image-url)
DISCUSSION

There are many considerations when formulating a treatment plan for a given patient with a scalp defect. Patient expectations and comorbid conditions need to be taken into account. Patient tolerance for certain procedures may limit their utility particularly in the case of prolonged tissue expansion. Far and away the best tissue for replacement of lost scalp is adjacent scalp tissue. Particular attention needs to be paid to the present hair distribution and its anticipated future.

Good knowledge about the anatomy of the scalp and its vascular distribution and the consideration of important factors such as the limited elasticity seen in the scalp tissues is paramount for a successful scalp reconstruction. Another aspect that has to be considered is the depth of the defects following resection and whether the calvarial bone is resected or left exposed. This fact has to be taken into account while planning the operative procedure.

Various etiological factors are responsible for scalp defects. Skin grafts and local scalp flaps have been used since long and are still considered whenever indicated. In our present study it was noted that skin grafts can be used for
scalp reconstruction only if the pericranium is present to give vascularity to the grafted site and this was in line with the findings of Shenoy et al in 1993.31

Split skin grafts can be used temporarily for covering the defect while the adjacent scalp tissue is prepared using tissue expanders and advancement flaps or for the pathological report to arrive in case of malignant tissue resections.

Skin grafting can also be used as an initial cover for the defect followed by sequentially excising the graft and covering it with an advancement or rotation flap containing hair-bearing scalp tissues. This method is very useful and can result in a good cosmetic outcome. But, the elasticity of the tissue decreases after each excision and scar alopecia is a disadvantage of this method.

Use of tissue expander facilitates direct defect closure with good aesthetic results. From the present study it can be noted that tissue expansion must usually be done prior to the excision of the lesion. Therefore, tissue expansion can be considered as a good option for reconstructing scalp defects arising from excision of benign lesions. These findings concur with the results of Newman et al in 2004.32
The main disadvantage of tissue expansion is the length of treatment and involving two or more procedures. Pressure from the expander can cause moulding of the cranial vault and sometimes bony erosion. These findings are more pronounced in children. Hence tissue expansion cannot be used as a modality for malignant lesions and for traumatic and infected defects.

Local scalp flaps used for defect closure are mainly single or multiple rotation flaps with or without skin grafting for the donor site. Their advantage is reconstruction with stable, good texture, hair-bearing adjacent skin and soft tissues. Usually, local scalp flaps have minimal complication rate if the vascular distribution and anatomy of the scalp are taken into account while designing the flaps.

In the present study 16 patients underwent local or distant flap coverage for scalp defects and only one distal flap necrosis occurred. In this patient the defect was closed using multiple rotation flaps. This confirms the observations of Hoffmann JF in 2001 who stated that the risk of complication increases when multiple rotation flaps are used for the reconstruction of scalp defect.\(^6\)
The chance of necrosis is minimal if not more than 2 large rotation flaps are used to cover the defect. The tissues covering the periosteum also have to be mobilised widely in order to cover the defect completely.

Local scalp flaps when planned meticulously are technically simpler than free flap reconstructive techniques. Local scalp flaps offer quick, easy and safe dissection. In the present study it was noted that 50 to 60% of the scalp area (moderate to large defects) can be covered easily using these local scalp flaps.

The disadvantages of local scalp flaps are that they require normal adjacent scalp tissue and need skin grafts to cover the donor defect which is aesthetically unacceptable. Also local scalp flaps cannot be used to cover forehead defects. Furthermore local flaps provide insufficient tissue to cover defects which are deep.

Free flap reconstruction has rapidly established itself as a desirable and versatile therapy for defects of the scalp, especially in larger and more complex cases. Scalp defects secondary to surgical resection of a cutaneous malignancy may necessitate reconstruction with a microvascular free flap.
Indications for microvascular free flap reconstruction include but are not limited to: defect size preventing primary closure, failed primary or local flap closure due to inelastic or poor skin quality, multiple resections for recurrences, or neo- or adjuvant radiation therapy.

The advantage and effectiveness of microvascular free flap reconstructive techniques depend on various factors including the underlying cause for the defect, the size of the defect, donor site morbidity, and involvement of surrounding structures. Beasley et al in 2004 stated that when the scalp defects measure greater than 200 cm2, a free flap must be considered as the reconstructive option.33

Free tissue transfer is a reliable and successful option for resurfacing large and complex defects of the scalp tissue. However, free flaps need microvascular setup, increased operative time, higher donor site morbidity and poor aesthetic outcome in hair bearing scalp. Chicarilli ZN et al reported that free tissue transfer can be done as a single stage procedure and gives stable cover with highly vascular tissues.34 Foote et al in 1994 stated that free flaps can tolerate therapeutic doses of radiation as well.35
Free flaps should be reserved for situations wherein local scalp flaps or split skin grafting cannot be done.

Despite the gross inequalities between these essentially different flap types, they have been included in a single study, as this study does not aim to assess the efficacy of any single flap. The study was only designed to highlight the various methods of scalp reconstruction procedures.
CONCLUSION

The following conclusions can be made from the present study:

- Certain factors are likely to influence the selection of reconstructive technique like the size and location of the defect in the scalp, whether the pericranium is intact to take up skin grafts, and quality of the adjacent scalp tissue.

- As the elastic property of the scalp tissue is limited, primary closure of scalp wounds should be done only for defects measuring less than 3 cm.

- In certain cases, if the pericranium is viable or the outer cortex is removed and the diploic space is exposed a skin graft can be used over the bone.

- Tissue expansion needs good amount of tissue that can be expanded, patient compliance for multiple procedures, and the calvarial cover should be stable in the expansion period.

- The vascular distribution within the scalp tissue should be taken into account when planning local scalp flaps.

- A good design for a local scalp flap should include major vascular pedicles. The flaps should be broad based and wound closure should be tension free.
Microvascular reconstruction may be the most reliable option for reconstruction of large scalp defects, especially those that occur in compromised tissues.

The perfect reconstruction for every defect never exists; therefore, the reconstruction for every defect must be tailored to each case to perfection. A good knowledge of the anatomy, the individual patient, and the resurfacing choices that are available is the beginning, but the surgeon's success needs creativity to add all these elements together to give a satisfactory result for the patient.
BIBLIOGRAPHY

25. Grabbs encyclopedia of flaps. Scalp Flaps and the Rotation Forehead Flap. Chapter 1; 86 -93

APPENDIX – I

INSTITUTIONAL ETHICS COMMITTEE
MADRAS MEDICAL COLLEGE, CHENNAI -3
Telephone No : 044 25305301
Fax : 044 25363970

CERTIFICATE OF APPROVAL

To

Dr.I.Prasanna,
P.Ch in M.Ch IIIrd Year,
Department of Plastic Surgery,
Madras Medical College, Chennai -3

Dear Dr.I.Prasanna,

The Institutional Ethics committee of Madras Medical College, reviewed and discussed your application for approval of the proposal entitled “A clinical study on the various methods of Reconstruction of scalp defects” No.17022013.

The following members of Ethics Committee were present in the meeting held on 05.02.2013 conducted at Madras Medical College, Chennai -3.

1. Dr.SivaKumar, MS FICS FAIS --- Chairperson
2. Prof. R. Nandhini MD
 Director, Instit. of Pharmacology ,MMC, Ch-3
 -- Member Secretary
3. Prof. Shyamraj MD
 Director i/c , Instit. of Biochemistry , MMC, Ch-3
 -- Member
4. Prof. P. Karkuzhalai. MD
 Prof., Instit. of Pathology, MMC, Ch-3
 -- Member
5. Prof. A. Radhakrishnan MD
 Prof of Internal Medicine, MMC, Ch-3
 -- Member
6. Prof. S. Deivanayagam MS
 Prof of Surgery, MMC, Ch-3
 -- Member
7. Thiru. S. Govindsamy. BABL
 -- Lawyer
8. Tmt. Arnold Soulinha MA MSW
 -- Social Scientist

We approve the proposal to be conducted in its presented form.

Sd/ Chairman & Other Members

The Institutional Ethics Committee expects to be informed about the progress of the study, and SAE occurring in the course of the study, any changes in the protocol and patients information / informed consent and asks to be provided a copy of the final report.

[Signature]
Member Secretary, Ethics Committee
A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS

Dissertation submitted in partial fulfilment of the requirements for the degree of

M.Ch. (Plastic Surgery) – Branch III
Your digital receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper ID</td>
<td>313412109</td>
</tr>
<tr>
<td>Paper title</td>
<td>A Clinical study on the various methods of reconstruction of scalp defects</td>
</tr>
<tr>
<td>Assignment title</td>
<td>Medical</td>
</tr>
<tr>
<td>Author</td>
<td>Prasanna Ilango 18102003 M.Ch. Plastic Reconstructive Surgery</td>
</tr>
<tr>
<td>E-mail</td>
<td>meetprass.i@gmail.com</td>
</tr>
<tr>
<td>Submission time</td>
<td>21-Mar-2013 09:21 AM</td>
</tr>
<tr>
<td>Total words</td>
<td>8071</td>
</tr>
</tbody>
</table>

First 100 words of your submission

A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS Dissertation submitted in partial fulfilment of the requirements for the degree of M.Ch. (Plastic Surgery) – Branch III THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI AUGUST 2013 1 INTRODUCTION The scalp being the superior border of the body, is many a times exposed to insults from the environment. As the scalp usually lacks clothing coverage, it is more commonly susceptible to burns and other trauma that cause extensive disfigurement and scarring. It is also the site for a variety of benign and malignant neoplasms, due to prolonged sun exposure. The factors influencing decision making in the repair of...
APPENDIX - III

PATIENT CONSENT FORM

Study Title: “A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS”

Study centre: Department of Plastic Reconstructive and Maxillofacial Surgery
Madras Medical College and Government Hospital, Chennai – 600003

Patient’s Name:
Patient’s Age:
Identification Number:

Patients may check (✓) these boxes

I confirm that I have understood the purpose of procedure for the above study. I have the opportunity to ask the questions and all my questions and doubts have been answered to my complete satisfaction. (✓)

I understand that my participation in the study is voluntary and I am free to withdraw at any time without giving reason, without my legal right being affected. (✓)

I understand that sponsor of the clinical study; others working on the sponsor’s behalf, the ethical committee and the regulatory authorities will not need my permission to look at my health records both in respect of the current study and any further research that may be conducted in relation to it, even if I withdraw from the study. I agree to this access; however I understand that my identity would not be revealed. In any information released to third parties or published, unless as required under the law. I agree not to restrict the use of any data or results that arise from this study. (✓)

I agree to take part in the above study and to comply with the instruction given during the study and faithfully to cooperate with the study team, and to immediately inform the study staff if I suffer from any deterioration in my health or my well-being or any unexpected or unusual symptoms. (✓)

I hereby give consent to participate in this study. (✓)

Signature/ Thumb impression of the patient: ..
Place: ..

Patient’s name and address: ...

Signature of the Investigator: Place............. Date....................

Name of the Investigator: ...
INFORMATION SHEET

We are conducting A CLINICAL STUDY ON THE VARIOUS METHODS OF RECONSTRUCTION OF SCALP DEFECTS on patients attending Plastic and Reconstructive and Maxillofacial Surgery Department at Government General Hospital, Chennai.

The purpose of this study:

1. To analyse scalp defects and to discuss the various established reconstructive options available and their application.
2. To evaluate the outcomes of various surgical procedures following scalp reconstruction.

The privacy of the patients in the research will be maintained throughout the study. In the event of any publication or presentation resulting from the research, no personally identifiable information will be shared.

Taking part in this study is voluntary. You are free to decide whether to participate in this study or withdraw at any time; your decision will not result in any loss of benefits to which you are otherwise entitled.

The results of the special study may be intimated to you at the end of the study period or during the study if anything is found abnormal which may aid in the management or treatment.

Signature of Investigator Signature of Participant
APPENDIX - IV

PROFORMA

Name :

Age :

Sex :

I.P. No :

D. O.A :

D. O.S - :

D.O .D :

Complaints :

Etiology :
 Trauma
 Infection
 Burns
 Neoplastic
History :
Present illness :

Past illness :

General examination :

Systemic examination :

Local examination :
Defect analysis :
 Site of the defect – Temporal
 Frontal
 Occipital
 Parietal
 Forehead

Dimensions of the defect
Thickness of the defect – soft tissue defect or composite defect
Status of surrounding skin
Other associated injuries

Diagnosis :
Treatment plan :
Investigations:

Operative procedure:

Post operative period:

Complications:

Follow up:

Secondary procedures:
KEY TO MASTER CHART

FF - Free flap
RF - Rotation flap
TF - Transposition flap
SSG - Split skin graft
TE - Tissue expander
PC - Primary closure
HC - Healed completely
WD - Wound dehiscence
<table>
<thead>
<tr>
<th>S. No</th>
<th>Age</th>
<th>Sex</th>
<th>PS no</th>
<th>Etiology</th>
<th>Comorbidity</th>
<th>Habits</th>
<th>Defect size</th>
<th>Flap design</th>
<th>Donor area management</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>Male</td>
<td>1067/10</td>
<td>Trauma</td>
<td>Nil</td>
<td>Nil</td>
<td>14x8</td>
<td>FF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>Male</td>
<td>1433/12</td>
<td>Infection</td>
<td>Nil</td>
<td>Nil</td>
<td>8x6</td>
<td>RF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>Male</td>
<td>121/11</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>10x6</td>
<td>RF</td>
<td>PC</td>
<td>HC</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>Male</td>
<td>245/11</td>
<td>Trauma</td>
<td>Nil</td>
<td>Smoking</td>
<td>14x9</td>
<td>SSG</td>
<td>HC</td>
<td>Necrosis</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>Female</td>
<td>452/11</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>12x7</td>
<td>TE</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>Male</td>
<td>1031/11</td>
<td>Trauma</td>
<td>Nil</td>
<td>Nil</td>
<td>10x8</td>
<td>TF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Male</td>
<td>1321/11</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>6x5</td>
<td>RF</td>
<td>PC</td>
<td>HC</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>Male</td>
<td>1543/11</td>
<td>Infection</td>
<td>Nil</td>
<td>Smoking</td>
<td>11x7</td>
<td>TF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>Female</td>
<td>1612/11</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>12x6</td>
<td>RF</td>
<td>SSG</td>
<td>WD</td>
</tr>
<tr>
<td>10</td>
<td>48</td>
<td>Male</td>
<td>1815/11</td>
<td>Burns</td>
<td>Nil</td>
<td>Smoking</td>
<td>16x7</td>
<td>FF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>Female</td>
<td>1965/11</td>
<td>Burns</td>
<td>Nil</td>
<td>Nil</td>
<td>30x20</td>
<td>SSG</td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>Female</td>
<td>86/12</td>
<td>Burns</td>
<td>Nil</td>
<td>Nil</td>
<td>20x12</td>
<td>SSG</td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>31</td>
<td>Male</td>
<td>239/12</td>
<td>Infection</td>
<td>Nil</td>
<td>Nil</td>
<td>7x5</td>
<td>RF</td>
<td>PC</td>
<td>WD</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>Male</td>
<td>321/12</td>
<td>Trauma</td>
<td>Diabetic</td>
<td>Nil</td>
<td>12x8</td>
<td>SSG</td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>44</td>
<td>Female</td>
<td>654/12</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>15x9</td>
<td>RF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>Male</td>
<td>806/12</td>
<td>Trauma</td>
<td>Nil</td>
<td>Alcohol</td>
<td>13x10</td>
<td>RF</td>
<td>SSG</td>
<td>Infection</td>
</tr>
<tr>
<td>17</td>
<td>57</td>
<td>Male</td>
<td>983/12</td>
<td>Post excision</td>
<td>Diabetic</td>
<td>Nil</td>
<td>9x6</td>
<td>TF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>18</td>
<td>35</td>
<td>Female</td>
<td>1398/12</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>8x5</td>
<td>RF</td>
<td>PC</td>
<td>HC</td>
</tr>
<tr>
<td>19</td>
<td>46</td>
<td>Male</td>
<td>1564/12</td>
<td>Infection</td>
<td>Nil</td>
<td>Smoking</td>
<td>9x8</td>
<td>TF</td>
<td>SSG</td>
<td>HC</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>Male</td>
<td>1812/12</td>
<td>Post excision</td>
<td>Nil</td>
<td>Nil</td>
<td>11x9</td>
<td>RF</td>
<td>SSG</td>
<td>HC</td>
</tr>
</tbody>
</table>
அங்காண்டி தலைமாக்கிய தக்காண

• வேளாண்டன அருக் பல்லி முன்னெச்சரித்தியுள்ள காலத்தில் அறிவியல் கிராமியம் பிரிவில் வரும் வழிமுறையாக பாண்டிக்கு குறிப்பிட்டு வரும் வழிமுறையாக அதன் வெளிப்புறத்துண்டு புரிந்து அருமை நூல்களையிட்டு.

• திண்டும் துடு அங்காண்டி படிகாய்வதாக.

• சுனாமிகள் அடையும் காலத்தில் பல்கலைக்கழகம் பெருமளவு அடையும் அங்காண்டிகள் பெருமளவு வருகையுடன் அடையும் ஆறவாலனியக்குழு போர்க்கள் உகார்ந்தபடி புரிந்து நூல்களையிட்டு.

• துடு அங்காண்டி படிகாய்வது காலானியம் விளம்பரின் பிற்பகுதியில் பிரிவில் துணர் துடுக்கையிட்டு. கூறும் துணர் முன்னால் துடு அங்காண்டியிட்டு பிரிவுக்குழுத் தொடர்ந்துபடி புரிந்து நூல்களையிட்டு.

• துடு கூறும் பெருமளவு அங்காண்டி படிகாய்வது காலானியம் விளம்பரின் பிரிவில் துணர்ந்து அங்காண்டி படிகாய்ந்து புரிந்து நூல்களையிட்டு.

அங்காண்டி படிகாய்வு பணிகாய்ந்து தேவைப்பட்டு நோக்கியது -
அருப்புக்கி கூப்பிக் கல்வி

அருப்புக்கி கல்வி -

தலைக்காட்சி பதிப்புகள் என்பது தமிழகாவின் குழந்தைகளுக்கு அதிக வலைவுகைத்தியவுக்கு பதிவியுள்ள ஆய்வு வடிவமாகும்.

பட்டியல் -

வசதி -

ஆர்யபூரித்தமிழ்

அருப்புக்கி கூப்பிக் கல்வி -

நூற்றாண்டு அருப்புக்கிகளின் விளையாட்டுக்கு அதிக வலைவுகைத்தியல் ஆய்வு வடிவமாக பதிவியுள்ள ஆய்வு வடிவமாகும்.

கல்வி விளையாட்டில் விளையாட்டுக்கு பதிவியுள்ள ஆய்வு வடிவமாக பதிவியுள்ள ஆய்வு வடிவமாகும்.

அருப்புக்கி விளையாட்டில் விளையாட்டுக்கு பதிவியுள்ள ஆய்வு வடிவமாக பதிவியுள்ள ஆய்வு வடிவமாகும்.

தலைக்காட்சியின் பதிப்புகள் என்பது தமிழகாவின் குழந்தைகளுக்கு அதிக வலைவுகைத்தியவுக்கு பதிவியுள்ள ஆய்வு வடிவமாகும்.

அருப்புக்கி தெய்வாக பொருள்வது மூலம் விளையாட்டுக்கு குழந்தைகளுக்கு அதிக வலைவுகைத்தியவுக்கு பதிவியுள்ள ஆய்வு வடிவமாகும்.