COMPARATIVE ANALYSIS OF LUMBAR STABILISATION EXERCISES VERSUS GENERAL SPINAL EXERCISES IN THE REHABILITATION OF LUMBAR DISC PROLAPSE

A dissertation submitted in partial fulfillment of the requirement for the degree of

MASTER OF PHYSIOTHERAPY
(ELECTIVE – PHYSIOTHERAPY IN ORTHOPAEDICS)

To
The Tamil Nadu Dr. M.G.R. Medical University
Chennai-600032
April 2012

RVS COLLEGE OF PHYSIOTHERAPY
(Affiliated to the Tamil Nadu Dr. M.G.R Medical University, Chennai – 32)
SULUR, COIMBATORE – 641 402
TAMIL NADU
CERTIFICATE

Certified that this is the bona fide work of Rejaneesh Kumar S, a second year student of R.V.S. College of Physiotherapy, Sulur, Coimbatore submitted in partial fulfillment of the requirements for Master of Physiotherapy Degree course from The Tamil Nadu Dr M.G.R Medical University under the Registration No: 27101905.

ADVISOR
Mrs. Mahalakshmi, MPT,
Professor,
RVS college of physiotherapy,
Sulur, Coimbatore.

PRINCIPAL
Prof. Mrs. R. Nagarani, MPT, MA, (Ph.D.),
RVS College Of Physiotherapy,
Sulur, Coimbatore.

Place:
Date:
COMPARATIVE ANALYSIS OF LUMBAR STABILISATION EXERCISES VERSUS GENERAL SPINAL EXERCISES IN THE REHABILITATION OF LUMBAR DISC PROLAPSE

INTERNAL EXAMINER: EXTERNAL EXAMINER:

SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENT FOR DEGREE OF “MASTER OF PHYSIOTHERAPY” TO THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI. APRIL 2012
DECLARATION

I hereby declare and present my project work entitled “COMPARATIVE ANALYSIS OF LUMBAR STABILISATION EXERCISES VERSUS GENERAL SPINAL EXERCISES IN THE REHABILITATION OF LUMBAR DISC PROLAPSE.” The outcome of the original research work undertaken and carried out by me, under the guidance of Professor Mrs. Mahalakshmi, MPT, RVS College of Physiotherapy, Sulur, Coimbatore.

I also declare that the material of this project work has not formed in any way the basis for the award of any other degree previously from the Tamil Nadu Dr. M.G.R Medical University.

Date : SIGNATURE

Place :
ACKNOWLEDGEMENT

I magnify the LORD MY GOD, I will give thanks with my whole heart will tell of your wonderful deeds now and forever.

I humbly acknowledge all the love and care showered by the parents Mr. Sasidharan Nair and Mrs. Ushakumari throughout my life in making me what I am.

My heartfelt thanks to The Chairman, Managing Trustee and the Secretary of RVS Educational Trust, Sulur, Coimbatore, for providing me an opportunity to do this dissertation.

I wish to express my heartfelt gratitude and special thanks to my principal Mrs. R. Nagarani, MPT, MA, (Ph.D), R.V.S College of Physiotherapy.

I cover my heartfelt thanks to my guide Mrs. Mahalakshmi, MPT, for this diligent effort to ensure the best quality of this piece of work. Her assertiveness and faith in my abilities as sustained my energies to complete this work successfully.

It is difficult to envision completing a project such as this without the help of many people I owe great deal of thanks to the many that made this reality by extending their helpful hands.
CONTENTS

<table>
<thead>
<tr>
<th>S.NO</th>
<th>PARTICULARS</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>Statement of problem</td>
<td>4</td>
</tr>
<tr>
<td>1.2.</td>
<td>Need for the study</td>
<td>4</td>
</tr>
<tr>
<td>1.3.</td>
<td>Hypothesis</td>
<td>5</td>
</tr>
<tr>
<td>1.4.</td>
<td>Operational definitions</td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Section A : Studies on Lumbar stabilization</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Section B : Studies on Disc Prolapse</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Section C : Studies on General Spinal Exercise</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Section D : Studies on Visual Analogue scale</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>METHODOLOGY</td>
<td>11</td>
</tr>
<tr>
<td>3.1.</td>
<td>Study design</td>
<td>11</td>
</tr>
<tr>
<td>3.2.</td>
<td>Study setting</td>
<td>11</td>
</tr>
<tr>
<td>3.3.</td>
<td>Sample size</td>
<td>11</td>
</tr>
<tr>
<td>3.4.</td>
<td>Inclusion criteria</td>
<td>11</td>
</tr>
<tr>
<td>3.5.</td>
<td>Exclusion criteria</td>
<td>11</td>
</tr>
<tr>
<td>3.6.</td>
<td>Study duration</td>
<td>12</td>
</tr>
<tr>
<td>3.7.</td>
<td>Variables</td>
<td>12</td>
</tr>
<tr>
<td>3.8.</td>
<td>Measurement tools</td>
<td>12</td>
</tr>
<tr>
<td>3.9.</td>
<td>Treatment procedure</td>
<td>12</td>
</tr>
<tr>
<td>IV</td>
<td>DATA ANALYSIS AND RESULTS</td>
<td>19</td>
</tr>
<tr>
<td>4.1.</td>
<td>Data analysis</td>
<td>19</td>
</tr>
<tr>
<td>4.2.</td>
<td>Results</td>
<td>36</td>
</tr>
<tr>
<td>V.</td>
<td>DISCUSSION</td>
<td>38</td>
</tr>
<tr>
<td>VI</td>
<td>CONCLUSION</td>
<td>40</td>
</tr>
<tr>
<td>6.1.</td>
<td>Limitations</td>
<td>40</td>
</tr>
<tr>
<td>6.2.</td>
<td>Recommendations</td>
<td>41</td>
</tr>
<tr>
<td>VII</td>
<td>REFERENCE AND BIBLIOGRAPHY</td>
<td>42</td>
</tr>
<tr>
<td>VIII</td>
<td>ANNEXURE</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>S.NO</th>
<th>PARTICULARS</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SD paired ‘t’ value of pain in VAS for group – A</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>SD paired ‘t’ value of pain in VAS for group – B</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Unpaired ‘t’ value of pain in VAS for group – A and group – B</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>SD paired ‘t’ value of flexion range of motion for group - A</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>SD paired ‘t’ value of flexion range of motion for group – B</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>SD paired ‘t’ value of extension range of motion for group - A</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>SD paired ‘t’ value of extension range of motion for group – B</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Unpaired ‘t’ value of flexion range of motion group – A and group – B</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>Unpaired ‘t’ value of extension range of motion group – A and group – B</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Pre test and post test VAS score of group – A</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Pre test and post test VAS score of group – B</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Pre test and post test flexion range of motion score of group – A</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Pre test and post test extension range of motion score of group – A</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>Pre test and post test flexion range of motion score of group – B</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Pre test and post test extension range of motion score of group – A</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>S.NO</th>
<th>PARTICULARS</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graphic representation of mean score of VAS for group A</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Graphic representation of mean score of VAS for group B</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Graphic representation of comparative mean score of VAS for group A and group B</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Graphic representation of mean score of flexion range of motion for group A</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Graphic representation of mean score of flexion range of motion for group B</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Graphic representation of mean score of extension range of motion for group A</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Graphic representation of mean score of extension range of motion for group B</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Graphic representation of comparative mean score of flexion range of motion for group A and group B</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Graphic representation of comparative mean score of extension range of motion for group A and group B</td>
<td>35</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Disc prolapse is a medical condition affecting the spine due to trauma, lifting injuries or idiopathic, fibrous ring (annulus fibrosus) of an intervertebral disc that allows the soft central portion (nucleus pulposus) to bulge out beyond the damaged outer rings. Tears are almost always posteriolateral in nature owing to the presence of the posterior longitudinal ligament in the spinal canal. The intensity may range from mild to severe and may fluctuate. The pain may radiate into one or both buttocks or even into the whole lower limb.

The pain may begin suddenly or develop gradually. At least 80% individuals experience a significant episode of low back pain at some point at their lives. At any given point in time, at least 15% of individual’s report that they are experiencing disc prolapse. Some consider the symptom of low Back pain to be a part of the human experience.

A prolapsed disc is a problem where the inter-vertebral disc is forced out of the annulus fibrosus, the outer covering of the disc due to mechanical forces increasing intra discal pressure. The incidence of this problem has been rising steadily and, today, every three out of five human beings have had an episode of slipped disc.

Functional anatomy

The vertebral body serves weight-bearing purposes and is well designed for this. The internal structure is also suited to this. The interior is
not solid bone but a cavity with strut in various directions. All spinal muscles are attached to the vertebrae. Thus, movements of muscles determine the strain on the vertebral bodies.

Distension of the annulus produces pain. The outer parts of the annulus are rich in nerves. If the inner pulp tracks from within to the peripheral parts of the disc, stretching of the annulus produces pain. The disc usually prolapses backward and to the side, left or right. The endplates, if injured, cause aberrant distribution of weight and other stresses of movement, over stressing other areas of the lumbar spine. Associated degenerative changes in the spine, pressing on the nerve roots, affect mechanical properties.

If the chemical contents of the disc leak out and touch the nerve roots, this can cause chemical irritation of the nerve roots. Edema of the nerves produces pain.

The pressure of the prolapsed disc can compress adjacent veins and produce congestion. The nerves are particularly susceptible to venous congestion.

The patient experiences severe, quite incapacitating pain in the lower back and in the thigh, calf or foot. The patient may not be able to move the affected leg at all due to nerve compression and muscle spasm. Specific movements of the body, like trying to stretch the big toe upwards may be affected. This means that the nerve supplying the muscle is compressed by the disc material. The pain in the lower back is due to spasm of the lumbar muscles with concurrent inflammation and also due to tears of the annulus and supporting ligaments of the inter-vertebral joints. Edema and other
factors mentioned above also cause pain. The pain in the lower limb is known as `referred pain'. As the sciatic nerve innervates the lower limb and its root at the spinal level is irritated by the disc, the current of pain travels to the muscles innervated by that nerve and may be felt at any part of the limb. The point inside the buttock from where the sciatic nerve emerges is a tightly constricted area. The patient may have a tilted spine, to the left or right. This is to avoid pressure on the spinal nerve on the side of the herniated disc. Hence the tilt is to the opposite side of the pathology.

While sitting or standing, most of us use only one side of the body thus compromising alignment. This produces pressure on the sciatic nerve and pain on the side of the body that is overused. A simple example is that of a motorcyclist using the same leg to kick-start the vehicle. Over years the person invariably experiences pain in the buttock region of that leg.

It is essential that we are all aware of our body movements in everyday activities, identify often repeated movements and use the body evenly, however insignificant the task may appear to be.

Lumbar stabilization

Lumbar stabilization is an active form of exercise used in physical therapy. It is designed to strengthen the muscles to support the spine and helps to prevent disc prolapse. Through a regimen of exercises, and with the initial help of an experienced physical therapist, the patient is trained to find and maintain her/his “neutral spine” position. The back muscles are then exercised to teach the spine how to stay in this position.
This exercise technique relies on proprioception, or the awareness of where one's joints are positioned. Performed on an ongoing basis, these exercises can help keep the back strong and well positioned.

Lumbar stabilization is a multi-component program and involves education/training, strength, flexibility and endurance. It is generally used during all phases of a back pain episode and may be prescribed after a thorough evaluation of the patient’s specific condition.

Lumbar stabilization exercise is a modern concept in the management of patient with lumbar disc prolapse. Lumbar stabilization exercise is a program of back muscles exercises designed to improve strength and enhance flexibility in a pain free range.

The goals of lumbar stabilization exercises include:

- Reduction of back pain
- Gain control over the movements of the spine during daily activity
- Gain control over the movements of forces acting on the daily activity of the spine
- Heal soft-tissue injury, such as muscle strain and torn ligaments
- Reduce the chance of back injury due to repetitive motions or sudden movements or stresses
1.1. Statement of problem

In the present study the researcher seeks to find out the comparative analysis of lumbar stabilization exercises versus general spinal exercises in the rehabilitation of disc prolapsed.

1.2 Need for the study

The most common work related injury in India every year is low back pain. At least 40 % of individuals experience a significant episode of disc prolapsed at some point in their lives. Hence this study was conducted to find out the optimal treatment strategy for lumbar disc prolapse.

1.3 Hypothesis

Null Hypothesis

There is no significant difference in pain and range of motion of spine between lumbar stabilization exercises and general spinal exercises among prolapsed lumbar disc patients.

Alternative hypothesis

There is significant difference in pain and range of motion of spine between lumbar stabilization exercises and general spinal exercises among prolapsed lumbar disc patients.
1.4. OPERATIONAL DEFINITIONS

Pain:

It is an unpleasant sensory or emotional experience which is usually associated with or described in terms of tissue damage or both. Pain acts as a warning signal that an injury is immediately impending such as touching a hot object.

Lumbar stabilization exercises

Lumbar stabilization is an active form of exercise used in physical therapy. It is designed to strengthen muscles to support the spine and helps to prevent disc prolapse. Through a regimen of exercises, and with the initial help of an experienced physical therapist, the patient is trained to find and maintain her/his “neutral spine” position. The back muscles are then exercised to teach the spine how to stay in this position.

Disc prolapsed

Disc prolapse is a medical condition affecting the spine due to trauma, lifting injuries or idiopathic, fibrous ring (annulus fibrosus) of an inter vertebral disc allows the soft central portion (nucleus pulposus) to bulge out beyond the damaged outer rings. Tears are almost always posteriolateral in nature owing to the presence of the posterior longitudinal ligament in the spinal canal. The intensity may range from mild to severe and may fluctuate. The pain may radiate into one or both buttocks or even into the whole lower limb.
II. REVIEW OF LITERATURE

Section: A

2.1 Studies on Disc prolapsed

 Conducted a study to determine the effects of stabilization exercises for lumbar disc prolapsed patients. Eighteen trials involving 1671 participants were included. Individual high-quality trials provided moderate evidence that stabilization exercises are more effective than no treatment, that manipulation is more effective than sham manipulation for people with acute symptoms and an intact anulus,

 Estimating the prevalence of low back pain in about two third of general population.

 At all follow-up intervals, the primary outcome measures were significantly worse in patients who had had symptoms for more than six months prior to treatment, regardless of whether the treatment was operative or nonoperative

States that mechanical low back pain causes increases in pain with activity tenderness on palpation, limited range of motion and abnormal posture.

Low back pain of mechanical origin randomized control trail showed the effectiveness of chiropractic technique.

7. Crawford,Creed F(1990)

They studies about the life events and psychological disturbances in patients with disc prolapes

Measuring residual functional capacity in disc prolepses based on the dictionary of occupational title.
Section: B

2.2 Studies on Lumbar stabilization exercises

1. O. Sullivan peter b(1997)

 Evaluation of specific stabilization exercise in the treatment of chronic low back pain with radiological diagnosis of spondylosis or spondylolisthesis

 Study stated that the trunk muscle stabilization training plus general exercises verses general exercises only, randomized control trial of patient with recurrent low back pain –what is the result?

3. Danneels L A (2001)

 that the effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patient with chronic low back pain.

 that the muscular stabilisation of the lumbar spine is effective associated with low back pain

5. Richardson C Jull G (1999)
that effects of therapeutic exercises for spinal segmental stabilization in low back pain.

 Efficacy of dynamic lumbar stabilization exercise in lumbar micro discectomy.

Section: C

2.3 Studies on General spinal exercises

1. **Bartelink (1957)**

 Trunk flexion exercises protect the lumbar disc from excessive posteroanterior pressure through the development of intra abdominal pressure.

2. **Pauley (1966)**

 Spinal extensors are the main muscle groups in postural holding and in the eccentric control of trunk flexion.

3. **Kapandji (1979)**

 Extension exercises promote normal physiologic lumbar curve of the spine allowing it to withstand axial compression force.

4. **Kendall PH , Jenkins HM (1968)**

 They studies that the effectiveness of Spinal exercises for backache

5. **.EI Nagar IM ,Nordin M(1991)**
Effects of spinal flexion and extension exercises on low back pain and spinal mobility in chronic mechanical low back pain

Section: D

2.4 Studies on outcome measures

Conducted a study to determine the reliability and validity of visual analogue scale in musculoskeletal pain aged over 18 years. The study population consists of 52 patients in the reliability study and 344 patients in the validity study. The conclusion of the study was that the validity of VAS was moderate to good and its reliability was questionable.

Conducted a study to determine the intra class and inter-class correlation Rom and schematic differential site patients with low back pain. 25 patients with chronic low back pain patients were selected for the study. Two testers independently rated the pain experienced by the patient. The results suggested that range of motion by inch tape measurement is reliable and valid for clinical rating of low back pain.
III. METHODOLOGY

3.1. Study design:

Study design was pre test and post test Experimental study.

3.2. Study setting

JJ Hospital, Kayamkulam, Kerala.

3.3. Sampling

Based on the following criteria 20 patients who had lumbar disc prolapse for duration of up to 8 weeks were selected for the study and they were randomly divided into two treatment groups.

3.4. Inclusion criteria

Clinically Diagnosed as Acute disc prolapse (for up to 8 week duration)

Age between 30 and 40 years

Both males and females

3.5. Exclusion criteria

Chronic disc prolapse (for more than 8 weeks of duration)

Infections such as osteomyelitis, TB

Spinal vertebral fracture

Cancer involving the spinal cord
Arthritic condition such as Osteo Arthritis and Rheumatoid arthritis.

3.6. **Study duration**

Daily once for four weeks.

3.7. **Variables of the study**

- **Independent variables**

 Lumbar stabilization exercise,

 General spinal exercise.

- **Dependent variables**

 Pain,

 Range of motion (lumbar flexion and extension).

3.8. **Measurement tools**

Visual analogue scale (VAS),

Inch Tape Measurement.

3.9. **Treatment Procedure**

Group A receives lumbar stabilization exercise.

Group B receives general spinal exercise.
Procedure:

The study is carried out in 4 steps.

STEP 1: Pre-test for all participants regarding the dependent variables.

STEP 2: Divided the subjects randomly into 2 groups

STEP 3: Treatment interventions.

STEP 4: Post-test all the participants regarding the dependent variable.

Group A

- **Lumbar stabilization exercises**

 Lumbar stabilization exercise is a modern concept in the management of patient with lumbar disc prolapse. The multifidi and transverse abdominals and the muscles of the back support and stabilize the spine to help prevent the low back pain. Lumbar stabilization exercise is a program of back muscles exercises designed to improve strength and enhance flexibility in a pain free range.

- **Exercises to strengthen the multifidus and transverse abdominal muscles of the spine.**

 The multifidus and transverse abdominal muscles run the length of the spine and they are the important component of spine stability and posture.

Measurement Procedure:

- Visual Analog Scale (VAS)
- Range of motion
Visual Analog Scale:

The VAS is the most commonly known and used for measurement of pain. The scale consists of a straight line of a specified length (100mm) with verbal descriptors at each end. The line may be horizontal or vertical. NO PAIN is on one end of the line and WORST PAIN is on the other end of the line. The subjects are instructed to place a mark on the line to report the intensity of pain experienced at that moment. Scoring is done by measuring the millimeters from the low end of the scale to the subjects mark.

Range of motion

Anatomical landmarks (spinous processes) are identified and marked. A tape measure measurement is made of the distance between the two points. The patient is asked to flex or extend the spine and the new distance between the two points were measured. With flexion, the two points will be further apart, conversely, with extension the two points will approximate. The difference between the first and second measurement is an objective assessment of segmental or regional spine mobility between the initial anatomical landmarks.

Treatment Procedure:

Group A:

Lumbar stabilization exercise

Neutral position progression

Patient Position
Lie on back, left knee bend

Technique

- Tighten abdominals and buttocks, keep in back in neutral position. (Fig: 1)
- Raise right leg 12 inches knee straight (Fig: 2)
- Hold three counts
- Lower leg repeat 10 times
- Repeat with left leg
- Progress to making circles (Fig: 3)
- Progress to making squire

Fig1:

Fig :2
Kneeling progression

Position

Kneeling position
Technique

- Tighten abdominals and buttocks, keeping back in neutral position (fig: 1)
- Hand on hip position (fig :2)
- Raise right foot and place on floor in front of patient, kneeling on left knee
- Lunge forward, moving at hips (fig :4)
- Hold 3 counts
- Return to kneeling
- Repeat 10 times
- Repeat with opposite side
Parameters

Visual analogue scale (VAS)

Range of motion

General spinal exercises (group B)

Technique

- Spinal flexion (forward bending)

Position:

 Lie on back

Technique

- Spinal extension exercises (backward bending).

Position

 Lie on abdomen
Progress of the patient is measured on the modified visual analogue scale, and range of motion based on the subjective evaluation of the patients in their activities of life.
IV. DATA ANALYSIS AND RESULTS

4.1 Data Analysis

STATISTICAL TOOLS

Paired ‘t’ – test

The intra group analysis of results were done with paired ‘t’ test with 5% level of significance.

Statistical analysis is done by using paired ‘t’ test

\[
t = \frac{\bar{d} \sqrt{n}}{s}
\]

\[
s = \sqrt{\frac{\sum d^2 - (\sum d)^2}{n(n-1)}}
\]

d = difference between the pre-test Vs post test

d = mean difference

n= number of observations

s = standard deviation
To compare Group A and B

Statistical analysis is done by using un paired ‘t’ test

\[t = \frac{\bar{X}_1 - \bar{X}_2}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \]

\[S = \sqrt{\frac{\sum d_1^2 + \sum d_2^2}{n_1 + n_2 - 2}} \]

Where

\[S \] = Combined standard deviation

\[d_1 \text{ and } d_2 \] = Difference between initial and final readings in Group A and Group B respectively.

\[n_1 \] = No. of patients in Group A

\[n_2 \] = No. of patients in Group B

\[\bar{X}_1 \text{ and } \bar{X}_2 \] = Mean of Group A and Group B respectively.
TABLE: 1

Pretest and post test values of pain Group A

Using visual analogue scale

<table>
<thead>
<tr>
<th>NO OF PATINTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE: 2

Pre test and post test values of pain Group B

Using visual analogue scale

<table>
<thead>
<tr>
<th>NO OF PATIENTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE: 3

Pre Test and Post Test Values of Group A for Flexion

Using Range Of Motion

<table>
<thead>
<tr>
<th>NO OF PATIENTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>4.2</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>3.8</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>4.2</td>
<td>6.2</td>
</tr>
<tr>
<td>9</td>
<td>6.2</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>5.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>
TABLE: 4

Pre Test and Post Test Values of Group A

For Extension Using Range Of Motion

<table>
<thead>
<tr>
<th>NO OF PATIENTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>5.1</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>5.3</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>5.2</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>5.3</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>5.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
TABLE: 5

Pre test and post test values of Group B

For flexion using range of motion

<table>
<thead>
<tr>
<th>NO OF PATIENTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>4.2</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>3.8</td>
<td>4.2</td>
</tr>
<tr>
<td>8</td>
<td>4.2</td>
<td>4.8</td>
</tr>
<tr>
<td>9</td>
<td>3.5</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>
TABLE: 6

Pre test and post test value Group B

For extension using range of motion

<table>
<thead>
<tr>
<th>NO OF PATIENTS</th>
<th>PRE TEST VALUES</th>
<th>POST TEST VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.2</td>
<td>5.4</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>5.8</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>7</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>9</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>10</td>
<td>4.7</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Table: 7

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP A</th>
<th>Improvement</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Mean Difference</td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td>6.4</td>
<td>4</td>
<td>1.33</td>
<td>9.50</td>
</tr>
<tr>
<td>Posttest</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF GROUP A (VAS)

Fig: 1
Table: 8

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST OF GROUP B (VAS)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP B</th>
<th>Improvement</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Mean Difference</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Pretest</td>
<td>4.7</td>
<td>1.6</td>
<td>1.15</td>
</tr>
<tr>
<td>2.</td>
<td>Posttest</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig: 2

GROUP B VAS PRE AND POST TEST MEAN VALUE

![Graph showing comparison of Group B VAS pre and post test mean value](image-url)
Table: 9

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST VALUES OF GROUP A FLEXION USING RANGE OF MOTION (ROM)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP A</th>
<th>Improvement Mean</th>
<th>Mean Difference</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pretest</td>
<td>4.74</td>
<td></td>
<td>1</td>
<td>0.94</td>
</tr>
<tr>
<td>2.</td>
<td>Posttest</td>
<td>5.74</td>
<td></td>
<td>1</td>
<td>5.44</td>
</tr>
</tbody>
</table>

Fig:3

GROUP A FLEXION ROM PRE AND POST TEST MEAN VALUE

![Graph showing mean flexion ROM pre and post test values]
Table: 10

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST VALUE OF GROUP A EXTENSION USING RANGE OF MOTION (ROM)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP A</th>
<th>Improvement</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Mean Difference</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Pretest</td>
<td>8.51</td>
<td>3.18</td>
<td>0.39</td>
</tr>
<tr>
<td>2.</td>
<td>Posttest</td>
<td>5.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig: 4

GROUP A EXTENSION ROM PRE AND POST TEST
MEAN VALUE
Table: 11

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST VALUES OF GROUP B EXTENSION USING RANGE OF MOTION (ROM)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP B</th>
<th>Improvement</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Mean Difference</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Pretest</td>
<td>8.51</td>
<td>3.26</td>
<td>0.46</td>
</tr>
<tr>
<td>2.</td>
<td>Posttest</td>
<td>5.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig: 5

GROUP B EXTENSION ROM PRE AND POST TEST MEAN VALUE

![Graph showing mean values of pre and post test for Group B extension ROM]
Table: 12

MEAN AND MEAN DIFFERENCE OF PRE TEST AND POST TEST VALUES OF GROUP B FLEXION USING RANGE OF MOTION (ROM)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GROUP B</th>
<th>Improvement</th>
<th>Standard Deviation</th>
<th>Paired ‘t’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Mean Difference</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Pretest</td>
<td>4.39</td>
<td>5.98</td>
<td>0.49</td>
</tr>
<tr>
<td>2.</td>
<td>Posttest</td>
<td>10.37</td>
<td></td>
<td>4.90</td>
</tr>
</tbody>
</table>

![GROUP B FLEXION ROM PRE AND POST TEST MEAN VALUE](image)

Fig: 6
BOTH GROUP VALUES OF PAIN USING VAS

Table: 13

<table>
<thead>
<tr>
<th>S.NO</th>
<th>ROM</th>
<th>Improvement</th>
<th>Mean Difference</th>
<th>Standard deviation</th>
<th>Un paired ‘t’ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Group A</td>
<td>3</td>
<td></td>
<td>0.353</td>
<td>7.32</td>
</tr>
<tr>
<td>2.</td>
<td>Group B</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig: 7
BOTH GROUP VALUES OF FLEXION RANGE OF MOTION

Table: 14

<table>
<thead>
<tr>
<th>S.NO</th>
<th>ROM</th>
<th>Improvement</th>
<th>Mean Difference</th>
<th>Standard deviation</th>
<th>Un paired ‘t’ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Group A</td>
<td>4.1</td>
<td></td>
<td></td>
<td>7.32</td>
</tr>
<tr>
<td>2.</td>
<td>Group B</td>
<td>3.2</td>
<td>2.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig:8
BOTH GROUP VALUES OF EXTENSION RANGE OF MOTION

Table: 15

<table>
<thead>
<tr>
<th>S.NO</th>
<th>ROM</th>
<th>Improvement</th>
<th>Mean Difference</th>
<th>Standard deviation</th>
<th>Un paired ‘t’ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Group A</td>
<td>3.1</td>
<td></td>
<td>1.23</td>
<td>3.12</td>
</tr>
<tr>
<td>2.</td>
<td>Group B</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig:9
4.2 RESULTS

Group A pre test and post test values of pain scores were analyzed by Paired ‘t’ test. The calculated value is 9.50, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group A.

Group B pre test and post test values of pain scores are analyzed by Paired ‘t’ test. The calculated value is 8.24, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group B.

When comparing both the groups values of pain by unpaired’ test, the calculated t value is 7.32 and ‘t’ table value is 3.92 at 0.005 level. Since the calculated ‘t’ value is more than ‘t’ table value, it is concluded that there is significant difference among lumbar stabilization exercises and general spinal exercises in lumbar disc prolapsed subjects. Hence the alternate hypothesis is accepted and null hypothesis is rejected.

Group A pre test and post test values of lumbar flexion scores were analyzed by Paired ‘t’ test. The calculated value is 5.44, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group A.
Group B pre test and post test values of lumbar flexion scores were analyzed by Paired ‘t’ test. The calculated value is 4.90, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group B.

When comparing both group values of flexion range by unpaired ‘t’ test the calculated t value is 7.32 and ‘t’ table value is 2.101 at 0.005 level. Here since the calculated ‘t’ value is more than ‘t’ table value, it is concluded that there is significant difference among lumbar stabilization exercises and general spinal exercises in lumbar disc prolapsed subjects. Hence the alternate hypothesis is accepted and null hypothesis is rejected.

Group A pre test and post test values of lumbar extension scores were analyzed by Paired‘t’ test, the calculated value is 4.84, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group A.

Group B pre test and post test values of lumbar extension scores were analyzed by Paired ‘t’ test, the calculated value is 3.43, whereas the critical value is 2.145 at 0.005 level. Since the calculated value is greater than the critical value, there exists a significant difference between the pretest and post test values of Group B.

When comparing both group values of extension range by unpaired ‘t’ test the calculated t value is 3.12 and ‘t’ table value is 2.101 at 0.005 level. Here since the calculated ‘t’ value is more than ‘t’ table value, it is concluded that there is significant difference among lumbar stabilization
exercises and general spinal exercises in lumbar disc prolapsed subjects. Hence the alternate hypothesis is accepted and null hypothesis is rejected.

V. DISCUSSION

The study result shows that lumbar stabilization exercises and general spinal exercises both reduce pain and improve range of motion of spine significantly among prolapsed lumbar disc subjects, but when comparing lumbar stabilization exercises and general spinal exercises, lumbar stabilization exercises reduce pain and improve range of motion significantly than general spinal exercises lumbar disc prolapsed subjects there is among.

Koumontakas GA, Watson P J. (2005) concluded that that the trunk muscle stabilization training plus general exercises will improve the range of motion of spine and reduces pain among prolapsed lumbar disc subjects.

The present study supports Koumontakas GA, Watson P J study. Lumbar spinal exercise protocols specifically focus on lumbar spinal muscles that are actively engaged in exercise. These exercises relieve pain, improve functional parameters and strengthen trunk and back extensors. General spinal exercise is mainly flexibility exercises and study showed that benefits of these are not better. These old fashioned exercise do not have potential to actively engage lumbar spinal muscles so these are able to control spine in different postures. Except when patient is in acute condition, these exercises are perfectly safe, comfortable and easy to learn for all.
patients. This finding was consistent with all participants in experimental group. Safety and efficacy has demonstrated in patient with low back pain including those with nerve root compression. These exercises do not have any contraindications and can readily be included in any therapeutic exercise program. However, at the end of the study, many patients fell bored when told to exercise. Although they took these exercises very lightly, nonetheless, their progress was satisfactory. This proves therapeutic efficacy and potential of stabilization exercises to activate the core stability effects. Besides therapeutic efficacy of Lumbar stabilization exercise, it is also very mandatory for all working therapist to be fluent and accurate with their techniques in such patients, as these were found to provide excellent results. Regarding management of such patients, role of modalities and manipulative management needs to be clinically established. Clinical trials can be conducted in discogenic patients to compare their post exercise pain disability score in pool and at home utilizing LSE protocols.
VI. CONCLUSION

The study was conducted with the aim to compare the effectiveness of Lumbar stabilization exercise and general spinal exercise on patients with Lumbar disc prolapse. Participation between the age group of 30-40 years were selected and divided into two groups, one Group receiving Lumbar stabilization exercise and other Group receiving General spinal exercise. Based on the statistical analysis, both the groups relieve pain and increases lumbar flexion and extension range of motion but the Lumbar stabilization exercise is significantly more effective than General spinal exercise in categories such as pain relief and lumbar range of motion. Hence, we concluded that Lumbar stabilization exercise is effective in relieving pain and increases lumbar flexion and extension range of motion.

6.1 LIMITATIONS

1. The study was done in a very small sample size.
2. The study was conducted only for disc prolapse patients.
3. The study was conducted only for mechanically disc prolapse.
4. The duration of the study was short.
5. The study was done only for patients between age group of 30 to 40 years.

6.2 SUGGESTIONS

1. Similar study can be carried out for larger sample size.
2. Study can also be conducted for sub acute and chronic low back patients.
3. Study can be carried out for longer period of duration.
4. Study can also be carried out for different age group of patients.
5. A control group can be added for better results.

VII. BIBLIOGRAPHY

VII. ANNEXURE

ANNEXURE:1

Subjective assessment

Name
Age
Sex
Occupation
Date of admission
Chief complaints

History

Present medical history
Past medical history
Personal history
Family history
Social history

Vital signs

BP
Temperature
Pulse rate
Respiratory rate

Pain assessment

Onset
Duration
Side
Site
Type
Character
Aggravating factor
Relieving factor
Nature
VAS Scale
24 Hrs Patter

Objective Assessment:

On observation:

Body built
Posture (anterior, posterior, Lateral view)
Attitude of Limbs
Breathing pattern
Deformity
External appliances
Skin colour
Abnormal bony contours
Oedema
Muscle wasting
Gait

On palpation

Warmth
Tenderness
Spasm
Tone
Nodules
Crepitus
Oedema
Capillary filling
Pulses

On examination

Sensory

Superficial sensation
Deep sensations
Cortical sensations
Reflexes
Motor

Chest expansion

Upper Limb
- ROM
 - RT
 - LT

Lower Limb
- PROM
 - RT
 - LT

Upper limb
Lower limb

Muscle Power
- End Feel
- Muscle Girth
- Limb Length
- Gait
- Special test
- Functional Activities

Investigation

- Provisional Diagnosis
- Problem List
- Short Term Goal
- Long Term Goal
- Follow-UP
CONSENT FORM

I have been informed about the procedure and the purpose of the study. I have understood that I have the right to refuse my consent or withdraw it any time during the study without adversely affecting the study. I am aware that being subjected to this study, I will have to give sometime to this study and this assessment do not interfere with the benefits.

I __________________________ ______________________ , the undersigned give my consent to be a participant of the study program.

Signature of the consent

(Name and Address)