"A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY"

Dissertation submitted to

THE TAMILNADU Dr. M.G.R. MEDICAL UNIVERSITY

In partial fulfillment of the requirement For the award of

M.S.DEGREE - BRANCH - II

OBSTETRICS AND GYNAECOLOGY

REGISTRATION No: 221916905

THE TAMIL NADU Dr. M.G.R. MEDICAL UNIVERSITY MADRAS MEDICAL COLLEGE, CHENNAI.

MAY 2022

BONAFIDE CERTIFICATE

This is to certify that the dissertation "A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY" is a bonafide record of original work done by DR. K. VIDHYA LAKSHMI under the guidance of Dr. S.VIJAYA, M.D., D.G.O., Professor & Director of Obstetrics and Gynaecology in Institute of Obstetrics and Gynaecology, Egmore, Chennai in partial fulfillment of the requirements for MS Degree in Obstetrics and Gynaecology branch II examination of the Tamil Nadu Dr.MGR Medical university to be held in May 2022. The period of post graduate study and training from May 2019 to April 2022.

Prof. DR. S.VIJAYA, M.D., D.G.O., Guide, Institute of Obstetrics and Gynaecology, Egmore, Chennai **Prof. DR. S.VIJAYA, M.D., D.G.O.,** Director, Institute of Obstetrics and Gynaecology, Egmore, Chennai

Prof. DR. E. THERANIRAJAN, M.D., D.C.H., M.R.C.P. C.H(UK)., F.R.C.P. H. (UK), Dean, Madras Medical College, Rajiv Gandhi Government General Hospital, Chennai – 600 003

DECLARATION

I, DR. K. VIDHYA LAKSHMI Post Graduate, Department of Obstetrics and Gynaecology, Madras Medical College solemnly declare that this dissertation "A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY" was prepared by me at Department of Obstetrics and Gynaecology, Madras Medical College, Chennai, under the guidance and supervision of Professor & Director Dr. S.VIJAYA, M.D., D.G.O., Institute of Obstetrics and Gynaecology, Egmore, Chennai.

This dissertation is submitted to **The Tamil Nadu Dr.M.G.R. Medical University**, Chennai in partial fulfillment of the University regulations for the award of the degree of **M.S. (Obstetrics and Gynaecology)**.

Place : Chennai Date :

DR. K. VIDHYA LAKSHMI

ACKNOWLEDGEMENT

I express my sincere thanks to Professor **Dr. E. THERANIRAJAN, M.D., D.C.H., M.R.C.P. C.H(UK)., F.R.C.P. H. (UK),** The Dean, Madras Medical College for allowing me to conduct the study using the available facilities.

I convey my heartfelt gratitude and sincere thanks to my guide Professor & Director **Dr. S.VIJAYA, M.D, D.G.O**, Institute of Obstetrics and Gynaecology, Egmore, Chennai, who with her immense knowledge and professional expertise has provided guidance and encouragement throughout the study and in the preparation of this dissertation.

I thank all my Unit Chiefs, R.M.O., Assistant Professors of this Department of Obstetrics and Gynaecology, Madras Medical College, Chennai for their support, advice and encouragement.

I thank InnAccel technologies private limited for providing Fetal Lite device and for their cooperation to conduct the study.

I thank all my patients for the cooperation and hence for the success of the study. I thank my family and friends for their inspiration and support given to me.

DR. K. VIDHYA LAKSHMI

CONTENTS

S. No.	TITLE	PAGE NO.
1.	INTRODUCTION	1
2.	AIMS AND OBJECTIVES	3
3.	REVIEW OF LITERATURE	4
4.	MATERIALS AND METHODS	53
5.	RESULTS	56
6.	DISCUSSION	79
7.	CONCLUSION	83
8.	BIBLIOGRAPHY	
9.	ANNEXURES	
	 PROFORMA INFORMATION SHEET INFORMED CONSENT FORM ETHICAL COMMITTEE CERTIFICATE OF APPROVAL PLAGIARISM CERTIFICATE KEY TO MASTER CHART MASTER CHART 	

INTRODUCTION

Multiple pregnancies, an object of fascination from before the stories of Cain and Abel still present a special challenge for the clinician today. Multiple pregnancy is a well-recognized risk factor that increases maternal and perinatal morbidity and mortality

Maternal mortality is 2.5 times higher in multiple pregnancy when compared to singleton pregnancy and in that line the neonatal morbidity and mortality is 6 times higher for a multiple pregnancy when compared to a singleton.

The major part of the contribution stands with preterm labour and fetal growth restriction. WHO Multicountry Survey on Maternal and Newborn Health (WHOMCS, 2010–2011) has established the association of adverse maternal outcomes associated with multiple pregnancy using the MNM criteria (Maternal near-miss), and the data strongly suggest that multiple pregnancy is associated with 3 times higher risk of maternal near-miss and 4 times higher risk of maternal death. The incidence of twin rate has increased upto 70% since 1980 and the rate of triplets , quadruples and higher-order multiple has increased even more. increased maternal age at conception and the advent of in vitro fertilization techniques has paved the way for the recent increase in the incidence. There is wide international variation in twinning rates, largely driven by differences in the incidence of dizygotic (DZ) twin and multiple pregnancies. While the incidence of monozygotic (MZ) twin pregnancies is relatively constant at 3/1000, dizygotic twinning is increased by a number of factors including maternal age, parity, ethnicity, maternal family history of twins, and smoking. The highest rates of twinning are seen in Sub-Saharan Africa and the lowest frequency is reported in South East Asia and Latin America

Incidence of twins -1 in 80 pregnancy Incidence of triplets is 1 in 80^2 pregnancy Incidence of quardruples is 1 in 80^3

Multiple pregnancy is not as simple as two for the price of one – despite the fact that they constitute fewer than 2% of births. In this context, it is clear that all obstetricians need to appreciate the unique development of multiple pregnancies and the importance of specialized antenatal care in their management. The current study aims to asses

sociodemographic, obstetric characteristics and the occurrence of maternal complications in multiple pregnancy and its associated adverse perinatal outcome.

AIMS AND OBJECTIVES OF THE STUDY

- TO STUDY THE MATERNAL OUTCOME IN MULTIPLE PREGNANCY.
- TO STUDY THE PERINATAL MORBIDITY AND MORTALITY ASSOCIATED WITH MULTIPLE PREGNANCY.

REVIEW OF LITERATURE

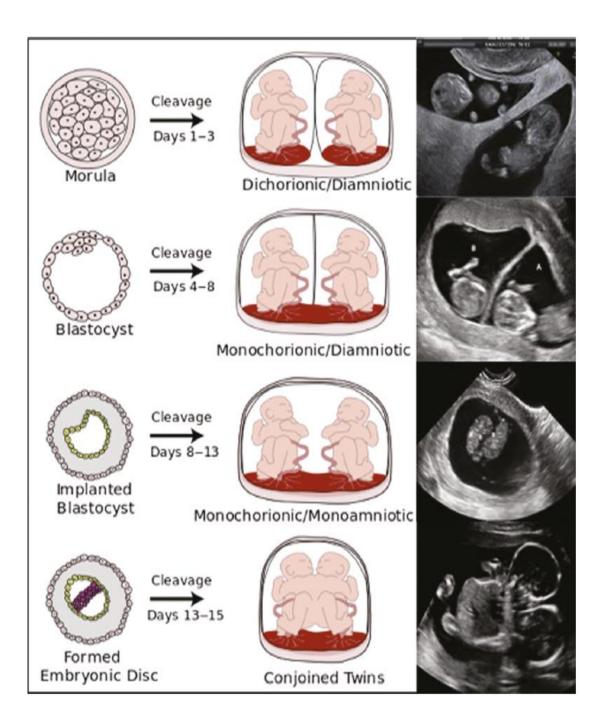
Multiple pregnancy as the name says is the pregnancy carrying more than one fetus. The incidence of which has been in the increasing trend in recent years with the advent of ART .

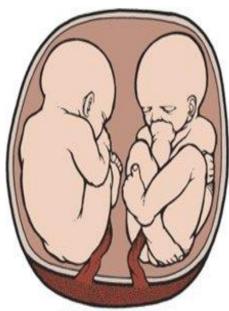
Among multiple pregnancy, twins is more common.

Binovular twin and uniovular twin are the two varieties of twin

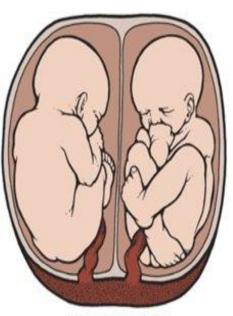
Binovular otherwise known as dizygotic or non identical twins, They develop from 2 different ova need not be from the same ovary and are fertilised separately by two different spermatozoa. The sex can be of the same or different. They have 4 membranes interlacing between them two chorion and two amnion. This type of twin is 4 times common when compared to uniovular twin.

Uniovular or monozygotic twin is pregnancy that has developed from one formed embryo that after fertilisation has divided to form two or more embryo.

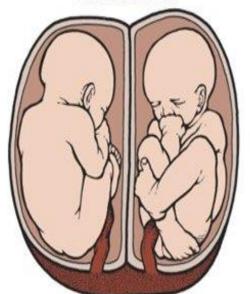

They will be of the same sex, and have the same physical features and blood group

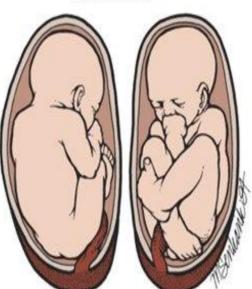

5

The placentation and development in uniovular twins depends on the day of division .Early division, prior to development of the blastocyst 1-3 days occurs in around 25% of MZ pregnancies and will lead to separate placentas and membranes (dichorionic diamniotic (DCDA) in twins or trichorionic triamniotic (TCTA) in triplets).


Division after the development of a single inner cell mass (day 4–8) will lead to a shared chorion, but separate membrane sacs (monochorionic diamniotic). It is important to recognize that although all monochorionic pregnancies should be monozygous, not all dichorionic pregnancies are dizygous Later division of the embryonic plate is rare, but division between day 8 and 13 will lead to a shared placenta and membrane sac (monochorionic monoamniotic) which is observed in only 1% of all twin pregnancies. Division after 14 days leads to conjoined twins, with an estimated incidence of 1.5/100,000 births.

Zygosity has an important role in the clinical outcome of multiple pregnancy Monozygous twins are at higher risk of congenital anomalies, but most of the increased perinatal risks of MZ pregnancies are related to the fact that most monozygous pregnancies are monochorionic.




Monochorionic Monoamniotic

Monochorionic Diamniotic

Dichorionic Diamniotic (fused placentae)

Dichorionic Diamniotic (separate placentae)

MATERNAL ADAPTATION AND MORBIDITY IN MULTIPLE PREGNANCY

The maternal physiological changes of pregnancy are unsurprisingly greater with multiple pregnancy as the mother adapts to accommodate the greater metabolic demands and physical size of multiple fetuses and placentas.

Higher levels of placentally derived hormones can contribute to a higher frequency of hormonally mediated maternal morbidity. For example, human placental lactogen (hPL) is associated with gestational diabetes and is increased in multiple pregnancy, which correlates with the observed clinical increase in gestational diabetes in multiple pregnancy. Equally, increased human chorionic gonadotropin (hCG) is observed in multiple pregnancies and has been linked to an increased frequency of hyperemesis gravidarum.

Cardiovascular adaptation occurs as described in singleton pregnancy and is exaggerated in multiple pregnancy. Plasma volume expansion occurs to a greater degree, leading to reduced oncotic pressure with a higher frequency of both peripheral and pulmonary edema, and also a greater degree of dilutional anemia. By the time the pregnancy is full term, the weight of the gravid uterus in a twin pregnancy may exceed 8 kg and occupy 10 liters of space. The physical effects of this weight on the pelvis, bladder and back exacerbate the common complaints in pregnancy of pelvic girdle pain and urinary frequency.

Alteration in other body systems has also been reported, such as changes in renal, respiratory and liver function. While this exaggerated maternal response to pregnancy is important for fetal growth of twins, it is also of relevance in the clinical management of the women expecting twins. Physiological changes can raise suspicion and aid in diagnosis of multiple pregnancy.

Different standards of normality have to be set for multiple pregnancies compared with singleton pregnancies, both in the diagnosis of complications, for example anaemia, and in their management, for example preeclampsia when altered renal and liver function is important in monitoring the condition.

10

Renal System:

Glomerular filtration rate in a singleton pregnancy increases by around 50% by the time of 12 weeks. It reaches a peak of approximately around 180 ml/min from the normal value of 120 ml/min. No significant difference in GFR is noted between twin and singleton gestation with regard to GFR.

Hematologic system:

Pregnancy is a potential thrombogenic state. Fibrinogen, factors XII, X, IX, VII, VIII and von Willebrand factor levels increase in the blood. Factor XI falls and prothrombin and factor V remain the same. Anticogulants like protein C and antithrombin III levels also falls or remain the same and protein S falls15.

As a result of these changes there is an increased susceptibility towards thrombosis in antenatal period and till 6 weeks postpartum. These changes mainly help in bringing down the loss of blood during delivery.

Dietary intake in twin pregnancy is similar to that of Singleton pregnancy although total fetal weight is greater . The adaptation of the mother to multiple Pregnancy is thus sufficient to enhance absorption of Nutrients from the diet to optimum levels for fetal growth of the twins. Nutrient handling and metabolism is influenced

By the mother's hormone changes. While broadly similar to those of singleton pregnancies these are enhanced .To favour optimal placental transfer of nutrients to the Developing fetuses with adequate supply of essential factors and energy. For example, there is a slower rate of glucose dispersal after a glucose load in twin pregnancies compared to singletons

DIAGNOSIS OF MULTIPLE PREGNANCY

The tool for determination of chorionicity is first trimester ultrasound by identifying lamda sign and twin peak sign. Dating of multiple pregnancy is another most important point in the management of multiple pregnancy which helps us to avoid postmaturity.

The current ISUOG recommendation is that multiple pregnancy are best dated when the crown-rump length is between 44 and 84 mm (between 11+0 to 13+6 weeks of gestation). Another most important role of first-trimester ultrasound is the determination of no of a gestational sac, this is even more important in higher-order multiples where selective fetal reduction can be planned.

Assign nomenclature to babies (for example, upper and lower, or left and right) in twin and triplet pregnancies and document this clearly in the woman's notes to ensure consistency throughout pregnancy.

If the woman comes after 14 weeks of her pregnancy then, both CRL is measured and the largest is taken for dating purposes.

Other diagnostic tools include abdominopelvic radiograph, this is particularly useful when the number of an embryo is uncertain in the case of higher-order multifetal pregnancy. However, this tool is inefficient if used before 18 weeks as the skeleton of the fetus is less radio-opaque and cannot be seen accurately

Sometimes blood group determination of the fetuses also help in determining chorionicity. When the two fetuses have different blood group, it confirms the chorionicity as dizygotic whereas presence of same blood group does not confirm monozyosity. St. Clair and associates suggested that other tests like finger printing may be used for the diagnosis. Study by Ingruise Louse et al showed that dizygotic twin pairs share two HLA haplotypes more commonly than ordinary siblings born out of separate pregnancies and are thus genetically more alike.

	Dichorionic	Monochorionic	Monochorionic
Gestation visible	diamniotic (DCDA)	diamniotic (MCDA)	monoamniotic (MCMA)
<10 weeks	Two yolk sacs	Two yolk sacs	Single yolk sac
<10 weeks	Two amniotic sacs	Two amniotic sacs	Single amniotic sac
<10 weeks	Two gestational sacs	Two gestational sacs	Single gestational sac
Up to 16–20 weeks	Chorionic peak 'lambda sign'	'T sign'	No inter-twin membrane visible
From 14–16 weeks	Discordant fetal sex	Concordant fetal sex is expected	Concordant fetal sex is expected
Throughout pregnancy	Distinct placental masses	Single placental mass	Single placental mass

Ultrasound indicator of chorionicity

In the second trimester, in addition to the detection of the twin condition, advantages of ultrasound examination include reliable estimation of gestational age; exclusion of placenta previa; detection of major structural anomalies, such as spina bifida, acrania, or conjoined twinning; and an opportunity for early bonding between a mother and her children. It is important to remember that later ultrasound is more productive for the detection of structural and/or body stalk abnormalities and progress of growth than for the optimal detection of chorionicity. For this reason, some experts believe that the improved outcomes that accrue from early detection of any deviation from normal more than compensate for the extra cost of multiple ultrasound examinations.

FETAL GROWTH AND ANTENATAL MONITORING

Multiples do not simply grow as if they were entirely independent single fetuses, even when they have individual placentation. Although multiples and singletons seem to have similar growth patterns in the second trimester,²⁴ by the third trimester growth velocity in multiples is consistently found to be less than in singletons.

Since it can be observed that multiple pregnancies are genuinely more at risk of stillbirth and perinatal loss than singletons, the finding that fetuses in a multiple pregnancy are smaller than singletons plausibly reflects an increased prevalence of true growth restriction in multiple pregnancies. There is, however, evidence to suggest that the use of twin-specific charts leads to fewer babies being diagnosed with FGR without failing to identify those small babies that go on to suffer IUFD or neonatal death.^{26,27,28,29} It seems that there is an element of physiological adaptation to a shared intrauterine environment, and growth parameters alone are insufficient to determine those babies most at risk of perinatal complications.

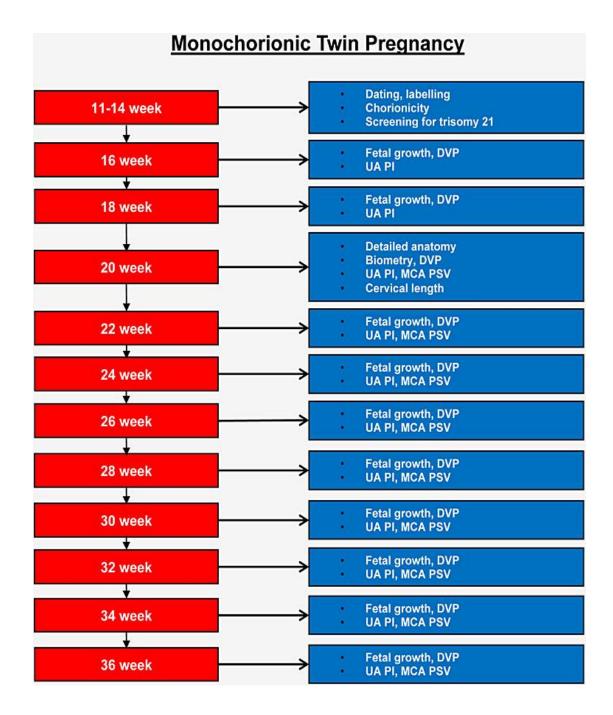
Frequency of growth assessment

Most international bodies recommend scanning dichorionic (DC) twins every 4 weeks and monochorionic (MC) pregnancies every 2 weeks, on the basis that MC pregnancies are at greater risk of all adverse perinatal outcomes than DC twins. Longer scan intervals are likely to be associated with a more severe presentation at diagnosis of complications and consequently with poorer outcomes Although additional tests are likely to identify problems earlier, there are significant resource implications for increased screening, particularly in DC pregnancies which represent the majority of twin clinic attendees.

Clinicians must also weigh carefully the risk of missing a struggling fetus against the fact that additional screening, particularly with imperfect diagnostic tools, will inevitably lead to additional iatrogenic deliveries of babies suspected to be compromised. In multiple pregnancies these iatrogenic deliveries affect not only the mother but also any healthy but potentially immature siblings.

Schedule of specialist antenatal appointments

Type of pregnancy		Weeks 6 to 19												
	6	7	8	9	10	11	12	13	14	15	16	17	18	19
All pregnancy types below													Anomaly scan (18 ⁺⁰ to 20 ⁺⁶ weeks)**	
Monochorionic diamniotic twins		Booking appt by 10 weeks*			Appt + early scan (approximately 11 ⁺⁰ to 13 ⁺⁶ weeks)			2		Appt/scan FFTS		Appt/scan FFTS		
Dichorionic twins											Appt only (no scan)			
Monochorionic & dichorionic triplets (triamniotic)											Appt/scan FFTS		Appt/scan FFTS	
Trichorionic triamniotic triplets											Appt only (no scan)			


Type of pregnancy	Weeks 20 to 29											
-	20	21	22	23	24	25	26	27	28	29		
All pregnancy types below	Anomaly scan (18 ⁺⁰ to 20 ⁺⁶ weeks)											
	Monitor for IUG	R at e	ach scan from 20	weeks								
Monochorionic diamniotic twins	Appt/scan FFTS		Appt/scan FFTS		Appt/scan FFTS				Appt/scan			
Dichorionic twins	Appt/scan				Appt/scan				Appt/scan			
Monochorionic triamniotic & dichorionic triamniotic triplets	Appt/scan FFTS		Appt/scan FFTS		Appt/scan FFTS		Appt/scan		Appt/scan			
Trichorionic triamniotic triplets	Appt/scan				Appt/scan				Appt/scan			

Type of pregnancy	Weeks 30 to 37											
	30	31	32	33	34	35	36	37				
All pregnancy types below	Monitor for	IUGR at	each scan fro	m 20 v	veeks							
Monochorionic diamniotic twins			Appt/scan		Appt/scan		Offer birth If declined: weekly appts + scans					
Dichorionic twins			Appt/scan		Appt only (no scan)		Appt/scan	Offer birth If declined: weekly appts + scans				
Monochorionic triamniotic & dichorionic triamniotic triplets	Appt/scan		Appt/scan		Appt/scan	Offer birth If declined: weekly appts + scans						
Trichorionic triamniotic triplets			Appt/scan		Appt/scan	Offer birth If declined: weekly appts + scans						

Key

Appt/scan: Appointment plus scan (note that all women should have at least two of their appointments with the specialist obstetrician); FFTS: Monitor for feto-fetal transfusion syndrome; IUGR: Intrauterine growth restriction

ANTENATAL CARE IN MULTIPLE PREGNANCY

- (1) To enhance early diagnosis of multiple pregnancy, specifically the diagnosis of chorionicity;
- (2) To institute intensive prenatal, antepartum, and intrapartum care; and
- (3) To reduce the risk of adverse maternal, fetal, and neonatal outcomes.

A rational plan of prenatal and intrapartum care can be developed and implemented, either in the setting of a special twin clinic or in the office of an individual practitioner. This plan can and should be based on an awareness of the frequency and the timing of potential adverse events and the need for special educational preparation of mothers. Special written materials about twin pregnancy can be prepared and given to parents, along with recommendations for books to read. A similar suggestion has been successful for singleton pregnancies.

Recently the National Academy of Sciences (NAS) recommended an ideal total weight gain of 35 to 45 lb for twin pregnancy,²⁸ but provided no definition of excessive weight gain. The

NAS recommendation is useful, however, because it can be the basis of early intervention after initial diagnosis. Indeed, Luke²⁹ and others¹⁵ have refined this recommendation to include the necessity of gaining 24 lb by the 24th week. Before recommending a comprehensive plan of weight gain, care givers should take into account the maternal prepregnancy body mass index and stature as well as the fact that about one half of twin pregnancies deliver at the 37th week of gestation or earlier. This latter point mandates an early gain, as opposed to waiting until after 32 weeks to try to augment weight.

NUTRITIONAL CONSIDERATIONS

Two independent studies paralleled the NAS publication and provided an indication of the future direction of subsequent clinical investigations. In one, based on birth/death certificates from the Office of Vital Statistics, Kansas Department of Health and Environment, from the years 1980 to 1996, a total of 922 twin gestations delivered at term were described. It was determined that the proportion of infants born with LBW declined as maternal prepregnancy weight status increased. It was further determined that infant birth weights increased linearly with prenatal weight gain for women who entered their pregnancy either underweight or at normal weight, but not for those who were overweight or obese at the start of their pregnancy. In another study, optimal pregnancy outcome (greater than 37 weeks' gestation; both infants greater than 2500 g each, with Apgar scores greater than 7) was associated with gestational weight gains of 44 lb (20 kg) compared to 37 lb (16.8 kg) for women with less-than-optimal outcomes.

A companion investigation was conducted by Luke and associates at the Twins Day Festival in Twinburg, Ohio, in the years 1989, 1990, 1991, and 1993. A total of 924 mothers of twins were interviewed, and data were obtained on their 1848 twin children. Study variables were compared by "ideal outcomes" (2500 to 2800 g birth weight and 35 to 38 weeks' gestational age) versus "nonideal outcomes" (birth weight above or below 2500 to 2800 g and/or gestational duration less than 35 weeks).

Ideal twin outcomes had significantly fewer birth weights below the 10th percentile (11% vs 28%; p < 0.0001).⁴⁰ Further, a significantly greater number of mothers with ideal outcomes did not smoke during their pregnancies (95.5% vs 17.3%; p = 0.01); they gained significantly more weight than mothers with nonideal outcomes (44.8 vs 41.1 lb [p = 0.005] and 1.23 lb/week vs 1.14 lb/week [p = 0.02]). Finally, it was determined that both body mass index and weight gain were positive factors affecting outcome. There was a progressive increase in the odds ratio of an ideal twin outcome with increasing weight gain.

MATERNAL COMPLICATION

Twin pregnancy remains a common occurrence with an increased risk of adverse outcomes for mother and baby. Excess maternal risks include anemia, urinary tract infection, hypertension, gestational diabetes, hemorrhage and maternal mortality and as such require greater surveillance compared to singleton pregnancies

MINOR COMPLICATIONS

In the second half of twin pregnancy many might consider the minor complications of pregnancy increased. As a result of the enlarged uterus and increased hormone output, backache and lower abdominal pain become more frequent. As intra-abdominal pressure rises the frequency of micturition, constipation, varicose veins and oedema are all noticed. Sometimes, in late pregnancy it becomes difficult for the woman expecting twins to be comfortable in any position at rest, and walking is also difficult partly due to locomotor difficulties and partly to breathlessness, as the diaphragm is pushed upwards and splinted. Heartburn can also be a major problem particularly at night, disturbing sleep patterns even further. Although these problems may not be of major concern to obstetric staff, they can be a considerable burden on the woman expecting twins. The obstetrician should adopt a sympathetic approach, reassuring women that these are very common in multiple pregnancy and that they are based in the exaggerated response to multiple pregnancy and will not be a problem following delivery.

Major Complications

Antenatal complications of pregnancy, which pose a life threatening risk to the mother to be considered, are hypertensive disorders of pregnancy, antepartum haemorrhage and anaemia. Preterm labour, a very common occurrence in multiple pregnancy, does not usually pose a threat to the mother unless infection intervenes or it arises as a side effect of management with the use of tocolytic agents combined with steroids carrying an increased risk of pulmonary oedema. Other problems in labour namely operative delivery and postpartum haemorrhage will be reviewed.

26

Hypertensive Disorders — Preeclampsia

The incidence of gestational hypertension, preeclampsia and eclampsia has recently been confirmed again to be greater in twin pregnancies when compared to singleton pregnancies, both in primiparae and multiparae (Campbell & MacGillivray, 1999; Coonrod et al., 1995). This was not influenced by the sex of the offspring or zygosity but preeclampsia was more commonly associated with monochorionic placentation. Because of the increased frequency of severe disease and its association with growth retardation, this is a very serious condition for both mother and babies. Special vigilance over a mother expecting twins is needed with more frequent blood pressure checking and urine testing, especially after 30 weeks when weekly checks are indicated. Any single sign of developing preeclampsia, for example, proteinuria alone or a mild rise in blood pressure, should be considered as a reason for hospital admission as the progression of the disease may be very rapid in multiple pregnancy. Additionally proteinuria may present at lower diastolic blood pressures than in singleton pregnancy (Campbell, 1995) and women with proteinuria only in a multiple pregnancy should be treated as having preeclampsia unless it is proven otherwise. Management following admission to hospital is along the lines of management in singleton pregnancy with

27

frequent monitoring of both maternal and fetal well being to enable optimal timing of delivery. The recent study from Aberdeen (Campbell & MacGillivray, 1999) indicates that for the twins fetal outcome, with respect to growth and mortality, was not significantly poorer in preeclamptic women than normotensive women when gestation at delivery was taken into consideration.

Antepartum Haemorrhage

Antepartum haemorrhage is believed to occur more frequently in twin than in singleton pregnancies on account of the greater incidence of preeclampsia with the possibility of placental abruption and the larger area of placental tissue with the likelihood of placental separation. However, the expected increase in incidence of antepartum haemorrhage is not confirmed in all studies (MacGillivray & Campbell, 1988; Patel et al., 1984). A modest increase in antepartum haemorrhage of unknown origin, possibly secondary to better reporting in twin than in singleton pregnancy, has also been shown. No difference in the rates of any type of antepartum haemorrhage by zygosity or placentation has been noted (MacGillivray & Campbell, 1988). Placental abruption and placental praevia should be managed in twin pregnancy in a similar fashion to singleton pregnancy. Vaginal bleeding in early pregnancy, that is, threatened miscarriage, is not usually life threatening but is nevertheless more common in women who delivered twins than in singletons (MacGillivray & Campbell, 1988; Patel et al., 1984).

Anaemia

Bearing in mind the physiological changes in plasma volume and red cell volume the definition of anaemia in a multiple pregnancy requires consideration. Haemoglobin concentration and packed cell volume are unreliable indicators of anaemia. Perhaps more reliance should be placed on mean corpuscular haemoglobin concentration which does not change. The 1983 Scottish Twins Study (Patel et al., 1984) found no difference in the incidence of anaemia in twin and singleton pregnancies when anaemia was defined as haemoglobin concentration less than 9.5 g/dl. Studying 123 twin pregnancies in Grampian over a defined time period (Hall et al., 1979), it was concluded that the incidence of clinically significant anaemia was low after extensive studies including repeat peripheral blood examination and sternal marrow examination. Although both iron and folic acid stores may be reduced transiently during twin pregnancy, the authors

concluded at the time of their writing that prophylactic iron and folic acid should not be recommended for the prevention of anaemia in multiple pregnancy but specific treatment should be given when there was evidence of significant anaemia. However, there is still debate among obstetricians about the need for supplementation. Women in developing countries who often have inadequate or absent iron stores may be susceptible to iron deficiency during a multiple pregnancy and supplementation of such women is required when severe anaemia can be a risk to life.

Operative Delivery

Caesarean section rates have been rising steadily over the years in both singleton and multiple pregnancies with rates of well over 50% reported in twins (Cetrulo, 1986). A rise in both elective and emergency caesarean sections in multiple pregnancy has been reported (Campbell & MacGillivray, 1988a). Very high rates of such operative deliveries may well lead to increased maternal mortality and morbidity post delivery, but little has been reported with respect to postnatal complications such as venous thrombosis and embolism.

Postpartum Haemorrhage

Because of the increased placental size, uterine over-distension and a greater tendency to uterine atony, it is generally agreed that postpartum haemorrhage is a significant problem for the mother in a multiple pregnancy. Many years ago active management of the third stage with controlled cord traction and use of oxytocic agents was claimed to minimise this risk in twin delivery (Wood & Pinkerton, 1966). Recent reviews of intrapartum management in multiple pregnancy do not comment on the incidence of primary postpartum haemorrhage. Manual removal of the placenta and secondary postpartum haemorrhage were both noted in the Aberdeen series to be more common following twin deliveries (Campbell & MacGillivray, 1988b).

Gestational diabetes:

The incidence of GDM increases in twins compared to singletons. 22 to 39% of triplets have gestational diabetes as compared to twins where the rate is 3 to 6%.

PRETERM BIRTH

Multiple pregnancies are at a greater risk of preterm birth than singletons – in fact, 57% of twin pregnancies are delivered before 37 weeks and 11% before 32 weeks through a combination of increased rates of spontaneous preterm labor and a higher risk of antenatal maternal and fetal complications mandating scheduled preterm delivery. For triplet pregnancies, over 75% will be spontaneously delivered before 35 weeks and the majority of deliveries will be indicated by labor or maternal or fetal compromise. Scheduled delivery is the exception, not the rule, but where triplet pregnancies continue beyond 35 weeks, continuing the pregnancy further is associated with increasing risks of perinatal mortality and morbidity.³

The majority of the neonatal morbidity and mortality observed in multiples is attributable to prematurity,¹² and effective prevention of spontaneous preterm delivery in multiples is a key target for reducing the perinatal burden associated with multiple pregnancy.

PRETERM PREMATURE RUPTURE OF MEMBRANES:

The incidence of PPROM in multiple pregnancy (7.4%) is twice than that in singleton pregnancy (3.7%)44. Rupture takes place in the sac of presentation in majority of cases. The risk of infection, abruption, cord accident, overall perinatal mortality is the same in PPROM in twin as well as singletons.

NEONATAL COMPLICATIONS

GROWTH RESTRICTION

As with most pregnancy complications, the risk of FGR is increased in twin pregnancies, and more so in monochorionic (MC) twin pregnancies. Where one fetus is identified as small and the other is not, this is termed selective fetal growth restriction (sFGR). sFGR occurs in both DC and MC pregnancies but the shared placental circulation in MC pregnancies significantly affects presentation, progression and outcome. An increase in perinatal adverse outcomes can be observed when the fetal growth discrepancy is only 18%, even after the exclusion of TTTS pregnancies.⁵⁸ Most national bodies recommend a discrepancy of 20–25% as a trigger for referral to fetal medicine experts or additional monitoring

Table 2	The classification, placental anatomy and pregnancy outcomes of selective fetal growth restriction in
monocha	rionic twin pregnancy.

	Umbilical artery Doppler findings in the smaller twin ⁶²	Corresponding placental vascular findings	Perinatal mortality ⁶⁵
Type I	Normal end-diastolic flow (EDF)	Similar to uncomplicated cases	4.1% (95% Cl 1.2-8.7)
Type II	Absent or reversed EDF (AREDF)	Few large AA anastomoses	16.1% (95%Cl 4.6-32.7)
Type III	Intermittently absent or reversed EDF (iAREDF)	Many large diameter AA anastamoses	11.5% (95%Cl 7.7-16.0)

COMPLICATIONS SPECIFIC TO MONOCHORIONIC PREGNANCIES

TTTS

TTTS occurs in 10%–15% of all MCDA twins. TTTS mainly occurs because at some point in pregnancy the bidirectional inter-twin flow becomes unbalanced. In most cases, TTTS is associated with the number and/or diameter of AV anastomoses from the donor to the recipient fetus. While the presence of AV anastomoses is the prerequisite for TTTS, other factors, including fetal weight discordance, relative placental growth, cord insertions or fetal cardiac defects may help triggering the disease in individual cases. TTTS is a severe hemodynamic disorder characterized by hypovolemia, oliguria and oligohydramnios in the donor, and hypervolemia, polyuria, and polyhydramnios in the recipient.

Additionally, vasoactive molecules and sustained oliguria lead to hypertension and renal tubular damage in the donor, while transfer of these vasoactive molecules to the recipient is thought to produce hypertension and contribute further to hypertrophic cardiomyopathy. Irrespective of its complex pathophysiology, TTTS is invariably associated with remarkable changes in fetal diuresis that lead to very obvious differences in the amniotic fluid (AF) deepest pocket and the bladder size of each fetus.

Diagnostic criteria		Severity staging		
(1) Confirmed monochorionic pregnancy	1.	The bladder is still visible in the donor twin		
(2) Polyhydramnios in the recipient with a deepest vertical pocket		The bladder is no longer visible in the donor		
of 8 cm or more [*]		Critically abnormal Doppler in either twin: absent-reverse diastolic flow		
(3) Oligohydramnios in the donor with a deepest vertical pocket		in the umbilical artery of the donor or recipient and/or absent/reverse		
<2 cm		flow in the DV or pulsatile flow in the UV of the recipient		
(4) Discordant fetal bladders with markedly enlarged bladder in	IV	Hydrops in either fetus		
the recipient and very small or non-visible bladder in the donor	V	Demise of one or both twins		
during most of the examination				

Diagnostic criteria and staging of severity in TTTS.^{29,30}

DV: Ductus venosus; TTTS: Twin-to-twin transfusion syndrome; UV: Umbilical vein.

* The cut-off above 20 weeks is still subject of debate. A cut-off of ≥10 cm beyond 20 weeks has been used in randomized trials and is commonly used by European groups, while a unique cut-off of 8 cm is more commonly used in the United States. Both cut-offs are considered to be acceptable for the diagnosis.

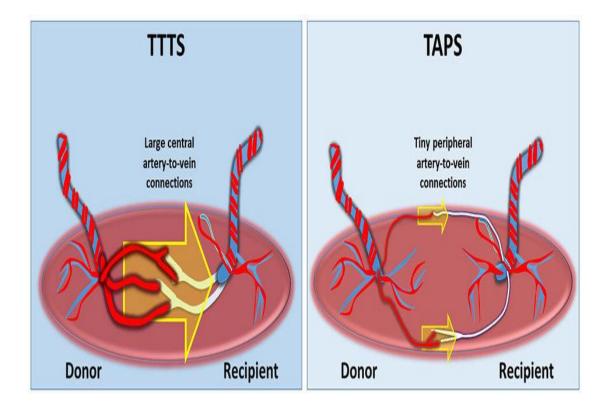
Twin anemia polycythemia sequence (TAPS)

TAPS presents in two clinical forms, spontaneously or after laser therapy for TTTS. Spontaneous TAPS occurs in 3%–5% of MCDA twins, normally during the third trimester.⁴² TAPS is a form of intertwin unbalanced transfusion, however, occurring in a placenta where interfetal anastomoses are very small. Thus, there is discordant AV interfetal flow, but the difference with TTTS is that in TAPS the magnitude is much smaller.⁴³ Chronic subtle transfusion in TAPS leads to a hematological disorder, that is, anemia-polycythemia, but the severe hemodynamic fetal imbalance of TTTS does not occur. When occurring after laser, TAPS is the result of an incomplete coagulation leaving one or two very small placental vessels. This may occur in 0.5%–6% of cases, depending on definitions, laser technique, and center experience.

Period	Diagnostic criteria
Prenatal	MCA-PSV \geq 1.50 MoM in the anemic
	and
	MCA-PSV \leq 0.8 MoM in the fetus with polycythemia
	OR
	Delta MCA-PSV \geq 1.0 MoM
Postnatal	Inter-twin hemoglobin difference ≥8.0 g/dL
	and
	Inter-twin reticulocyte count ratio (anemic/fetus
	with polycythemia) ≥ 1.7

Diagnostic criteria for TAPS.⁵²

MCA-PSV: Middle cerebral artery peak systolic velocity as measured with spectral Doppler; MoM: Multiple of the Median; TAPS: Twin anemia polycythemia sequence.


The prognosis in spontaneous cases of TAPS is normally good and most cases can be managed expectantly. However, anecdotal cases of death of the co-twin have been reported. TAPS after laser for TTTS is usually more aggressive and requires therapy. Therapy for TAPS is indicated if middle cerebral artery Doppler discordance progresses rapidly or pre-hydropic signs are observed in the donor. The only causative treatment is laser therapy. However, in post-laser cases, this option can be difficult sometimes, and repeat transfusions to the donor often achieve good outcomes.

Acute feto-fetal transfusion by single intrauterine fetal death (sIUFD)

Single fetal death may occur unexpectedly in approximately 1%– 1.5% of uncomplicated MCDA twins, and this is the main reason to recommend elective delivery between 36 and 37 weeks. However, the majority of cases of sIUFD occur in pregnancies complicated with TTTS and sFGR. The risk of brain injury is lower if sIUFD occurs in the first half of gestation or before 28 weeks.⁵⁹ Irrespective of the gestational age, the management is based on evaluating the presence of neurological damage in the survivor, preferably by dedicated neurosonography combined with fetal brain MRI around 30 weeks and ideally not before 3 weeks post-sIUFD.

38

Acute feto-fetal transfusion occurs during pregnancy the consequences can be devastating. The characteristic clinical scenario facilitating this complication is sIUFD. The surviving twin may suffer a massive exsanguination into the circulation of the dying fetus, which is associated with a reported 18%–34% of brain injury, especially if the death occurs beyond 28 weeks, and about 15% of spontaneous co-twin death, with greater risk before 28 weeks. In addition, there is an increased risk of preterm birth with higher incidence in pregnancies complicated by TTTS. The risk of these complications after sIUFD depends on the size of vascular anastomoses and feto-placental mass of the demised twin, and, therefore, it is largely unpredictable.

LOW BIRTH WEIGHT :

Low birth weight is also more frequent among twin pregnancies. A previous study found that this risk was 8.3 times higher than in singletons, with a mean birth weight of 2300 g. This risk is associated with the increase in Apgar score at 5th minute < 7 and death during the first year of life .Adequacy of weight for gestational age better assesses the size of the fetus for a given gestational age (compared to birth weight alone). This is particularly useful in populations where preterm birth rates are high. A fetus that is small for gestational age is more likely to experience perinatal morbidity and mortality and adverse effects in adult life. Few studies have evaluated this outcome among twin deliveries, but associations between twin pregnancies and higher rates of small-for-gestational-age have been reported .For these estimations, we used the curves of Fenton et al. because we believed that it was more appropriate to be used when the prevalence of preterm birth is very high, as is the case among twin pregnancies in this population. However, due to the number of cases to have such estimates, it was not feasible to have such assessment performed using different nomograms for comparison.

40

The risk for low 5th minute Apgar score was three times higher for twin pregnancy (either for the first or second twin) than for singletons. Additionally, it was 1.3 times higher for the second when both twins were compared.

This significantly lower Apgar score for the second twin is always taken into consideration in discussions about the best mode of delivery for twin pregnancies and the time interval between first and second twin, although not justifying an indication for a systematic Cesarean section for twin pregnancies. The higher rates of admission to a neonatal intensive care unit we found have also been reported by previous studies on the topic. Prevalence of fetal death of one of the twins varies from 0,5-6,8% with the worst result for monochorionic pregnancy presenting a high prevalence for this condition (50–70%) and risk for the surviving fetus including the fetal death of this co-twin, neurological morbidity and iatrogenic preterm delivery. In the current study, we have not data on chorionicity, however fetal death (death after 28 weeks) occurred over 1.5 times (3.6%) for the first twin and almost 3 times (5.7%) for the second twin when compared to singletons (2.0%).

Perinatal death has been described as up to four times higher in twin pregnancies than in singletons, mainly due to preterm birth, fetal growth restriction, low Apgar scores and extremely low birth weight. In our study, it was found to be 2.5 times higher for the first twin and 3.5 for the second one. This difference between both twins has already been described . In the current study, we also observed a higher risk for fetal and early neonatal death, supporting previous findings from other studies.

MATERIALS AND METHODS

STUDY SETTING:

Institute of Obstetrics and Gynaecology,

Madras Medical College,

Egmore ,Chennai.

STUDY PERIOD: 12 Months (February 2021 - January 2022)

SAMPLE SIZE: 200

SAMPLING TECHNIQUE:

Prospective study.

INCLUSION CRITERIA:

All the women with multiple pregnancy completing 28 weeks of gestation and had delivered in our hospital.

EXCLUSION CRITERIA:

Those multiple pregnancies who were admitted for observation

• Multiple pregnancy with gestational age <28 weeks

- Women with pre-existing medical disorders like chronic hypertension, overt diabetes mellitus, cardiac disease, renal disease.
- Patient refusal

MATERIALS AND METHOD:

- It is a prospective observational study on 100 cases of twins admitted at our hospital
- Detailed history will be taken, general and systemic examination will be done, all routine and specific investigations will be done.
- Data will be collected by proforma containing demographic details, present ,past, family history, antepartum, intrapartum, postpartum complications, neonatal outcome and complications and perinatal mortality.
- All these patients were delivered in our hospital Under close observation
- All stages of labour were carefully managed in the presence of team of obstetricians.
- All babies were examined by neonatologist and NICU care was given as and when required

• Necessary information will be collected in a pre designed data sheet and finally the findings will be compiled and analysed

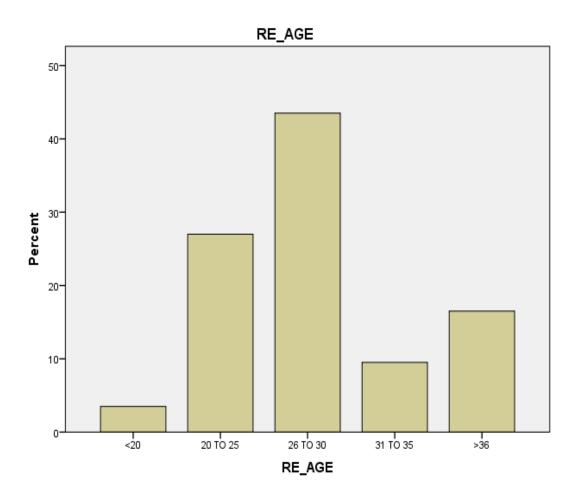

RESULTS

Table 1 showing distribution of 200 mother with multiple pregnancy with respect to age

TABLE 1:AGE DISTRIBUTION

A	Age distribution					
		Frequency	Percent	Valid	Cumulative	
				Percent	Percent	
	<20	7	3.5	3.5	3.5	
	20 TO 25	54	27.0	27.0	30.5	
	26 TO 30	87	43.5	43.5	74.0	
	31 TO 35	19	9.5	9.5	83.5	
	>36	33	16.5	16.5	100.0	
	Total	200	100.0	100.0		

Figure 1 showing age distribution of 200 cases of multiple pregnancy

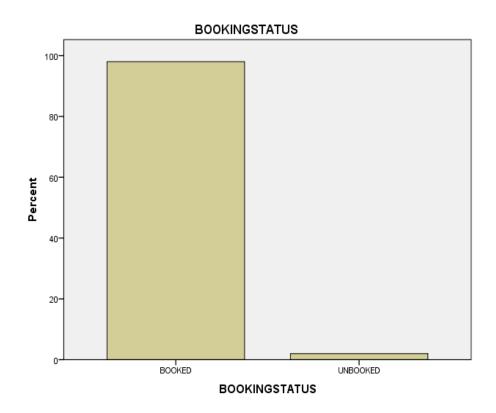

From the above figure, 43% of cases are between 26-30 years of age group, next maximum lies in the range of 20-25. Out of 200 cases,33 cases fall under the age cut off of >36 years which correlates with long period of infertility and conceived after artificial reproductive techniques.

Table 2 shows the booking status of 200 cases.

	Frequen	Percen	Valid	Cumulative
	су	t	Percent	Percent
BOOKED	196	98.0	98.0	98.0
UNBOOKED	4	2.0	2.0	100.0
Total	200	100.0	100.0	

BOOKINGSTATUS

Figure 2 depicts booking status of 200 cases

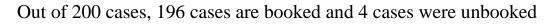
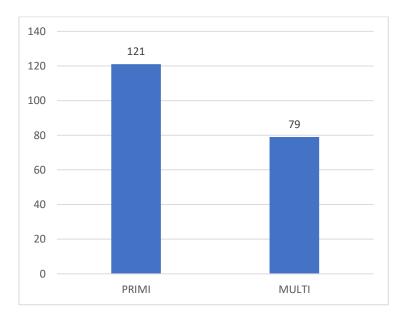



TABLE 3 shows the distribution of 200 multiple pregnancy cases with respect to gravida.

Total	PERCENTAGE
121	60.5%
79	39.5%
	121

Figure 3 depicts the distribution of gravida among 200 cases.

Among 200 cases, 121 cases were primi and 79 were multigravida.

TABLE 4: GESTATIONAL AGE AT DELIVERY

GA AT DELIVERY	FREQUENCY	PERCENTAGE
28	3	1.50%
29	6	3%
30	5	2.50%
31	9	5%
32	18	9.00%
33	25	13%
34	16	8.00%
35	28	14%
36	45	22.50%
37	20	10%
38	20	10.00%
39	5	9%

FIGURE 4: BAR DIAGRAM SHOWING GESTATIONAL AGE AT DELIVERY.

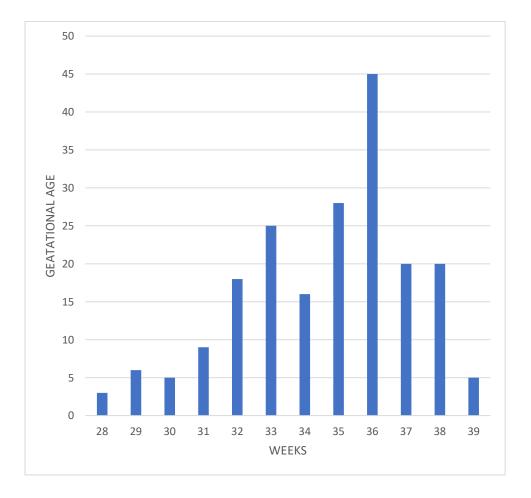
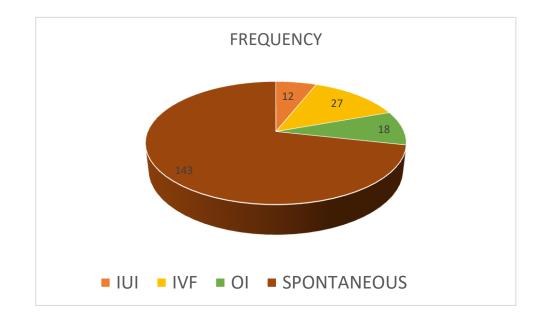



FIGURE 4 depicts the gestational age at delivery of the 200 cases, the mean gestational age being 36 weeks.

Table 5: MODE OF CONCEPTION

	Frequenc y	Percent	Valid Percent	Cumulative Percent
IUI	12	6	6	6
IVF	27	13.5	13.5	19.5
OI	18	9.0	9.0	28.5
S	143	71.5	71.5	100.0
Total	200	100.0	100.0	

FIGURE 5 MODE OF CONCEPTION

TABLE 6:CHORIONICITY

	Frequency	Percent	Valid	Cumulative
			Percent	Percent
DCDA	126	63.0	63.0	63.0
MCDA	59	29.5	29.5	92.5
MCMA	8	4.0	4.0	96.5
ТСТА	7	3.5	3.5	100.0
Total	200	100.0	100.0	

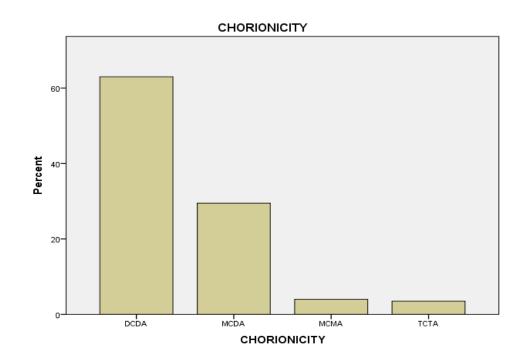


FIGURE 6: bar diagram depicts chorionicity distribution among 200 multiple pregnancy out of which , 63% where dichorionic and diamniotic, 29% were monochorionic and diamniotic and 4% were monochorionic and monoamniotic and 3% were trichorionic and triamniotic pregnancy

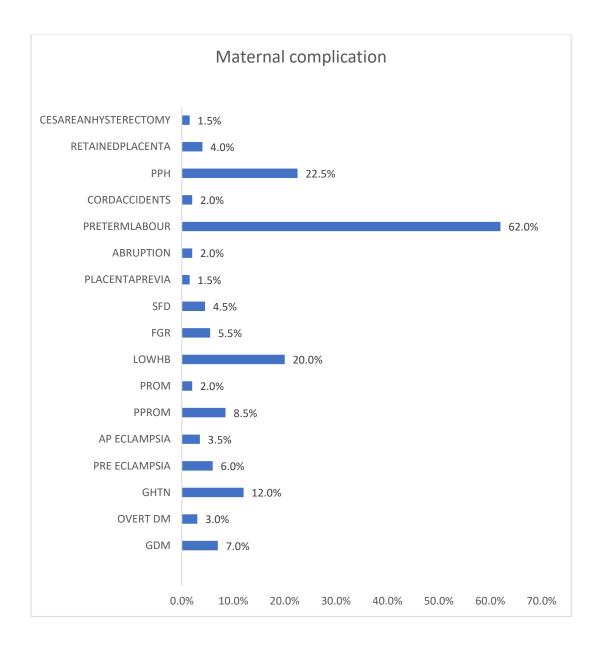

MATERNAL COMPLICATION	n	%
GDM	14	7.0%
OVERT DM	6	3.0%
GHTN	24	12.0%
PRE ECLAMPSIA	12	6.0%
AP ECLAMPSIA	7	3.5%
PPROM	17	8.5%
PROM	4	2.0%
LOWHB	40	20.0%
FGR	11	5.5%
SFD	9	4.5%
PLACENTAPREVIA	3	1.5%
ABRUPTION	4	2.0%
PRETERMLABOUR	124	62.0%
CORDACCIDENTS	4	2.0%
РРН	45	22.5%
RETAINEDPLACENTA	8	4.0%
CESAREANHYSTERECTOMY	3	1.5%

Table 7: maternal complications associated with multiple pregnancy.

Table 7 depicts various maternal complications and its percentage associated with multiple pregnancy among them , preterm delivery is the most common complication about 62%, and the second one is postpartum hemorrhage 22.5%.

Followed by anemia 20%, other rare complications include single fetal demise, fetal growth restriction weighs about 4.5% and 5.5% respectively, though it is rare it is specific for multiple pregnancy

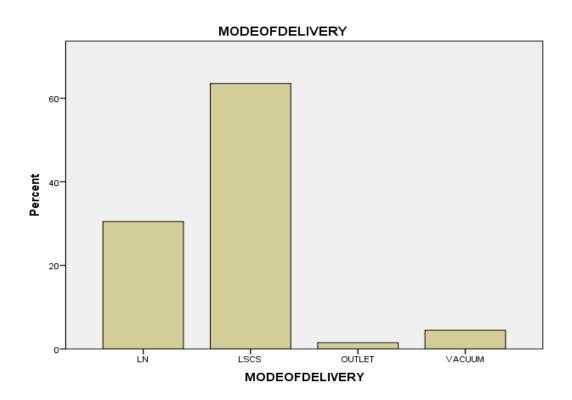
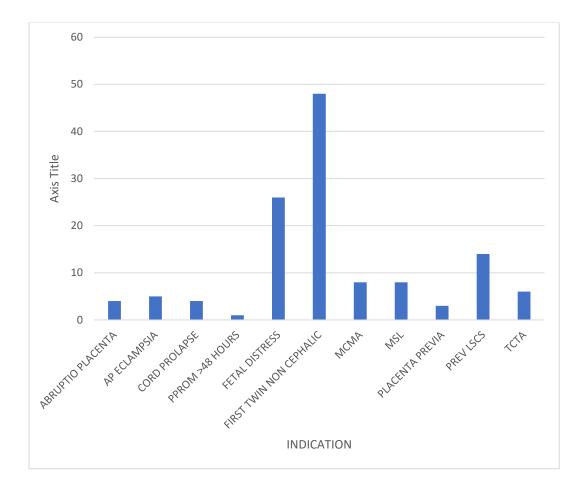

FIGURE 8: BAR DIAGRAM DEPICTS VARIOUS MATERNAL COMPLICATION.

TABLE 8: MODE OF DELIVERY.

	Frequency	Percent	Valid Percent	Cumulative Percent
LN	61	30.5	30.5	30.5
LSCS	127	63.5	63.5	94.0
OUTLET	3	1.5	1.5	95.5
VACUUM	9	4.5	4.5	100.0
Total	200	100.0	100.0	

FIGURE 8: BAR DIAGRAM SHOWING MODE OF DELIVERY .

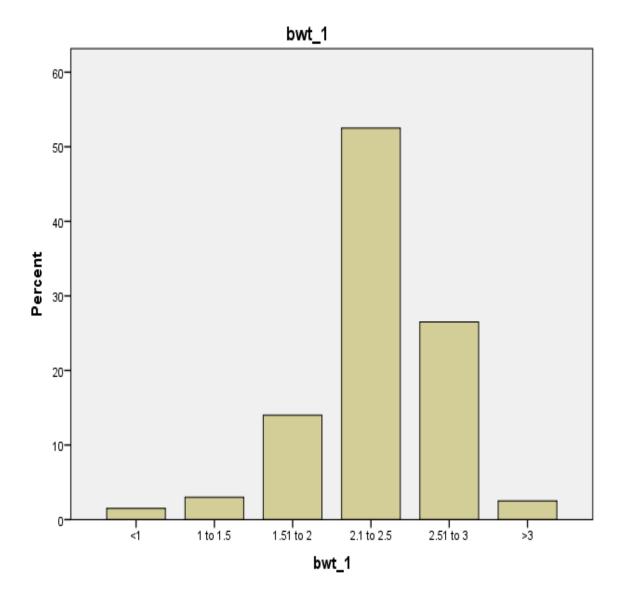

From the above diagram it is shown that cesarean mode of delivery is the most common mode of delivery when it comes to multiple pregnancy.and the most common indication being discussed in the subsequent table.

	Frequency	Percent	Valid Percent	Cumulative Percent
ABRUPTIO PLACENTA	4	3.1	3.1	38.5
AP ECLAMPSIA	5	3.9	3.9	41.0
CORD PROLAPSE	4	3.1	3.1	43.0
PPROM >48 HOURS	1	0.7	0.7	43.5
FETAL DISTRESS	26	20.4	20.4	59.5
FIRST TWIN NON CEPHALIC	48	37.7	37.7	80.0
МСМА	8	6.2	6.2	84.5
MSL	8	6.2	6.2	88.5
PLACENTA PREVIA	3	2.3	2.3	90.0
PREV LSCS	14	11	11	97.0
ТСТА	6	4.7	4.7	100.0
Total	127	100.0	100.0	

TABLE 9: INDICATIONS OF CESAREAN DELIVERY

FIGURE 9: BAR DIAGRAM SHOWING INDICATION SPLIT FOR

CESAREAN DELIVERY



From the above graph , non cephalic presentation of first twin pose the major threat to increase the primary cesarean section rate, followed by fetal distress , all the 6 TCTA triplets were delivered by cesarean mode of delivery keeping in mind the prematurity of the fetus and most of them had growth restriction.

TABLE 10.1: BIRTH WEIGHT DISTRIBUTION OF TWIN 1

	Frequency	Percent	Valid Percent	Cumulative Percent
<1	3	1.5	1.5	1.5
1 to 1.5	6	3.0	3.0	4.5
1.51 to 2	28	14.0	14.0	18.5
2.1 to 2.5	105	52.5	52.5	71.0
2.51 to 3	53	26.5	26.5	97.5
>3	5	2.5	2.5	100.0
Total	200	100.0	100.0	

FIGURE 10.1: BAR DIAGRAM DEPICTING BIRTH WEIGHT DISTRIBUTION OF TWIN 1

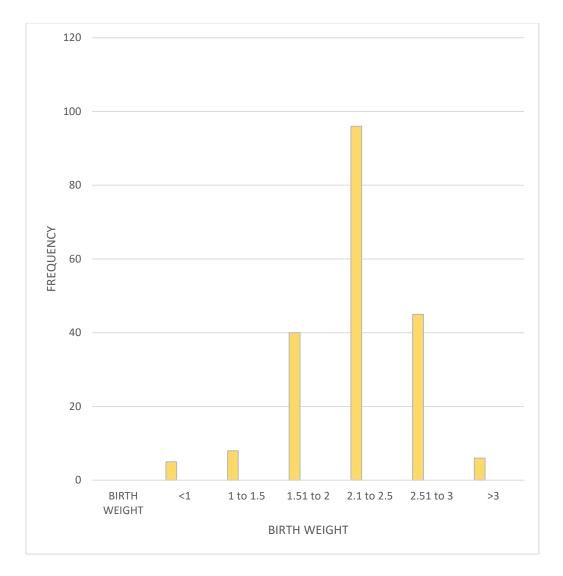


TABLE 10.2: BIRTH	WEIGHT DISTRIBUTION OF TWIN 2
-------------------	-------------------------------

BIRTH WEIGHT	Frequency	Percent	Valid Percent	Cumulative Percent
<1	5	2.5	2.0	2.0
1 to 1.5	8	4.0	4.0	6.0
1.51 to 2	40	20.0	20.0	26.0
2.1 to 2.5	96	48.0	48.0	74.0
2.51 to 3	45	22.5	22.5	96.5
>3	6	3.5	3.5	100.0
Total	200	100.0	100.0	

FIGURE 10.2: BAR DIAGRAM SHOWING BIRTH WEIGHT

DISTRIBUTION OF TWIN 2

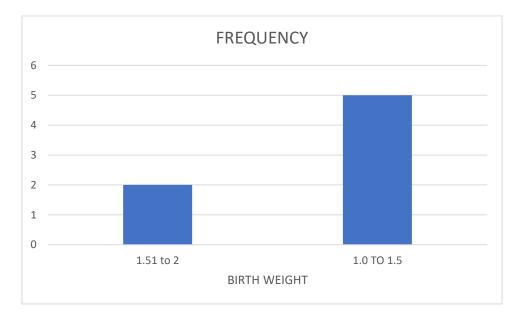


TABLE 10.3 : BIRTH WEIGHT DISTRIBUTION OF TRIPLET 3.

	Frequency	Percent
1.51 to 2	2	28.5
1.0 TO 1.5	5	71.5
Total	7	100

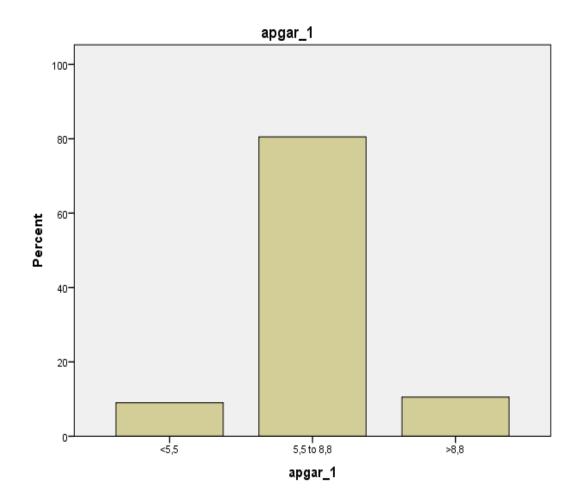
FIGURE 10.3: BAR DIAGRAM DEPICTING BIRTH WEIGHT OF

TRIPLET 3

From the above 3 table it is evident that birth weight of twin babies mostly fall in the range of 2.1 to 2.5 this can be extrapolated to the preterm nature of the babies of multiple pregnancy.

TABLE 11.1: APGAR OF TWIN 1

	Frequency	Percent	Valid Percent	Cumulative
				Percent
<5,5	18	9.0	9.0	9.0
5,5 to 8,8	161	80.5	80.5	89.5
>8,8	21	10.5	10.5	100.0
Total	200	100.0	100.0	


TABLE 11.2: APGAR OF TWIN 2

	Frequency	Percent	Valid	Cumulative
			Percent	Percent
<5,5	20	10.0	10.0	10.0
5,5 to 8,8	162	81.0	81.0	91.0
>8,8	18	9.0	9.0	100.0
Total	200	100.0	100.0	

TABLE 11.3: APGAR OF TRIPLET 3

	Frequency	Percent	Valid Percent	Cumulative Percent
<5,5	3	42.8	42.8	42.8
5,5 to 8,8 >8,8 Total	4 0 7	57.1 100.0	57.1	57.1

Figure 11.1: APGAR OF TWIN 1

FIGURE 11.2: APGAR OF TWIN 2

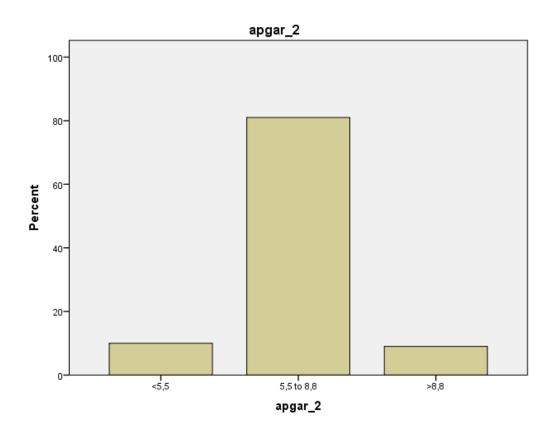
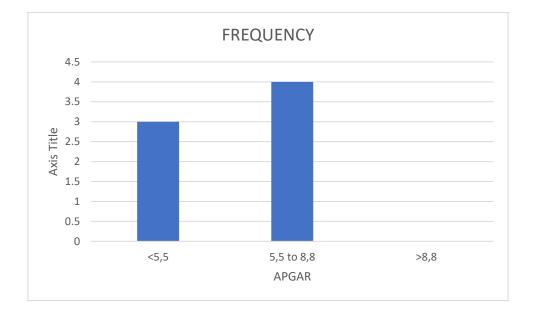
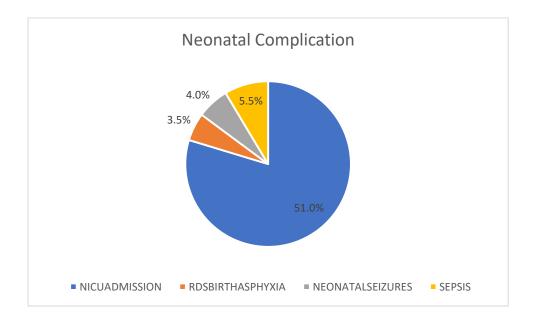



FIGURE 11.3: APGAR OF TRIPLET 3.



From the above graph it is evident that 5 minute apgar less than 8 was found in 89% of twin 1 and 91% of twin 2 and 100% of triplet 3.

TABLE 12: NEONATAL COMPLICATION

NEONATAL COMPLICATION	N	%\
NICUADMISSION	102	51.0%
RDSBIRTHASPHYXIA	7	3.5%
NEONATALSEIZURES	8	4.0%
SEPSIS	11	5.5%

FIGURE 12: PIE CHART DEPICTING NEONATAL COMPLICATION

From the above graph it is evident that 51% of babies had NICU admissions the number were quite large when compared to singleton pregnancy and 5.5 % babies had birth asphyxia and 4% of the admitted babies developed neonatal seizures and 3.5% babies developed sepsis

DISCUSSION

We conducted a study on 200 multiple pregnancy parturients admitted at IOG egmore. The aim of this study was to determine the maternal and neonatal complications associated with multiple pregnancies.

Among the 200 cases, based on age distribution, 43 % of the cases were between 26-30 years of age group, Although it was thought that prevalence of multiple births is more in the advanced age group due to the use of fertility treatment and rise in FSH concentration with age, A study by **Tomar SP et al** also revealed 81% of multiple births in the age group of 20-29 years. The high prevalence of multiple pregnancies at a young age may be due to early age at marriage and childbirth in the study population. The next maximum lies in the range of >36 years which correlates with the fact of the long period of infertility and use of assisted reproductive techniques.

Among 200 cases of multiple pregnancies, 121 were primi and 79 were multigravida. N Rezavand proved no difference in parity among cases of multiple pregnancies. With regards to chorionicity, 63% were dichorionic and 29% were monochorionic and diamniotic and 4% were monochorionic and monoamniotic and 3.5% were trichorionic and triamniotic. Studies by Assuncao et al45 conducted in 289 twin pregnancies between 2003 to 2006 it was found that 60% were DCDA, 30.8% were MCDA and 6.6% were MCMA. Our study results were similar to this study.

Out of 200 cases, 154 conceived spontaneously and the remaining 46 come under the category of assisted reproductive technique use. And the number was quite larger when compared with singleton pregnancy

Out of 46 cases, 1- IUI and 27 - IVF conception, 18 were out of ovulation induction. With respect to triplets, 7 of them were TCTA 4 conceived after IVF

Discussing about maternal complications, the most common maternal complication observed in this study was preterm labour which was around 62%.(124/200).

Deepthi et al and Nandmer G et al reported preterm delivery in 60% and 67% of twin pregnancies respectively. The inherited risk of preterm delivery in multiple pregnancies is supported by higher incidence of preterm delivery in this study

The next most common complication observed in this study is postpartum hemorrhage which is 22.5%, a study conducted by chowdry et al showed similar values of 18% of PPH in a study conducted by them, still a vigilant monitoring and active management of third stage of labour is needed , and prevention and treatment of anemia in adolescent girls and young adults will pave way for prevention APH and PPH.

The third most common complication encountered in this study is anemia which is about 20 %. This high prevalence of anaemia in this study may be due to more number of referred patients who had taken inadequate treatment in antenatal period.

Followed by hypertensive disorder of pregnancy, which is 12%. Deepti et al, Sheela SR et al and Chowdhury S et al reported hypertensive disorders of pregnancy in 11.66%, 14.5%, 22.6% of

70

multiple pregnancies respectively. Other complications of ghtn spectrum like Pregnancy complicated by pre eclampsia accounts to 6% and by ANTEPARTUM ECLAMPSIA accounts to 3.5%.

GDM as such totally accounts for 10% of which overt DM was 3% and GDM was 7%. Chowdhury S et al have reported GDM in 5.7% of patients. Buhling KJ et al reported GDM in 3.4% of patients and did not found any association with twin pregnancy.

Other minor complications includes cord accidents like cord prolapse and occult cord prolapse occurred in 2% of cases, with regards to APH abruptio placentae accounts to 2% and placenta previa accounts to 1.5%.

Twin specific complications like single fetal demise accounts to 4.5 % of cases and selective fetal growth restriction accounts to 5.5% of cases

Out of 200 cases 8.5% of cases presented with PPPROM and 2.0% presented with PROM.

Next analysing the mode of delivery among 200 cases of multiple pregnancy,63% of cases ie 127 cases delivered by LSCS The rate of cesarean section in study supported by Shetty MB et al, Chowdhury et al and Deepthi et al who have reported cesarean section in 68%, 49% and 45% of twin pregnancies respectively.

A study by Assuncao et al has reported cesarean section in 84.8% of patients that is explained by higher incidence of (42.8%) iatrogenic preterm delivery in that study.

The most common indication for LSCS being first twin non cephalic 37% followed by feal distress 26% and prev LSCS 14%. All the 7 TCTA triplets were delivered by caesarean mode of delivery keeping in mind the fact of prematurity and malpresentation and a component of growth restriction . And All MCMA twin were delivered by caesarean mode of delivery in order to avoid complication while allowing for normal vaginal delivery

Among birth weight of the twins, 52.5 % fall under 2.1 to 2.5 %. Cumulative percentage of 71% of twin 1 , 74% of twin 2 and all 100% of triplet 3 were of low birth weight , ie <2.5 kg posing a major threat to neonatal morbidity and mortality. Low birth weight is mostly because of preterm delivery and iatrogenic preterm termination of MCMA and TCTA pregnancy.

SUMMARY

200 multiple pregnancy cases were studied in our institute, out of which 98% of the cases were booked, 61% of them are primi gravida and 39% of them were multigravida.78% of them delivered at an gestational age less than 36 weeks, preterm delivery.71% of them conceived spontaneously and 29 % conceived after assisted reproductive techniques out of which , 19% were out of IVF conception.63% of them were DCDA ,29% were of MCDA ,4% were MCMA ,3.5% of them were TCTA.

Various maternal complications and its percentage associated with multiple pregnancy among them , preterm delivery is the most common complication about 62%, and the second one is postpartum hemorrhage 22.5%.

Followed by anemia 20%, other rare complications include single fetal demise, fetal growth restriction weighs about 4.5%

and 5.5% respectively, though it is rare it is specific for multiple pregnancy.

Cesarean mode of delivery is the most common mode of delivery when it comes to multiple pregnancy,which accounts for 63%.

Among indications for cesarean deliveries , non cephalic presentation of first twin pose the major threat to increase the primary cesarean section rate, followed by fetal distress , all the 6 TCTA triplets were delivered by cesarean mode of delivery keeping in mind the prematurity of the fetuses and most of them had growth restriction.

From our study it is evident that birth weight of twin babies mostly fall in the range of 2.1 to 2.5 this can be extrapolated to the preterm nature of the babies of multiple pregnancy. With regards to APGAR, 5 minute apgar less than 8 was found in 89% of twin 1 and 91% of twin 2 and 100% of triplet 3.

Among neonatal complications, 5 minute apgar less than 8 was found in 89% of twin 1 and 91% of twin 2 and 100% of triplet 3. 51% of babies had NICU admissions the number were quite large when compared to singleton pregnancy and 5.5 % babies had birth asphyxia and 4% of the admitted babies developed neonatal seizures and 3.5% babies developed sepsis

CONCLUSION

A dramatic increase in the numbers of multiple births in developed countries has stimulated interest in the progress and outcome of such pregnancies. As well as considerable health risks, the social, psychological and financial impact of multiple births, especially higher order multiple births, has been highlighted

This study revealed higher percentage preterm labour, anemia, gestational hypertension in twin pregnancy as compared to other studies. Anaemia, hypertensive disorder of pregnancy along with postpartum haemorrhage are the well-known causes of maternal mortality, thus frequent antenatal visits should be aimed to detects maternal complications earlier. Aggressive treatment of anemia with intravenous iron should be considered whenever there are adverse effects or noncompliance to oral iron. Atonic postpartum haemorrhage should be anticipated in all multiple pregnancies, therefore prophylactic treatment should be prearranged for its prevention.

77

BIBLIOGRAPHY

- Lewi L, Gucciardo L, Van Mieghem T, et al. Monochorionic diamniotic twin pregnancies: natural history and risk stratification. Fetal Diagn Ther 2010;27(3):121–133. doi:10.1159/000313300.
- Tchirikov M. Monochorionic twin pregnancy: screening, pathogenesis of complications and management in the era of microinvasive fetal surgery. J Perinat Med 2010;38(5):451–459. doi:10.1515/jpm.2010.069.
- Oldenburg A, Rode L, B⊘dker B, et al. Influence of chorionicity on perinatal outcome in a large cohort of Danish twin pregnancies. Ultrasound Obstet Gynecol 2012;39(1):69–74. doi:10.1002/uog.10057.
- M, Yamada T, Yamada T, et al. Prospective risk of stillbirth: monochorionic diamniotic twins vs. dichorionic twins. J Perinat Med 2012;40(3):245–249. doi:10.1515/jpm-2011-0205.

- Nakayama S, Ishii K, Kawaguchi H, et al. Perinatal outcome of monochorionic diamniotic twin pregnancies managed from early gestation at a single center. J Obstet Gynaecol Res 2012;38(4):692–697. doi:10.1111/j.1447-0756.2011.01759.x.
- Lewi L, Van Schoubroeck D, Gratacós E, et al. Monochorionic diamniotic twins: complications and management options. Curr Opin Obstet Gynecol 2003;15(2):177–194. doi:10.1097/00001703-200304000-00013.
- 7. Acosta-Rojas R, Becker J, Munoz-Abellana B, et al. Twin chorionicity and the risk of adverse perinatal outcome. Int J Gynecol Obstet 2007;96(2):98–102. doi:10.1016/j.ijgo.2006.11.002.
- Ortibus E, Lopriore E, Deprest J, et al. The pregnancy and longterm neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward. Am J Obstet Gynecol 2009;200(5):494.e1– 494.e8. doi:10.1016/j.ajog.2009.01.048.

- Denbow ML, Cox P, Taylor M, et al. Placental angioarchitecture in monochorionic twin pregnancies: relationship to fetal growth, fetofetal transfusion syndrome, and pregnancy outcome. Am J Obstet Gynecol 2000;182(2):417–426. doi:10.1016/S0002-9378(00)70233-X.
- 10.Lewi L, Deprest J, Hecher K. The vascular anastomoses in monochorionic twin pregnancies and their clinical consequences.
 Am J Obstet Gynecol 2013;208(1):19–30. doi:10.1016/j.ajog.2012.09.025.
- 11.Carroll SGM, Soothill PW, Abdel-Fattah SA, et al. Prediction of chorionicity in twin pregnancies at 10-14 weeks of gestation.
 BJOG 2002;109(2):182–186. doi:10.1111/j.1471-0528.2002.01172.x.
- 12.Dias T, Arcangeli T, Bhide A, et al. First-trimester ultrasound determination of chorionicity in twin pregnancy. Ultrasound Obstet Gynecol 2011;38(5):530–532. doi:10.1002/uog.8956.

- 13.Stagnati V, Zanardini C, Fichera A, et al. Early prediction of twinto-twin transfusion syndrome: systematic review and metaanalysis. Ultrasound Obstet Gynecol 2017;49(5):573–582. doi:10.1002/uog.15989.
- 14.Mogra R, Saaid R, Tooher J, et al. Prospective validation of firsttrimester ultrasound characteristics as predictive tools for twin-twin transfusion syndrome and selective intrauterine growth restriction in monochorionic diamniotic twin pregnancies. Fetal Diagn Ther 2020;47(4):321–327. doi:10.1159/000504049.
- 15.Southwest Thames Obstetrics Research Collaborative (STORK).
 Prospective risk of late stillbirth in monochorionic twins: a regional cohort study. Ultrasound Obstet Gynecol 2012;39(5):500–504. doi:10.1002/uog.11110.
- 16.Hack KEA, Derks JB, Elias SG, et al. Perinatal mortality and mode of delivery in monochorionic diamniotic twin pregnancies ≥32 weeks of gestation: a multicentre retrospective cohort study. BJOG 2011;118(9):1090–1097. doi:10.1111/j.1471-0528.2011.02955.x.

- 17.Breathnach FM, McAuliffe FM, Geary M, et al. Optimum timing for planned delivery of uncomplicated monochorionic and dichorionic twin pregnancies. Obstet Gynecol 2012;119(1):50–59. doi:10.1097/AOG.0b013e31823d7b06.
- 18.Hack KE, Derks JB, Elias SG, et al. Increased perinatal mortality and morbidity in monochorionic versus dichorionic twin pregnancies: clinical implications of a large Dutch cohort study. BJOG 2008;115(1):58–67. doi:10.1111/j.1471-0528.2007.01556.x.
- 19.Robinson BK, Miller RS, D'Alton ME, et al. Effectiveness of timing strategies for delivery of monochorionic diamniotic twins.
 Am J Obstet Gynecol 2012;207(1):53.e1–53.e7. doi:10.1016/j.ajog.2012.04.007.
- 20.Stirnemann JJ, Mougeot M, Proulx F, et al. Profiling fetal cardiac function in twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 2010;35(1):19–27. doi:10.1002/uog.7488.
- 21.Ville Y. Twin-to-twin transfusion syndrome: time to forget the Quintero staging system? Ultrasound Obstet Gynecol 2007;30(7):924–927. doi:10.1002/uog.5221.

- 22.Bermúdez C, Becerra CH, Bornick PW, et al. Placental types and twin-twin transfusion syndrome. Am J Obstet Gynecol 2002;187(2):489–494. doi:10.1067/mob.2002.124280
- 23.Quintero RA, Martínez JM, López J, et al. Individual placental territories after selective laser photocoagulation of communicating vessels in twin-twin transfusion syndrome. Am J Obstet Gynecol 2005;192(4):1112–1118. doi:10.1016/j.ajog.2004.12.018.
- 24.Van Mieghem T, Lewi L, Gucciardo L, et al. The fetal heart in twin-to-twin transfusion syndrome. Int J Pediatr 2010;2010:379792. doi:10.1155/2010/379792.
- 25.Habli M, Michelfelder E, Livingston J, et al. Acute effects of selective fetoscopic laser photocoagulation on recipient cardiac function in twin-twin transfusion syndrome. Am J Obstet Gynecol 2008;199(4):412.e1–412.e6. doi:10.1016/j.ajog.2008.06.067.
- 26.Mercanti I, Boivin A, Wo B, et al. Blood pressures in newborns with twin–twin transfusion syndrome. J Perinatol 2011;31(6):417–424. doi:10.1038/jp.2010.141.

- 27.Van Mieghem T, Doné E, Gucciardo L, et al. Amniotic fluid markers of fetal cardiac dysfunction in twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2010;202(1):48.e1–48.e7. doi:10.1016/j.ajog.2009.08.013.
- 28.Van Mieghem T, Klaritsch P, Doné E, et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2009;200(4):400.e1– 400.e7. doi:10.1016/j.ajog.2009.01.051.
- 29.Baschat A, Chmait RH, et al. WAPM Consensus Group on Twinto-Twin Transfusion. Twin-to-twin transfusion syndrome (TTTS).J Perinat Med 2011;39(2):107–112. doi:10.1515/jpm.2010.147.
- 30.Quintero RA, Morales WJ, Allen MH, et al. Staging of twin-twin transfusion syndrome. J Perinatol 1999;19(8 Pt 1):550–555. doi:10.1038/sj.jp.7200292.
- 31.O'Donoghue K, Cartwright E, Galea P, et al. Stage I twin-twin transfusion syndrome: rates of progression and regression in relation to outcome. Ultrasound Obstet Gynecol 2007;30(7):958– 964. doi:10.1002/uog.5189.

- 32.Senat M-V, Deprest J, Boulvain M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004;351(2):136–144. doi:10.1056/NEJMoa032597.
- 33.Lewi L, Jani J, Blickstein I, et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study. Am J Obstet Gynecol 2008;199(5):514.e1–514.e8. doi:10.1016/j.ajog.2008.03.050.
- 34.Rossi AC, D'Addario V. Laser therapy and serial amnioreduction as treatment for twin-twin transfusion syndrome: a metaanalysis and review of literature. Am J Obstet Gynecol 2008;198(2):147– 152. doi:10.1016/j.ajog.2007.09.043.
- 35.Roberts D, Gates S, Kilby M, et al. Interventions for twin-twin transfusion syndrome: a Cochrane review. Ultrasound Obstet Gynecol 2008;31(6):701-711. doi:10.1002/uog.5328.
- 36.Hecher K, Plath H, Bregenzer T, et al. Endoscopic laser surgery versus serial amniocenteses in the treatment of severe twin-twin

transfusion syndrome. Am J Obstet Gynecol 1999;180(3 Pt 1):717– 724. doi:10.1016/S0002-9378(99)70278-4

- 37.Maschke C, Diemert A, Hecher K, et al. Long-term outcome after intrauterine laser treatment for twin-twin transfusion syndrome. Prenat Diagn 2011;31(7):647–653. doi:10.1002/pd.2797.
- 38.Campbell, D. M. (1988a). Physiological changes and adaptation:
 Weight gain. In I. MacGillivray, D. M. Campbell, & B.Thompson (Eds.), *Twinning and twins* (pp. 101–102). New York: John Wiley & Sons.
- 39.Campbell, D. M. (1988b). Physiological changes and adaptation: Nutrition and metabolism. In I. MacGillivray, D. M. Campbell, & B. Thompson (Eds.), *Twinning and twins* (pp.102–103). New York: John Wiley & Sons.
- 40.18. Shetty MB, Shivananjaiah C, Swarup A. A retrospective study: twin gestation at tertiary care, maternal and fetal outcome. Int J Reprod Contracept Obstetr Gynecol. 2016 Dec 16;5(1):217-9.

- 41.Chowdhury S, Hussain MA. Maternal complications in twin pregnancies. Mymensingh Med J. 2011 Jan;20(1):83-7.
- 42.Sheela SR, Patila A. A study of maternal and fetal outcome in multifetal gestation at a rural based teaching hospital-a retrospective analysis. Int J Biol Med Res. 2014;5(2):3994-7.
- 43.Assunção RA, Liao AW, Brizot MD, Krebs VL, Zugaib M. Perinatal outcome of twin pregnancies delivered in a teaching hospital. J Brazilian Med Ass. 2010;56(4):447-51.
- 44.Gonzalez MC, Reyes H, Arrese M, Figueroa D, Lorca B, Andresen M, et al. Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol. 1989 Jul;9(1):84-90.
- 45. Yuel VI, Kaur V. An analytical study of pregnancy outcome in multifetal gestation. *J Obstet Gynecol India*. 2007;57(6):509–512.
- 46.Ziliacus H, Vartiainen E. Perinatal mortality in twin pregnancy. Duodecim. 1971;87(10):797–800.

- 47.Kauppila A, Jaupilla P, Koivisto M, et al. Twin Pregnancy A clinical study of 335 cases. *Acta Scand Eng*. 1975;44:5–12.
- 48.Panwala N, Mondkar A, Ranade V. Purandare V Multiple
 Pregnancy, A review of 116 cases. J Postgrad Med.
 1972;18(3):108–114.
- 49.Mutihir JT, Pam VC. Obstetric outcome of twin pregnancies in Jos, Nigeria. Niger J Clin Pract 2007;10:15-8.
- 50. Aduloju OP, Olofinbiyi B, Olagbuji BN, Ade-Ojo IP, Akintayo A.Obstetric outcome of twin gestations in a tertiary hospital South-western Nigeria. J Matern Fetal Neonatal Med 2015;28:900-4.
- 51.Nwobodo EI, Bobzam DN, Obed J. Twin births at university of Maiduguri teaching hospital: Incidence, pregnancy complication and outcome. Niger J Med 2002;11:67-9.
- 52.Galandanci SH, Ashimi AO, Iliyasu Z. Prevalence and outcome of multiple pregnancies in Aminu Kano Teaching Hospital Nigeria. J Basic Clin Sci 12004:18-21.

- 53.Ghai V, Vidyasaar D. Morbidity and mortality factors in twins: A epidemiologic approach. Clin Perinatol 1988;15:123-40.
- 54.Gardner MO, Goldenberg RL, Cliver SP, Tucker JM, Nelson KG, Copper RL. The origin and outcome of preterm twin pregnancies. Obstet Gynecol 1995;85:553-7.
- 55.American College of Obstetrician and Gynecologists Committee on Practice Bulletins-Obstetrics, Society for Maternal-fetal Medicine, ACOG Joint Editorial Committee. ACOG Practice Bulletin #56: Multiple gestation: Complicated twin, triplet and high-order multifetal pregnancy. Obstet Gynecol 2004;104:869-83.
- 56. Attah RA, Mohammed Z, Gobir M. A review of twin deliveries in Aminu Kano Teaching Hospital. North-West, Nigeria. Niger J Basic Clinical Sci 2014;11:3-7.
- 57.Laskov L, Michaan N, Cohen A, Tsafir Z, Maslovitz S, Kupferminc M, *et al.* Outcome of twin pregnancy in women ≥45 years old; a retrospective cohort study. J Matern Fetal Neonatal Med 2013;26:669-72.

- 58. Gupta P, Faridi MM, Goel N, Zaidi Z. Reappraisal of twinning: Epidemiology and outcome in the early neonatal period. Singapore Med J 2014;55:310-3.
- 59.Adegbola O, Akindele OM. Twin pregnancies in Sub-Saharan Africa-Lagos experience. J Matern Fetal Neonatal Med 2012;25:2447-50.
- 60.Royal College of Obstetricians and Gynaecologists Clinical Effectiveness Support Unit. National Sentinel Caesarean Section Audit Report. London: RCOG Press; 2001.
- 61.Kilby D.M and Oepkes D. Multiple pregnancy. Edmonds D.K. Dewhurst's Text book of Obstetrics & Gynaecology. 8th. Wiley-Blackwell.London. 2012;250.
- 62.Bush C.M &pernollL.Mmultiple Gestation. Decherney H.A, Nathan L, Laufer N, Roman S.A. Current Diagnosis & treatment of obstetrics &gynaecology. 11th. McGraw Hill.New Yourk. 2013;301.

- 63. Information Services Division, NHS Scotland. Scottissh Perinatal and infant mortality and morbidity Report 2008. Available at:www.isdscotland.org/Health-Topic/Maternity-and – Births/ publications/index.asp#742.
- 64.Confidential Enquiry into Maternal and child health.Perinatal Mortality 2007. London:CEMACH, 2009. Available at www.cemach.org.uk/getattachment/bc6ad9f0-5274-486d-b61a-8770a0ab43e7/Perinatal mortality-2007 .aspx.

PROFORMA

"A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL

OUTCOME IN MULTIPLE PREGNANCY"

DATE:

NAME:

AGE:

IPNO:

ADDRESS:

PHONE NUMBER:

SOCIOECONOMIC STATUS:

OBSTETRIC CODE:

GESTATIONAL AGE:

MENSTRUAL HISTORY:

REGULAR	IRREGULAR
LMP	EDD

MARITAL HISTORY:

MARRIED SINCE:	in	CONSANG	CONSANGUINITY:	
years		YES	NO	

OBSTETRIC HISTORY:

BOOKING STATUS:

ANTENATAL VISITS

MODE OF CONCEPTION:

-SPONTANEOUS

-INDUCED

HISTORY OF PRIMARY OR SECONDARY INFERTILITY:

HISTORY OF TREATMENT TAKEN FOR INFERTILITY:

-OVULATION INDUCTION:

-IUI:

-INVITRO FERTILISATION:

1ST TRIMESTER HISTORY:

-HYPEREMESIS

-BLEEDING PV

-H/O UTI

2ND TRIMESTER HISTORY:

-ABDOMINAL PAIN

-BLEEDING PV

-EXCESSIVE WEIGHT GAIN

-IMMINENT SIGNS(HEADACHE,BLURRING OF VISION,UPPER ABDOMINAL PAIN,REDUCED URINE OUTPUT)

-H/O RAISED OGCT

-LEAKING PV

<u>3RD TRIMESTER HISTORY:</u>

ABDOMINAL PAIN

-BLEEDING PV

-EXCESSIVE WEIGHT GAIN

-IMMINENT SIGNS(HEADACHE,BLURRING OF VISION,UPPER

ABDOMINAL PAIN, REDUCED URINE OUTPUT)

-H/O RAISED OGCT

-LEAKING PV

PAST OBSTETRIC HISTORY:

PAST HISTORY:

H/O DM/HTN/PTB/BA/EPILEPSY/THYROID/DRUG

ALLERGY/BLOOD TRANSFUSION.

FAMILY HISTORY OF MULTIPLE PREGNANCY:

H/O PREVIOUS SURGERIES.

EXAMINATIONS:

GENERAL EXAMINATION:

BUILT-

NOURISHMENT-

VITALS-

PR- BP-

PALLOR-	PEDAL EDEMA-	ICTERUS-

BREAST- THYROID- SPINE-

SYSTEMIC EXAMINATION:

CVS-

RS-

CNS-

OBSTETRICS EXAMINATION:

PER ABDOMEN-

PER SPECULUM-

PERVAGINAL EXAMINATION:

INVESTIGATION:

HB-	TC-	DC-	RBC-	PLT-	PCV-

RBS- UREA- CREAT-

T.BILIRUBIN- D.BILIRUBIN-

SGOT- SGPT-

T.PROTEIN-

S.ALBUMIN-

FBS-

PPBS-

HBA1C

BLOOD GROUPING AND TYPING

VIRAL MARKERS:

HIV-

HBsAG-

VDRL-

OGCT-

TSH-

ECHO-

BLEEDING TIME-

CLOTTING TIME-

S.URIC ACID-

URINE SPOT PCR-

APTT-

PT-

INR-

S.FIBRINOGEN-

LDH-

URINE ANALYSIS-

URINE ROUTINE-

URINE C/S

ANTENATAL USG:

DELIVERY OUTCOME:

INDUCTION OF LABOUR-

DETAILS-

MODE OF DELIVERY

LABOUR NATURAL-

INSTRUMENTAL-

LSCS-

PRIMARY LSCS-

INDICATION FOR LSCS

BABY DETAILS:

TWIN A

BIRTH WEIGHT		
APGAR 1MIN	5 MIN	7MIN
D.NO-		
TWIN B		
BIRTH WEIGHT		
APGAR 1MIN	5 MIN	7MIN
D.NO-		
TWIN C		
BIRTH WEIGHT		
APGAR 1MIN	5 MIN	7MIN
D.NO-		
OUTCOME		
<u>ANTEPARTUM</u>		
ANEMIA		
HYPEREMESIS		

GESTATIONAL DIABETES MELLITUS

GESTATIONAL HYPERTENSION AND RELATED

GESTATIONAL THROMBOCYTOPENIA

ANTEPARTUM HEMORRHAGE

PPROM

PROM

PRETERM LABOUR-

INTRAPARTUM COMPLICATION:

PROM-

CORD PROLAPSE-

ABRUPTION-

INTERLOCKING-

PPH-

RETAINED PLACENTA-

CONVERSION OF SECOND TWIN TO TRANSVERSE LIE-

TIME TAKEN FOR DELIVERY OF SECOND TWIN:

POSTPARTUM COMPLICATION:

PPH-

NEED FOR BLOOD TRANSFUSION-

SUBINVOLUTION

LACTIONAL FAILURE

SEPSIS

FEVER

POSTPARTUM ECLAMPSIA

PERIPARTUM HYSTERECTOMY-

MATERNAL MORTALITY-

NEONATAL COMPLICATION:

PREMATURITY

LOW BIRTH WEIGHT

PERINATAL ASPHYSIA

HIE

PATIENT CONSENT FORM

Patient may check () these boxes:

() I confirm that I Have understood the purpose of procedure for the above study. I have the opportunity to ask questions and all my questions and doubts have been answered to my complete satisfaction.

() I Understand that my participation in the study is voluntary and that i am free to withdraw at anytime without giving reason, without my legal rights being affected.

() I Understand that sponsor of the clinical study, others working on the sponsor's behalf, the ethics committee and the regulatory authorities will not need my permission to look at my health records, both in respect of current study and my further research that may be conducted in relation to it, even if I withdraw from the study I agree to this access.

() However, I understand that my identify will not be revealed in any information released to third parties or published, unless as required under the law. I agree not to restrict the use of any data or results that arise from this study.

TITLE: "A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY"

Study Centre: Institute of Obstetrics and Gynaecology, Egmore.

Patient name:Age:IP No:

I agree to take part in the above study and to comply with the instructions given during the study and faithfully cooperate with the study team and to immediately in form the form study staff if I suffer from any

deterioration in my health or well being or any unexpected or unusual symptoms.

I hereby consent to participate in this study.

I hereby give permission to undergo complete clinical examination and diagnostic tests including haematological, biochemical, radiological tests and to undergo treatment.

(Signature/left thumb impression)

Name of the participant: Complete postal address:

This is to certify that the above consent has been obtained in my presence; Signature of the principal investigator:

Date:

Place:

INFORMATION SHEET

TITLE: "A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY"

Name of investigator	:	Dr. Vidhya Lakshmi
Name of participant	:	
Purpose of research	:	To find out the outcome of maternal and neonate in multiple pregnancy
Study design	:	Analytical Study
Study population delivered in	:	Multiple pregnancy mothers more than 28 weeks and
		IOG.
Possible risks	:	No risk to the patient

Confidentiality of information obtained from you:

Privacy of the patients in the research will be maintained throughout the study.in the event of any publication or any presentation resulting from the research no personally identifiable information will be shared.

<u>Can you decide to stop participating in the study?</u> Taking part in the study is voluntary. You are free to decide whether to participate in the study or to withdraw from the study at any time

<u>How will your decision in not participating in the study affect you?</u> Your decision will not result in any loss of benefits to which you are otherwise entitled.

Signature of Investigator

Signature of Participant

Date: Place:

அனுமதியுடனான ஒப்புதல் படிவம்:

-இந்த ஆய்விற்கான செயல்முறையின் நோக்கத்தை நான் புரிந்துள்ளேன் என்பதை உறுதிப்படுத்துகிறேன். எனக்கு கேள்விகளை கேட்க வாய்ப்பு உள்ளது. என்னுடைய எல்லாகேள்விகளும் சந்தேகங்களும் என் முழுதிருப்திக்கு பதில் அளித்துள்ளன.

-ஆய்வில் எனது பங்கேற்பு தன்னார்வமாக இருப்பதையும், என் சட்டஉரிமைகள் பாதிக்கப்படாமல், காரணத்தைத் தெரிவிக்காமல் எப்போது வேண்டுமானாலும் விலக்கிக்கொள்ளலாம் என்பதையும் நான் புரிந்துகொள்கிறேன்.

-ஆய்வில் இருந்து நான் விலகி வந்தாலும் கூட, ஆராய்ச்சிக்கு பொருந்தக்கூடிய என் உடல்நல ஆவணங்களைப் பார்க்க என் நெறிமுறைக்குழு மற்றும் ஒழுங்குமுறை அதிகாரிகளுக்கு எனது அனுமதி தேவையில்லை என்பதை நான் புரிந்து கொள்கிறேன். இந்தஅணுகலை நான் ஏற்கிறேன்.

-இருப்பினும், சட்டத்தின்கீழ் தேவைப்பட்டாலன்றி, மூன்றாம் தரப்பினருக்கு வெளியிடப்பட்ட அல்லது வெளியிட்ட எந்த தகவலிலும் என் அடையாளத்தை வெளிப்படுத்தமுடியாது என்பதை நான் புரிந்து கொள்கிறேன். இந்த ஆய்விலிருந்து எழும் எந்தவொரு தரவு அல்லது முடிவுகளின் பயன்பாட்டைக் கட்டுப்படுத்துவதை நான் ஏற்றுக் கொள்கிறேன்.

-மேலே உள்ள படிப்பில்கலந்துகொள்ளவும், ஆய்வின் போதுகொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கு இணங்கவும், ஆய்வுக் குழுவோடு ஒத்துழைக்கவும், என் உடல்நலம் அல்லது நலம் அல்லது எந்தவொரு எதிர்பாராத அல்லது அசாதாரண அறிகுறிகளிலும் நான் பாதிக்கப்படுகையில் உடனடியாக ஆய்வு ஊழியர்களுக்கு தெரிவிக்கவும், இந்த ஆய்வில் பங்கேற்க ஒப்புக் கொள்கிறேன். நான் இதனுடன் முழுமையான மருத்துவ பரிசோதனை மற்றும் நோயறிதல இரத்தம், உயிர்வேதியியல், கதிரியக்க சோதனைகள் சோதனைகள் உட்பட சிகிச்சைக்கு உட்படுத்த அனுமதிக்கிறேன்.

<u>ஆய்வுதலைப்பு</u>: <u>ஆய்வுமையம்</u>: எம்.எம்.சி, சென்னை <u>பங்கேற்பாளரின்பெயர்:</u> <u>பங்கேற்பாளரின்வயது:</u> நோயாளிஎண்<u>:</u>

நோயாளியின்கையொப்பம் நோயாளியின்பெயர்மற்றும்முகவரி: ஆராய்ச்சியாளரின்கையொப்பம்:

நோயாளியின் ஒப்புதல் படிவம்

ஆய்வு தலைப்பு : ஒன்றுக்கும் மேற்பட்ட கற்பதில் தாய்க்கு ஏற்பட கூடிய சிக்கல்கள் மற்றும் சிசுவிற்கு ஏற்பட கூடிய சிக்கல்கள் - ஒரு ஆய்வு

முக்கிய ஆய்வாளரின் பெயர் :		டாக்டர். வித்யாலட்சுமி. க
நிறுவன முகவரி	:	அரசு மகளிர் மகப்பேறு மருத்துவமனை,
		எழும்பூர், சென்னை – 600 008

நீங்கள் இந்த ஆய்வில் பங்கு பெற வரவேற்கப்படுகிறீர்கள், இந்த தாளில் அளிக்கப்பட்டுள்ள விவரங்கள் நீங்கள் ஆய்வில் பங்கு பெறுவது குறித்து தீர்மானிக்க உதவும். சந்தேகங்கள் மற்றும் கேள்விகள் தயக்கமின்றி வரவேற்கப்படுகின்றன.

நாங்கள் இந்த ஆய்விற்காக தலைமை நெறிமுறை குழுவின் (Institutional Ethics Committee) அனுமதி பெற்றுள்ளோம்.

<u>பகுதி - I</u>

நோயாளியின் தகவல் படிவம்:

உங்கள் தகவல் குறித்த நம்பிக்கை

உங்களை பற்றிய தகவல் (பரிசோதனைவிவரங்கள்) எவருக்கும் தெரிவிக்கப்படமாட்டாது. இந்த ஆய்விலிருந்து அறியப்படும் விவரங்கள் கூட்டங்களில், பத்திரிக்கைகளில் இடப்படும் போது உங்களைப் பற்றிய தனிப்பட்ட தகவல்கள் இரகசியம் காக்கப்படும்.

நீங்கள் இந்த ஆய்வில் பங்கு கொள்ளாவிட்டாலும் உங்களுடைய மருத்துவ சிகிச்சையோ அல்லது ஆய்வாளருடன், மருத்துவமனையுடன் உங்களது உறவு பாதிக்கப்படாது. இதனால் உங்களுக்கு கிடைக்கப்பெற இருக்கும் எந்த ஒரு சிகிச்சை முறையிலும் மாறுதல் ஏற்படாது. நீங்கள் இந்த ஆய்வில் பங்கு பெறுவது உங்களுடைய விருப்பம். எந்த நேரத்திலும், எந்த விளக்கமும் அளிக்காமல் நீங்கள் விலகிக் கொள்ள உரிமை உண்டு.

ஆய்வாளரின் கையொப்பம்

பங்கேற்பவரின் பெயர் :

பங்கேற்பவரின் கையொப்பம்

நாள்

இடம்:

<u>சுய ஆய்வு ஒப்புதல் படிவம்</u>

ஆய்வு செய்யப்படும் தலைப்பு :	ஒன்றுக்கும் மேற்பட்ட கற்பதில் தாய்க்கு
	ஏற்பட கூடிய சிக்கல்கள் மற்றும் சிசுவிற்கு
	ஏற்பட கூடிய சிக்கல்கள் - ஒரு ஆய்வு

ஆய்விடம் : மகப்பேறு மகளிர் நோயியல் மற்றும் அரசு தாய்சேய் நல மருத்துவமனை, எழும்பூர், சென்னை.

பங்கு பெறுபவரின் பெயர் : பங்கு பெறுபவரின் எண்: பங்கு பெறுபவரின் வயது: மருத்துவமனை எண்:

- எனக்கு தரப்பட்ட ஆராய்ச்சியில் பங்கு பெறுவோர்க்கான தகவல் படிவத்தை முழுமையாக படித்து புரிந்து கொண்டேன்.
- ஆராய்ச்சியின் தன்மை முழுமையாகவும் விரிவாகவும் எடுத்து உரைக்கப்பட்டது.
- 3. எனது எல்லா கேள்விகளுக்கும் விடையளிக்கப்பட்டது.
- 4. ஆய்வாளர் என் உரிமைகளையும், பொறுப்புகளையும் நன்கு விளக்கினார்.
- நான் ஆய்வாளருக்கு முழு ஒத்துழைப்பு கொடுக்கவும், பரிசோதனை செய்து கொள்ளவும் அனுமதிக்கிறேன்.
- எனக்கு இரத்த பரிசோதனை, ஸ்கேன் மற்றும் ஆய்விற்கு தேவையான அனைத்து பரிசோதனைகளும் செய்து கொள்ள சம்மதம்.

- 7. எனக்கு இந்த ஆய்வின் போது அறுவை சிகிச்சை மேற்கொள்ளும் போது தேவைப்பட்டால் என் வயிற்று பகுதியின் பாதிப்புகளை புகைப்படம் எடுக்கவும், அதனை மருத்துவரின் தேவைக்கேற்பு உபயோகிக்கவும் அனுமதிக்கிறேன்.
- நான் இந்த ஆராய்ச்சியில் பங்கேற்பதால் ஏற்படும் சாதகபாதகங்களை ஆய்வாளர் விளக்கிக் கூற அறிந்து கொண்டேன்.
- 9. எப்பொழுது வேண்டுமானாலும் நான் இந்த ஆய்வில் இருந்து விலகி கொள்ளலாம் என்பதை அறிவேன். அவ்வாறு விலகிக் கொள்வதால் எனக்கு கொடுக்கப்படும் சிகிச்சையில் எந்த மாற்றமும் இருக்காது என அறிந்து கொண்டேன்.
- 10. இந்த ஆய்வுக்காக பெறப்படும் தகவல்களை ஆய்விதழ்களிலோ, கருத்தரங்கிலோ வெளியிட எனக்கு எந்தவித மறுப்போ, ஆட்சேபணையோ இல்லை.
- எனது அடையாளங்கள் மற்றும் தனிப்பட்ட விவரங்கள் ஆய்விதழ்களிலோ, கருத்தரங்கிலோ வெளியிடப்படமாட்டாது என்று எனக்கு உறுதியளிக்கப்பட்டது.
- 12. எனக்கு இந்த ஆராய்ச்சி குறித்த சந்தேகம் இருந்தால் உடனே ஆய்வாளரை கேட்டு தெளிவுபடுத்தி கொள்ளலாம் என உறுதியளிக்கப்பட்டது.
- 13. இந்த ஒப்புதல் படிவத்தில் கையொப்பமிடுவதின் மூலம் இந்த படிவத்தில் உள்ளவையாவும் எனக்கு தெளிவாக எடுத்துரைக்கப்பட்டது. அதை நான் நன்கு புரிந்து கொண்டேன் என தெரிவித்துக் கொள்கிறேன்.

நோயாளியின் பெயர்

கையொப்பம் / பெருவிரல்சுவடு

ஆராய்ச்சியாளர் பெயர்

கையொப்பம் / பெருவிரல்சுவடு

சாட்சி 1

பெயர் கையொப்பம் / பெருவிரல்சுவடு

தேதி

தேதி

தேதி

சாட்சி 2 பெயர்

கையொப்பம் / பெருவிரல்சுவடு

தேதி

PLAGIARSM CERTIFICATE

This is to certify that this dissertation work titled "A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY" of the candidate DR K. VIDHYA LAKSHMI REG. NO. 221916905, for the award of M.S in the branch of OBSTETRICS AND GYNAECOLOGY. I personally verified the urkund.com website for the purpose of plagiarism check. I found that the uploaded thesis file contains from introduction to conclusion pages and the result shows EIGHTEEN percentage of plagiarism in the dissertation (D126486391)

Signature and Seal of the Guide

Prof. Dr. S.VIJAYA, M.D.,D.G.O Director and Professor , Institute of Obstetrics &Gynaecology, Madras Medical College, Chennai.

Curiginal

Document Information

An	alyzed document	main new.docx (D126486391)
	Submitted	2022-01-29T06:29:00.0000000
	Submitted by	K.Vidhya lakshmi
	Submitter email	vidhyalakshmi001@gmail.com
	Similarity	18%
	Analysis address	vidhyalakshmi001.mgrmu@analysis.urkund.com
Sour	issn-doi-glowm-08	• yer.net/216733972-The-continuous-textbook-of-women-s-medicine-series
W		ry-tnmgrmu.ac.in/4024/1/220600114arunadevi.pdf 99711:23:33.4170000
W	adaptationmultipl	lowm.com/article/heading/vol-4fetal-development-and-maternal- e-pregnancy/id/412553 19T06:30:06.5400000
SA	Dr Anusha Pandey.	docx

88 6

88 7

5

88 1

88 1

88 1

	URL: https://www.dspace.espot.edu.ec/bit
W	estudio%20de%20mercado%29.doc
	Fetched: 2021-11-09T15:16:50.1530000
	Telened. 2021 11 05113.10.30.1330000

SA

Document Dr Anusha Pandey.docx (D59077502)

FMO IN MULTIPLE PREGNANCY article.docx

Document FMO IN MULTIPLE PREGNANCY article.docx (D110296489)

URL: https://www.dspace.espol.edu.ec/bitstream/123456789/7606/8/Anexo%202%20%28tablas%20

1/30

INSTITUTIONAL ETHICS COMMITTEE MADRAS MEDICAL COLLEGE, CHENNAI 600 003

EC Reg.No.ECR/270/Inst./TN/2013/RR-16 Telephone No.044 25305301 Fax: 011 25363970

CERTIFICATE OF APPROVAL

То

Dr.VIDHYA LAKSHMI K, MS Post Graduate (2019-2022), Department of Obstetrics and Gynaecology, Madras Medical College, Chennai-600003.

Dear Dr. VIDHYA LAKSHMI K,

The Institutional Ethics Committee has considered your request and approved your study titled **"A PROSPECTIVE STUDY ON MATERNAL AND PERINATAL OUTCOME IN MULTIPLE PREGNANCY"- NO.22022021.** The following members of Ethics Committee were present in the meeting held on **17.02.2021** conducted at Madras Medical College, Chennai 3.

1. Prof.P.V.Jayashankar :Chairperson 2. Prof.N.Gopalakrishnan, MD., DM., FRCP, Director, Inst. of Nephrology, MMC, Ch : Member Secretary 3. Prof. K.M.Sudha, Prof. Inst. of Pharmacology, MMC, Ch-3 : Member 4. Prof. Alagarsamy Jamila ,MD, Vice Principal, Stanley Medical College, Chennai : Member 5. Prof.Rema Chandramohan, Prof. of Paediatrics, ICH, Chennai : Member 6. Prof.S.Lakshmi, Prof. of Paediatrics ICH Chennai : Member 7. Tmt.Arnold Saulina, MA., MSW., :Social Scientist 8. Thiru S.Govindasamy, BA., BL, High Court, Chennai : Lawyer 9. Thiru K.Ranjith, Ch-91 : Lay Person

We approve the proposal to be conducted in its presented form.

The Institutional Ethics Committee expects to be informed about the progress of the study and SAE occurring in the course of the study, any changes in the protocol and patients information/informed consent and asks to be provided a copy of the final report.

Member Secretary – Ethics Committee

MEMBER SECRETARY INSTITUTIONAL ETHICS COMMITTEE MADRAS MEDICAL COLLEGE CHENNAI-600 003

								1	MASTER CHA	ART											
																		PARTUM			
SNO	AGE	BOOKI NG STATUS		GA AT DELIVER Y	SES	MODE OF CONCEP TION		IF ART		NO OF ANTENA TAL VISITS	CHORIO	1ST TRIMES TER BLEEDI N PV	GDM/ OVERT DM		GHTN		PPROM	LOW HB	FGR	SFD	AI
							01	IUI	IVF					GHTN	PRE ECLAMPSI A	ECLAMPSI A		·		·	PLACENTA PREVIA
1	40	BOOKED	G2A1	32	3	S			YES	g	DCDA	NO	GDM		PRE ECLAMPSI A			YES			
2		BOOKED	PRIMI	33		S					MCDA	NO		1	<u> </u>	1	PPROM		1		
3	27	BOOKED	G2P1L1	34	3	S				8	3 DCDA	NO		GHTN					1		
4	23	BOOKED	PRIMI	32	4	S				8	MCDA	NO						Ι	YES		
5	24	BOOKED	PRIMI	35	4	S				6	DCDA	NO				АР	1	YES			
6	25	BOOKED	G2P1L1	37	5	S				7	/ DCDA	NO				ECLAMPSI A					
7	25	BOOKED	G2P1L1	39	3	S				8	DCDA	NO			ECLAMPSI A						
8			PRIMI PRIMI	36		S S					B DCDA B MCMA	NO NO									
10	24	BOOKED	G2A1	28	2	s				6	6 MCDA	YES					PPROM				
11	24	BOOKED	PRIMI	37	3	S				6	DCDA	NO			PRE ECLAMSIA						

										1										
12	27	BOOKED	PRIMI	31	3	s			6	5 MCDA	NO						YES			
13	26	BOOKED	PRIMI	37	4	S			7	DCDA	NO		GHTN				YES			
14	26	BOOKED	PRIMI	31	3	s			7	MCDA	NO									
	27		C20414	27													N/FC			
15	27	BOOKED	G2P1L1	37	4	S			6	5 DCDA	NO						YES			
16	26	BOOKED	PRIMI	29	3	s			7	MCDA	NO									
17	29	BOOKED	PRIMI	28	4	S			6	MCDA	NO			-		1	1		I	
18	37	BOOKED	G2P1L1	28	4	S			6	DCDA	NO		GHTN			PPROM			YES	
19	38	BOOKED	PRIMI	35	4	S		YES	g	MCDA	NO	GDM								
20	30	BOOKED	G3P2L2	36	3	s		•	7	DCDA	NO						YES			
														PRE ECLAMPSI				1		
21	27	BOOKED	PRIMI	32	4	S			7	MCDA	NO		GHTN	A		PPROM				
22	23	BOOKED	G2P1L1	37	5	s			6	MCDA	YES				YES					
															·					
23	24	BOOKED	G2P1L1	33	4	S			6	DCDA	NO					PPROM				
24	30	BOOKED	G2P1L1	35	3	s			5	DCDA	NO	GDM	GHTN		1	1	1	1		
25	24	BOOKED	PRIMI	37		s				DCDA							YES			
26			PRIMI	36		s				MCDA								YES		
27			PRIMI	36		s				DCDA		1	GHTN				YES			
												1								
28	28	BOOKED	PRIMI	38	4	S				DCDA										

· · · · · · · ·							 										
29	29	BOOKED	PRIMI	29	2	S			DCDA	OVERT	GHTN						
30			PRIMI	37					DCDA		GHTN					YES	
31	36	BOOKED	PRIMI	36	3	S			DCDA								
32	25	BOOKED	G2P1L1	32	3	S			MCDA								
33	29	BOOKED	PRIMI	35	3	S			DCDA					YES			
34	25	BOOKED	PRIMI	36	3	S			DCDA								
35	30	BOOKED	PRIMI	36	3	S			MCDA	GDM							
36	21	BOOKED	PRIMI	35	3	S			MCDA								
						_											
37	25	BOOKED	PRIMI	37	3	S			DCDA		GHTN		PROM				
38	27	BOOKED	G2P1L1	36	3	S			DCDA								
39	34	BOOKED	PRIMI	36	3	S			MCDA								
10	22	DOOKED	DDINAL	27	2	c											
40	33	BOOKED	PRIMI	37	3	3			DCDA								
41	26	BOOKED	G2A1	36	3	S			DCDA						YES		
42	זר	BOOKED	PRIMI	33	3	c											
42	25	BOOKED		53	5	5			DCDA								
43	23	BOOKED	PRIMI	37	3	S			DCDA					YES			
44	29	BOOKED	PRIMI	31	3	S			MCDA								

		i				1	1	 	i	 i	1	1	i	i	1	1		
45	21	BOOKED	PRIMI	35	3	S			DCDA	GDM								
46	23	BOOKED	PRIMI	37	3	s			DCDA									
									MCDA				AP ECLAMPSI					
47	25	BOOKED	G2P1L1	36	3	S			MCDA				A	PPROM				
48	27	BOOKED	PRIMI	37	3	S			DCDA									
49	29	BOOKED	G3A2	38	3	s			DCDA		GHTN							
50	30	BOOKED	PRIMI	36	3	s			DCDA						YES			
51	33	BOOKED	PRIMI	35	3	ОІ			DCDA									
52	35	BOOKED	PRIMI	33	3	IVF			DCDA								YES	
53	36	BOOKED	G2P1L1	38	3	S			DCDA	GDM		PRE ECLAMSIA				YES		
54	22	BOOKED	PRIMI	34	3	s			MCDA									
55	23	BOOKED	PRIMI	34	2	s			MCDA					PPROM	YES			
56	26	BOOKED	PRIMI	37	3	s			DCDA									
57			PRIMI	37	3	s			DCDA						YES			
58	23	UNBOOKE D	G2P1L1	36	3	s			DCDA									
59	28	BOOKED	PRIMI	35	2	S			MCDA		GHTN							

	1	1	1 1					1	 	1					1		1	1
				20	2	c												
60	29	BOOKED	PRIMI	36	3	2			MCDA									
61	. 23	BOOKED	PRIMI	37	3	5			DCDA									
						_												
62			G2A1	37	2				DCDA									
63	25	BOOKED	PRIMI	32	3	S			MCDA						YES			
64	27	BOOKED	PRIMI	36	2	S			MCDA									
65	24	BOOKED	PRIMI	38	3	S			DCDA									
66	6 26	BOOKED	G2P1L1	36	3	S			MCDA					PPROM				
67	28	BOOKED	PRIMI	37	3	S			DCDA			GHTN						
68	8 27	BOOKED	PRIMI	36	3	01			DCDA									
			G3P1L1															
69	29	BOOKED	A1	38	3	S			DCDA									
70	33	BOOKED	PRIMI	34	2	S			DCDA						YES			
71	. 22	BOOKED	PRIMI	36	3	S			MCDA							YES		yes
		1															1	
72	21	BOOKED	G2A1	36	3	S			MCDA									
73		BOOKED	PRIMI	32		IUI			ТСТА								YES	
		1															1	
			G4PILIA															
74	22		2	37	4	S			DCDA		OVERT DM			PROM				
			- 	57	-+													┼───┤
75	20	BOOKED	PRIMI	38	2	s			DCDA									
76	20	BOOKED	PRIMI	33	3	с С			MCMA									├───┤
	<u> </u>	LOOKED		55	3	5												

i				I		1		I		I						
77	20	BOOKED	PRIMI	36	3	S			DCDA							
78	25	BOOKED	G2A1	36	3	S			MCDA							
79	27	BOOKED	PRIMI	37	2	S			DCDA		 			YES		
80	25	BOOKED	PRIMI	36	3	S			MCDA		GHTN					
81	29		PRIMI G3P1L1	36	3	S			MCDA							
82	27		A1	36	3	s			DCDA		GHTN		PPROM			
83	21	BOOKED	PRIMI	29	3	S			DCDA					YES		
84	22	BOOKED	PRIMI	36	3	s			MCDA							
85	28	BOOKED	G3P2L2	39	4	S			DCDA					YES		
86	20	BOOKED	PRIMI	37	2	S			DCDA							
	23			57												
87	26	BOOKED	G2P1L1	36	3	S			DCDA							
88			G2P1L1	38		s			DCDA							
00	25	BOOKED	U2FILI	56	3	5			DEDA							
		D.O.C.//5-			-											
89 90			PRIMI PRIMI	37 34		S IVF			DCDA TCTA						YES	
91	27	BOOKED	PRIMI	35	3	S			MCDA		GHTN		 PPROM			
92	27	UNBOOKE D	G2P1L1	39	3	S			DCDA							
93	29	BOOKED	PRIMI	35	3	01			DCDA							

											AP				
94	77	BOOKED		37	2 5		DCDA				ECLAMPSI				
94			PRIMI	37	3 S 2 IVF		 TCTA				A	YES			
55	20	DOORED		5-											
96	20	BOOKED	PRIMI	35	3 S		MCDA							YES	
97		BOOKED		33			 MCDA		GHTN						
98 99			G2A1 PRIMI	38 32			 DCDA MCDA								
33	20	BOOKED	FNIIVII	52	4 5										
100	30	BOOKED	PRIMI	36	3 S		 DCDA								
101	38	BOOKED	G4A3	32	3 IVF		DCDA								
102	37	BOOKED	PRIMI	37	3 S		DCDA								
103	32	BOOKED	PRIMI	39	2 S		DCDA					YES			
100		BOOKEB													
										PRE					
										ECLAMPSI					
104	37	BOOKED	PRIMI	34	3 S		MCDA	GDM		А					
105	45	DOOKED	C2D111	25			DCDA					VEC			
105	45	BOOKED	G2P1L1	35	3 S		DCDA			+		YES			
106	28	BOOKED	PRIMI	36	4 S		MCDA					YES			
							1			1					
107	38	BOOKED	PRIMI	32	3 IVF		DCDA								
108	21	BOOKED	G2P1LO	32	2 5		DCDA								
108			PRIMI	33			TCTA			+			YES		
										+					
110	28	BOOKED	PRIMI	38	2 S		DCDA								
111	29	BOOKED	G2P1L1	29	3 S		MCMA								

· · · · · ·								 		 		· · · · ·			1	
112	33	BOOKED	PRIMI	36	3	IVF			DCDA							
113	29	BOOKED	PRIMI	37	4	s			MCDA		GHTN					
			G3P1L1													
114	42		A1	36	3	s			MCDA							
115	44	BOOKED	PRIMI	36	3	IVF			DCDA							
110	20	DOOKED		20									DDDOM	VEC		
116			PRIMI	36		S			DCDA				PPROM	YES		
117	33	BOOKED	G2P1L1	37	3	S			DCDA							
118	32	BOOKED	PRIMI	36	2	s			DCDA							
119	36	BOOKED	PRIMI	33	3	s			MCDA					YES		yes
120	45	BOOKED	G2P1L1	33	3	IVF			DCDA							
121	22	BOOKED	G2P1L1	33	3	s			DCDA		GHTN					
122			PRIMI	38					MCDA							
122	20	BOOKED		30	5	S			MCDA							
123	20	BOOKED	PRIMI	37	2	s			DCDA					YES		
124	36	BOOKED	PRIMI	36	3	S			MCDA							
												PRE				
125			PRIMI	29		s			мсма			ECLAMPSI A				
126	25	BOOKED	PRIMI	33	3	IVF			ТСТА							

T						I				1			1			<u> </u>	
127	26	BOOKED	PRIMI	38	2	s			DCDA								
													AP ECLAMPSI				
128	27	BOOKED	PRIMI	36	3	S			DCDA				A				
129	29	BOOKED	PRIMI	33	2	s			MCDA			GHTN					
130	26	BOOKED	PRIMI	32	3	IVF			ТСТА					PPROM	YES		
131	34	BOOKED	G2A1	33	3	S			MCDA						YES	YES	
132	27	BOOKED	PRIMI	38	2	S			DCDA								
133	29	BOOKED	PRIMI	38	3	S			DCDA		GDM						
134	21	BOOKED	PRIMI	35	3	s			MCDA								
135	25	BOOKED	PRIMI	37	3	s			DCDA								
136	27	BOOKED	PRIMI	33	3	S			DCDA								
137	29	BOOKED	G2P1L1	38	4	ОІ			DCDA					PROM			
138	26	BOOKED	PRIMI	37	3	s			MCDA								
139	24	BOOKED	PRIMI	38	4	S			DCDA								
140		BOOKED		39		s			DCDA								
141	28	BOOKED	PRIMI	32	4	S			MCMA								

				I			 	 								1			,
														AP					
142	20			77	2	c								ECLAMPSI				VEC	
142	29	BOOKED	PRIMI	37	3	3			DCDA					A				YES	
142	20			20		c													
143	26	BOOKED	PRIMI	38	4	5	 	 	DCDA						PROM				
144	20	BOOKED	PRIMI	30	3	ç			MCDA			GHTN				YES			
144	20	DOOKLD		50		5	 	 	NICDA			UIIIN				1123			
145	26	BOOKED	PRIMI	35	3	s			MCDA						PPROM				yes
	20	DOORED		55		5			WICDA										yes
		UNBOOKE																	
146			PRIMI	29	3	S			DCDA										
		-				-													
147	27	BOOKED	PRIMI	37	3	S			DCDA		GDM								
				-		-			-		-			AP					
														ECLAMPSI					
148	26	BOOKED	G2P1L1	30	2	S			MCDA					A					
149			PRIMI	33					MCMA										
150	38	BOOKED	PRIMI	38	3	S			DCDA										
151	39	BOOKED	PRIMI	33	4	S			MCDA										
													PRE						
													ECLAMPSI						
152	42	BOOKED	PRIMI	32	3	IVF			DCDA		OVERT DM		А				YES		
153	37	BOOKED	G2P1L1	38	3	S			DCDA							YES			
154			PRIMI	35					DCDA							YES			
155			PRIMI	38					DCDA			GHTN							
156	36	BOOKED	G2A1	37	3	S		 	DCDA										
157	27	BOOKED	PRIMI	32	4	S			MCDA										
							 · · · · · · ·	 		/									

							_	 							_		
158	21	BOOKED	PRIMI	38	3	S			DCDA								
159	29	BOOKED	G2P1L1	38	3	S			DCDA					YES			
160	33	BOOKED	PRIMI	34	3	S			MCDA				PPROM				
161 162			PRIMI PRIMI	33 33		S OI			MCDA TCTA	OVERT DM	GHTN			YES	YES		
102	20	BOOKED			5												
163	37	BOOKED	G3A2	39	4	s			DCDA								
164	24	BOOKED	PRIMI	36	3	S			DCDA								
165	28	BOOKED	G2A1	32	3	s			DCDA				PPROM				
166	26	BOOKED	PRIMI	36	3	s			DCDA								
167	22	BOOKED	PRIMI	37	2	S			DCDA	GDM							
168	26	BOOKED	PRIMI	36	3	S			DCDA								
169	28	BOOKED	PRIMI	38	4	S			DCDA								
170 171			PRIMI PRIMI	35 33		S S			DCDA MCMA	GDM			 PPROM	YES			
												PRE					
172		UNBOOKE D	PRIMI	37	3	01			DCDA			ECLAMPSI A				YES	
ı				-			-			 l							

173	27	BOOKED	PRIMI	34	4 S			MCMA						
174			G2P1L1	38				MCDA				YES		
175	22	BOOKED	G2P1L1	38	2 S			DCDA	GDM					
176	20	BOOKED	PRIMI	37	2 S			MCDA						
										ORE ECLAMPSI				
177	42	BOOKED	G2A1	36	4 IVF			DCDA	OVERT DM	A				
	~-												NEC.	
178			PRIMI	33				DCDA					YES	
179	36	BOOKED	PRIMI	38	3 S			DCDA				YES		
180	41	BOOKED	PRIMI	35	3 S			DCDA						
101	20	DOOKED		26				0.004						
181	38	BOOKED	PRIMI	36	2 01			DCDA	OVERT DM					
182	29	BOOKED	G3P1L1 A1	37	3 S			MCDA						
183	21	BOOKED	PRIMI	36	3 S			DCDA				YES		
										PRE				
184	27	BOOKED	PRIMI	36	3 S			DCDA	GDM	ECLAMPSI A				
185	33	BOOKED	PRIMI	35	3 S			DCDA						
186	40	BOOKED	G2P1L1	35	4 IVF			DCDA						
187	29	BOOKED	PRIMI	36	3 S			MCDA			PPROM	YES		

18 3/ 90010 910 36 2 5 0 NCM NCM 1								 						 		·		
138 27 80x70 FMM 37 3 S 0 0cDA I																		
138 27 80x70 FMM 37 3 S 0 0cDA I	100	27	POOKED		26		c									VEC		
130 21 BOOKED PRIMI 39 3 5 DCDA PRF ECLAMINSA 141 26 BOOKED PRIMI 37 3 5 DCDA PRF ECLAMINSA 142 37 BOOKED GZAL 38 4 5 DCDA PRF ECLAMINSA 143 27 BOOKED GZAL 38 4 5 DCDA PRF ECLAMINSA 143 27 BOOKED FRIMI 37 3 5 DCDA PRF PRF PRF 143 29 BOOKED PRIMI 37 3 5 DCDA PRF PRF <t< td=""><td>100</td><td>57</td><td>BOOKED</td><td>PRIIVII</td><td>30</td><td>2</td><td>5</td><td></td><td></td><td>IVICDA</td><td></td><td></td><td></td><td></td><td></td><td>TES</td><td></td><td></td></t<>	100	57	BOOKED	PRIIVII	30	2	5			IVICDA						TES		
130 21 BOOKED PRIMI 39 3 5 DCDA PRF ECLAMINSA 141 26 BOOKED PRIMI 37 3 5 DCDA PRF ECLAMINSA 142 37 BOOKED GZAL 38 4 5 DCDA PRF ECLAMINSA 143 27 BOOKED GZAL 38 4 5 DCDA PRF ECLAMINSA 143 27 BOOKED FRIMI 37 3 5 DCDA PRF PRF PRF 143 29 BOOKED PRIMI 37 3 5 DCDA PRF PRF <t< td=""><td>189</td><td>27</td><td>BOOKED</td><td>PRIMI</td><td>37</td><td>3</td><td>s</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	189	27	BOOKED	PRIMI	37	3	s											
191 26 BOOKED PRIMI 37 3 S DCDA PRE P	105	27	DOORED				5											
191 26 BOOKED PRIMI 37 3 S DCDA PRE P																		
191 26 BOOKED PRIMI 37 3 S DCDA PRE P																		
191 26 BOOKED PRIMI 37 3 S DCDA PRE P																		
191 20 BORED PRIM 37 3 5 0 DCDA 0	190	21	BOOKED	PRIMI	39	3	S			DCDA								
191 20 BORED PRIM 37 3 5 I DCDA I <thi< th=""> I</thi<>																		
191 20 BORED PRIM 37 3 5 I DCDA I <thi< th=""> I</thi<>																		
131 25 BOKED PRIM 37 3 S DDA A																		
192 37 ROOKED G2A1 36 4 S DCDA VES VE	101	26	POOKED		27		c											
193 22 BOOKED PRIMI 35 3 S DCDA Image: Solution of the	191	20	BOOKED	FRIIVII	57	5	3			DCDA			A					
193 22 BOOKED PRIMI 35 3 S DCDA Image: Solution of the																		
193 22 BOOKED PRIMI 35 3 S DCDA Image: Solution of the	192	37	BOOKED	G2A1	36	4	S			DCDA					YES			
194 36 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the second seco																		
194 36 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the second seco																		
194 36 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the second seco																		
194 36 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the second seco																		
195 38 BOOKED PRIMI 33 3 S MCDA GDM Image: Constraint of the state of the	193	22	BOOKED	PRIMI	35	3	S			DCDA								
195 38 BOOKED PRIMI 33 3 S MCDA GDM Image: Constraint of the state of the																		
195 38 BOOKED PRIMI 33 3 S MCDA GDM Image: Constraint of the second	194	36	BOOKED	PRIMI	37	3	s			DCDA							YES	
196 21 BOOKED PRIMI 32 2 S MCDA GHTN Image: Second Se			BOOKEB														120	
197 24 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the co	195	38	BOOKED	PRIMI	33	3	S			MCDA	GDM							
197 24 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the co																		
197 24 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the co																		
197 24 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the co																		
197 24 BOOKED PRIMI 37 3 S DCDA Image: Constraint of the co	100	21	DOOKED		22		C					CUTN						
198 27 BOOKED G2P1L1 37 4 S DCDA Image: Constraint of the second sec	196	21	BOOKED	PRIIVII	32	2	3			IVICDA								
198 27 BOOKED G2P1L1 37 4 S DCDA Image: Constraint of the second sec	197	24	BOOKED	PRIMI	37	3	s			DCDA								
199 25 BOOKED PRIMI 35 3 S DCDA Image: Second s										1								
	198	27	BOOKED	G2P1L1	37	4	s			DCDA								
	100	זר	BOOKED		25		c								VEC			
200 23 BOOKED G2P1L1 38 3 S DCDA GHTN GHTN YES YES S S 1 1 1 38 3 S 1	199	23	BOOKED		35	3	5											
200 23 BOOKED G2P1L1 38 3 S DCDA GHTN PEN PES S S Image: Simple S																		
Image: state in the state	200	23	BOOKED	G2P1L1	38	3	s			DCDA		GHTN			YES			
Image: Series of the series																		
Image: Series of the series														 				

ļ	 	 	 	 		 		 	 	 	
ļ											

				PARTUM			POSTPARTU												
					TIME TAKEN														
й	PRETER M LABOUR	ACCIDE	РРН	RETAINE D PLACEN TA	FOR DELIVER Y OF SECOND		CESARE AN HYSTER ECTOM Y	PRESEN TATION		DE OF VERY	INDICAT ION IF LSCS		TWIN A/1		Ą		TWIN B/	TRIPLET	B
ABRUPTIO N		1		1	1	1		CEPHALIC, CEPHALIC		CESAREAN		SEX	B.WT	APGAR	TIME	SEX	B,WT	APGAR	TIME
											DCDA ,1ST TWIN NON								
	YES			YES	1MIN			B,VX		LSCS	CEPHALIC	BOY	2.2	8,9	11;29	BOY	1.9	7,8	11:30
	YES		1	1				CEPHALIC, CEPHALIC	LN			GIRL	1.9	7,8	5.22	GIRL	1.78	7,8	5.35
	YES		YES					CEPHALIC, CEPHALIC	LN			GIRL	2.34	8,9	7.18	воу	2.21	7,8	7.36
	YES		YES					CEPHALIC, CEPHALIC	LN			GIRL	2.7	8,9	3.56	GIRL	2	8,9	3.58
	YES		YES					CEPHALIC, CEPHALIC	LN			воу	2	7,8	3.12	воу	2.15	7,8	3.13
								CEPHALIC, CEPHALIC	LN			GIRL	2.3	7,8	8.42	воу	2.24	6,8	8.43
								CEPHALIC, CEPHALIC	LN			GIRL	2.42	7,8	6.34	GIRL	2.3	7,8	6.55
								CEPHALIC, CEPHALIC	LN			воу		8,9		воу		8,9	7.46
	YES									LSCS	MCMA	GIRL	2.5	8,9	10.56	GIRL	2.65	7,8	10.58
	YES		1	YES				CEPHALIC, CEPHALIC	LN		1	GIRL	1.9	6,8	2.01	GIRL	1.7	6,8	2.14
			YES							LSCS	MSL	воу	2.2	7,8	9.45	воу	2.33	8,9	9.46

	YES		YES				CEPHALIC, CEPHALIC				воу	2	8,9	12.20	GIRL	2.07	8,9	12.21
		-	YES				CEPHALIC, CEPHALIC			•	воу	2.22	8,9	3.56	GIRL	2.33	7,8	4.11
	YES						CEPHALIC, CEPHALIC				GIRL	2.67	8,9	5.22	GIRL	2.43	8,9	5.3
		1	1				CEPHALIC, CEPHALIC	LN			GIRL	1.9	7,8	3.33	воу	2.11	7,8	3.46
	YES	YES							LSCS	CORD PROLAPSE	GIRL	2.14	5,7	3.55	GIRL	2.24	8,9	3.57
yes	YES								LSCS	ABRUPTIO PLACENTA	GIRL	960	7,8	2.4	воу	1.07	7,8	2.55
<u>. </u>	YES			YES			CEPHALIC, CEPHALIC	LN			воу		0,0	8.43	воу	1.130		8.55
	YES								LSCS	MCDA FETAL DISTRESS	воу	2.08	7,8	1.4	воу	2.12	6,8	1.41
	YES						_		LSCS	FETAL DISTRESS	GIRL	2.3	7,8	2.33	воу	2.21	6,8	2.35
	YES		1	1			CEPHALIC, CEPHALIC	OUTLET			GIRL	1.29	8,9	11.34	GIRL	1.7	7,8	11.50
	YES		YES				1	1	LSCS	AP ECLAMPSI A	воу	2.6	7,8	3.56	воу	2.33	8,9	3.58
	YES		YES				CEPHALIC, CEPHALIC	LN		1	BOY	1.34	7,8	3.45	воу	2.44	8,9	3.5
	YES				1	1	 	1	LSCS	PREV LSCS	воу	2.3	8,9	2.21	BOY	2.5	7,8	2.22
							CEPHALIC, CEPHALIC					2.5	6,7			2.6	7,8	
	YES		YES						LSCS	FETAL DISTRESS		2.4	6,8			2.7	7,8	
	YES								LSCS	FETAL DISTRESS		2.4	6,8			2.5	7,8	
							CEPHALIC, CEPHALIC	VACUUM				2.6	4,6			2.6	3,7	

	1	i	1	 	 	1	1	1					
YES					CEPHALIC, CEPHALIC	LN			1	7 5,7	1.9	5,9	
		YES			 		LSCS	FETAL DISTRESS	2	.1 5,6	 250 GM	0,0	
					TRANSVER SE LIE,BREEC H		LSCS	FIRST TWIN NON CEPHALIC		6 5,7	2.8	3.8	
YES					CEPHALIC, CEPHALIC	LN			2	.2 7,7	2.5	7,8	
YES					CEPHALIC, CEPHALIC	LN			2	.2 7,8	2.5	6,7	
					CEPHALIC, CEPHALIC	LN			2	.6 5,8	2.6	5,8	
YES					CEPHALIC, CEPHALIC	LN			2	5 6,8	2.8	7,8	
YES							LSCS	FETAL DISTRESS	2	.2 4,8	2.4	5,8	
		YES			CEPHALIC, CEPHALIC	LN			2	.5 6,8	2.5	6,8	
		YES		 	 		LSCS	PREV LSCS	2	.4 5,6	2.6	5,8	
YES					CEPHALIC, CEPHALIC	LN			2	.5 5,7	2.5	6,7	
					CEPHALIC, BREECH	LN			2	.8 6,8	2.6	6,8	
YES					BREECH,TR ANSVERSE LIE		LSCS	FIRST TWIN NON CEPHALIC		1 4,8	1.8	4,8	
					CEPHALIC, CEPHALIC	LN			1	9 7,8	2.1	7,8	
					CEPHALIC, CEPHALIC	VACUUM			2	.7 6,7	2.6	6,7	
YES							LSCS	FETAL DISTRESS	1	8 5,6	1.9	5,5	

·		-1			,						 		, <u>,</u>		
	YES						CEPHALIC, BREECH	LN			2.4	7,7		2.5	7,8
							CEPHALIC, CEPHALIC	LN			2.5	6,7		2.6	6,7
	YES						CEPHALIC, BREECH	LN			2.2	6,7		2.5	6,8
							CEPHALIC, BREECH	LN			2.9	5,8		3.2	6,8
							CEPHALIC, CEPHALIC	LN			3.3	6,7		2.9	6,8
yes	YES		YES						LSCS	ABRUPTIO PLACENTA	3.1	6,8		2.9	6,8
							BREECH,B			FIRST TWIN NON					
	YES						REECH BREECH,C		LSCS	CEPHALIC FIRST TWIN NON	2.5	5,7		2.4	5,7
	YES		YES				EPHALIC		LSCS	CEPHALIC	2.2	7,8		560 GM	0,0
							CEPHALIC, BREECH	LN			2.3	7,8		1.7	7,8
	YES	YES	YES			YES			LSCS	CORD PROLAPSE	2.4	6,7		2.3	7,8
	YES			YES			CEPHALIC, BREECH	LN			2.5	7,8		2.6	7,8
							CEPHALIC, BREECH	LN			3.1	7,8		2.9	7.8
							CEPHALIC, BREECH	LN			3.1	6,7		2.7	6,7
	YES								LSCS	PREV LSCS	2.6	7,8		2.8	7,8
	YES								LSCS	FETAL DISTRESS	2.3	4,7		2.4	5,7

· · · · ·					 	 						, , ,		
YES	5					TRANSVER SE LIE,BREEC H		LSCS	FIRST TWIN NON CEPHALIC	2.5	6,7	2	.5 6,7	
						CEPHALIC, CEPHALIC				2.9	8,9		3 8,9	
						CEPHALIC, BREECH	LN			3	6,7	2	.6 6,7	
YES	5							LSCS	MSL	2.2	7,8	2	.4 6,7	
YES	5		YES			BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC	2.6	6,7	2	.6 6,7	
						BREECH,B REECH		LSCS	FIRST TWIN NON CEPHALIC	2.7	7,8	2	.9 7,8	
YES	5							LSCS	PREV LSCS	2.5	7,8	2	.5 7,8	
						CEPHALIC, BREECH	LN			2.7	6,8		.9 7,8	
YES	5							LSCS	MSL	2.7	6,7	2	.7 6,7	
								LSCS	PREV LSCS	2.9	7,8	2	.7 6,8	
YES	5		YES			CEPHALIC, BREECH	LN			2.7	7,8	2	.8 7,8	
YES	5		YES					LSCS	PLACENTA PREVIA	1.7	6,7	2	.5 6,7	
YES						TRANSVER SE LIE,BREEC H		LSCS	FIRST TWIN NON CEPHALIC	2.4	5,7		.6 5,7	
YES	5							LSCS	TCTA	1.6	0,0	1	.7 7,8	
	,	YES		YES				LSCS	CORD PROLAPSE	2.1	6,8	2	.2 6,7	
						CEPHALIC, CEPHALIC	LN			2.6	5,7	2	.8 5,8	
YES	5							LSCS	MCMA	2.1	7,8		2 7,8	

 ,	I	1	1	,	,			1		1 1	1			
YES		YES						LSCS	FETAL DISTRESS		67	с с	67	
TES		TES							DISTRESS	2.0	6,7	2.7	0,7	
						BREECH,C			FIRST TWIN NON					
YES						EPHALIC		LSCS	CEPHALIC		4,7	2.6	47	
									FETAL	2.5		2.0	-,,	
		YES			YES			LSCS	DISTRESS	2.8	7,8	2.7	7,8	
									FIRST					
						BREECH,TR ANSVERSE			TWIN NON					
YES						LIE		LSCS	CEPHALIC		6,8	2.5	4,6	
									1				,	
						CEPHALIC,								
YES							LN			2.5	4,7	2.6	5,8	
									FETAL					
YES								LSCS	DISTRESS	2.7	7,8	2.6	7,8	
						CEPHALIC,								
YES							LN			1.7	8,9	1.9	8,9	
									FETAL					
YES								LSCS	DISTRESS	2.5	5,8	2.6	6,8	
		YES						LSCS	PREV LSCS	2.7	7,8	2.9	7,8	
									1					
									FIRST					
						BREECH,C			TWIN NON					
						EPHALIC		LSCS	CEPHALIC	2.8	7,8	2.7	8,9	
						CEPHALIC,								
YES		YES				CEPHALIC	VACUUM			2.7	7,8	2.9	7,8	
								LSCS	PREV LSCS	2.7	6,7	2.9	6,8	
									FIRST					
						BREECH,C			TWIN NON					
						 EPHALIC	1	LSCS	CEPHALIC		5,7		5,8	
YES		YES						LSCS	TCTA	1.7	6,7	1.4	6,7	
						CEPHALIC,								
YES			YES			BREECH	LN			2.5	3,7	2.3	4,7	
								LSCS	PREV LSCS	2.9	7,8	3	7,9	
									FETAL					
YES								LSCS	DISTRESS	1.8	7,8	2.1	7,8	

								AP				
							LSCS	ECLAMPSI A	2.6	8,9	2.7	8,9
	YES						LSCS	TCTA		7,8	1.7	
								FETAL				
	YES						LSCS	DISTRESS	1.2	0,0	2.4	5,7
					CEDUAL							
	YES				CEPHALI CEPHALI				2.2	6,7	2.1	6,7
							LSCS	MSL		6,8		6,9
	YES						LSCS	MSL	2.4	6,7	2.1	6,7
	YES				BREECH, EPHALIC	c	LSCS	FIRST TWIN NON CEPHALIC	2.8	7,9	2.6	7,9
	YES	YES			BREECH, ANSVERS LIE		LSCS	FIRST TWIN NON CEPHALIC	2.1	7,7	1.9	7,7
					CEPHALI BREECH	C, LN			2.9	7,8	2.7	7,8
		YES			CEPHALI BREECH	C, LN			2.8	8,9	2.7	8,9
yes	YES						LSCS	ABRUPTIO PLACENTA	2.2	6,7	1.8	5,7
	YES	YES					LSCS	FETAL DISTRESS	2.4			8,9
	YES				CEPHALI BREECH	C, LN			2.1		2.4	
	YES						LSCS	FETAL DISTRESS	2.2	7,8	2.5	7,9
	VES				CEPHALI BREECH	C,				7.0		7,9
	YES YES						LSCS	ТСТА	2.1 1.3		1.6	
					CEPHALI CEPHALI	c, c vacuum			2.5	7,9	2.7	7,9
	YES						LSCS	мсма	1.7		1.9	

				 	 						 		,			
γ	/ES					BREE ANS ^V LIE	ECH,TR WERSE		LSCS	FIRST TWIN NON CEPHALIC	2.5	6,8		2.7	6,9	
						SE	NSVER BREEC		LSCS	FIRST TWIN NON CEPHALIC	2.4	7,8		2.3	7,8	
γ	/ES					CEPH BREE	HALIC, ECH	LN			2.4	6,7		2.5	6,7	
Y	/ES	YES							LSCS	CORD PROLAPSE	2.2	4,6		2.1	6,7	
Y	/ES					BREE EPH/	ECH,C ALIC		LSCS	FIRST TWIN NON CEPHALIC	2.5	7,9		2.7	7,9	
			YES						LSCS	FETAL DISTRESS	2.6	7,9		2.7	7,9	
Y	/ES		YES						LSCS	FETAL DISTRESS	2.2	6,9		2.4	6,9	
Y	/ES		YES						LSCS	PLACENTA PREVIA	2.1	7,8		2.2	7,8	
Y	/ES								LSCS	MSL	2.2	7,9		2.5	7,8	
Y	/ES								LSCS	PREV LSCS	2.1	6,8		2	6,9	
									LSCS	FETAL DISTRESS	2.5	5,7		2.3	5,7	
						BREE EPH/	ECH,C ALIC		LSCS	FIRST TWIN NON CEPHALIC	2.5	7,9		2.7	7,9	
Y	/ES					BREE EPH/	ECH,C ALIC		LSCS	FIRST TWIN NON CEPHALIC	2.1	7,8		2.3	7,8	
	/ES								LSCS	МСМА	1.8			1.9		
Y	/ES								LSCS	TCTA	1.6	7,8		1.8	7,8	

1		1	1			1						
					BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC	2.6	8,9	2.8	8,9
YES							LSCS	AP ECLAMPSI A	2.2	7,8	2.7	7,8
YES							LSCS	FETAL DISTRESS	2.1	5,7	2.1	5,7
YES		YES	YES		CEPHALIC CEPHALIC	LN			1.4	6,7	1.5	6,7
YES					CEPHALIC BREECH	LN			1.8	7,8	2.4	7,8
					CEPHALIC BREECH	LN			2.7	6,7	 2.9	6,8
		YES			BREECH,B REECH		LSCS	FIRST TWIN NON CEPHALIC	2.9	7,8	2.7	7,8
YES					TRANSVEF SE LIE,BREEC H		LSCS	FIRST TWIN NON CEPHALIC	2.2	5.7	2.3	5.7
		YES					LSCS	FETAL DISTRESS		8,9		7,8
YES							LSCS	FETAL DISTRESS		7,8		7,8
					CEPHALIC CEPHALIC	LN			2.1		2.5	
					CEPHALIC CEPHALIC	LN			2.5	4,7	2.6	4,6
					CEPHALIC CEPHALIC	LN			2.6	7,8	2.5	7,8
					BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC	2.6	6,7	2.8	6,7
YES	1		1				LSCS	МСМА		7,8	2.1	7,8

		1	1	1	 		1	1	<u> </u>	1 1	r r					r	,
										AP ECLAMPSI							
									LSCS	A	4	450GM	0,0		2.1		
							BREECH,TR			FIRST							
							ANSVERSE			TWIN NON							
			YES				LIE		LSCS	CEPHALIC		2.6	6,7	 	2.6	4,7	
										FIRST							
							BREECH,C			TWIN NON							
	YES		YES				EPHALIC		LSCS	CEPHALIC		1.8	6,7		1.7	7,8	
										PLACENTA							
	YES								LSCS	PREVIA		2.3	6,7		2.4	6,8	
										ABRUPTIO							
yes	YES								LSCS	PLACENTA		2.2	6,7		2.4	6,7	
							CEPHALIC,										
							BREECH	LN				2.6	3,6		2.5	3,8	
										AP							
	YES								LSCS	ECLAMPSI A		1.9	57		1.8	57	
	YES								LSCS	МСМА		2.2			2.1		
							CEPHALIC,										
			YES				CEPHALIC	VACUUM				2.6	6,7		2.7	6,8	
	YES						CEPHALIC, BREECH	LN				2.1	6,7		2.2	6,7	
										FETAL							
	YES								LSCS	DISTRESS		1.9	5,8		2	5,7	
									LSCS	PREV LSCS		2.6	6.7		2.8	6.7	
												2.0	-,-			-,-	
							CEPHALIC,										
	YES		YES				CEPHALIC	LN					3,6		2.8		
								1	LSCS	MSL		2.9			2.9		
									LSCS	MSL		2.7	7,8		2.9	7,8	
	YES						CEPHALIC, BREECH	LN				1.9	67		1.7	47	
												1.9	0,7		1./	+,/	

[]	1			I	1	1			1		, , , , , , , , , , , , , , , , , , ,			1	I			i
							BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC		2.7	7,8			2.8	7,9	
									LSCS	PREV LSCS		2.5	8,9			2.7	8,9	
	YES						CEPHALIC, BREECH	LN				2.2	6,7			2.5	6,7	
	YES YES	YES					CEPHALIC, BREECH	LN	LSCS	ТСТА		2.2				2.1		
							CEPHALIC,		1303			1.2	7,0			1.1	7,0	
		YES					CEPHALIC	VACUUM		FETAL		2.5	7,8			2.8	7,8	
	YES								LSCS	DISTRESS		2.6	6,7			2.9	6,7	
	YES	YES	YES				CEPHALIC, BREECH	LN				2.2	8,9			2	8,7	
	YES						BREECH,B REECH		LSCS	FIRST TWIN NON CEPHALIC		2.4	6,8			2.2	6,9	
	YES						BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC		2.5	6,9			2.8	6,8	
	YES						BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC		2.5	6,8			2.5	6,8	
							BREECH,C EPHALIC		LSCS	FIRST TWIN NON CEPHALIC		2.6	7,8			2.8	7,8	
	YES YES						CEPHALIC, CEPHALIC	OUTLET	LSCS	МСМА		2.1 1.9	8,9			2.7	8,9	
	YES	YES							LSCS	FETAL DISTRESS		2.2					0,0	

YE	ES I			 			LSCS	MCMA	2.1	6,7		2.:	6,8	
							LSCS	PREV LSCS	2.1	4,7	+ +	2.2	2 4,6	
							LSCS	PREV LSCS	2.6	7,8		2.9	7,8	
					BREECH,TR ANSVERSE			FIRST TWIN NON						
					LIE		LSCS	CEPHALIC	2.6	6,7		2.7	7 6,7	
YE	ES	YES					LSCS	FETAL DISTRESS	2.6	8,9		2.8	3 8,9	
					TRANSVER SE			FIRST						
					LIE,BREEC			TWIN NON						
YE	ES	 YES		 	Н		LSCS	CEPHALIC	2.1	7,8		750 GM	0,0	
							LSCS	FETAL DISTRESS	2.5	7,8		2.5	5 7,8	
	56						1.000	FETAL	2.2	c 7		2		
YE	ES						LSCS	DISTRESS	2.2	0,7		2.:	6,7	
YE	ES				CEPHALIC, BREECH	LN			2.6	7,8		2.0	5 7,8	
								FIRST						
					BREECH,C			TWIN NON CEPHALIC	2.6	70		2.	7 7 0	
				 	EPHALIC		LSCS	CEPHALIC	2.6	7,0		2	7,8	
					BREECH,C			FIRST TWIN NON						
YE	ES				EPHALIC		LSCS	CEPHALIC	2.2	6,8		2.:	6,8	
								FIRST						
					BREECH,B			TWIN NON	2 5	70			7 0	
YE	E3				REECH		LSCS	CEPHALIC FETAL	2.5	٥, ١	+	2	7,8	
YE	ES						LSCS	DISTRESS	2.1	6,8			2 6,8	
YE	ES	YES					LSCS	FETAL DISTRESS	2	6,8		2.4	6,7	
					TRANSVER SE			FIRST						
					LIE,BREEC			TWIN NON	2.5	C 7				
YE	ES				Н		LSCS	CEPHALIC	2.5	ь,/		2.1	6,7	

	1				<u>г</u>				<u> </u>	1			-	, <u>, , , , , , , , , , , , , , , , , , </u>			· · · · · ·
							PHALIC, PHALIC	VACUUM			2	4,6			2.6	5,7	
		YES							LSCS	FETAL DISTRESS	2.5				2.9		
						BRE	EECH,B			FIRST TWIN NON CEPHALIC	2.4	7,8			2.7	7,8	
						BRE EPH	EECH,C IALIC		LSCS	FIRST TWIN NON CEPHALIC	2.4	6,8			2.6	6,7	
YES							PHALIC, EECH	LN			2.4	7,8			2.7	6,8	
YES						BRE EPH	EECH,C IALIC		LSCS	FIRST TWIN NON CEPHALIC	2.1	5,7			1.8	5,7	
						CEP	PHALIC,										
VEC						BRE	ECH	LN		FETAL	2.1				2.1		
YES									LSCS	DISTRESS	2.1	5,7			2.2	5,7	
YES						BRE	EECH,C IALIC		LSCS	FIRST TWIN NON CEPHALIC	2.1	6,7			2	4,6	
									LSCS	FETAL DISTRESS	2.3				2.1		
		YES			YES				LSCS	PREV LSCS	2.2				2.4		
						SE	ANSVER BREEC			FIRST TWIN NON							
 YES						H	DILLU		LSCS	CEPHALIC	2.2	6,7			2.6	4,7	
						CEP CEP	PHALIC, PHALIC	OUTLET			2.6	6,8			2.8	6,8	
 1		1	1	1					1	1			1	1			1

										<u> </u>
										<u> </u>
										<u> </u>]
										<u> </u>]
										<u> </u>
				 				L		
										<u> </u>]

	TRIP	LET C		NICU ADMISS ION	NEONAT AL SEIZURE S	SEPSIS	
SEX	B,WT	APGAR	TIME				
				YES	YES		
				YES		YES	
				YES			
				YES			
				YES			
				YES		YES	

			YES				
			1				
	 		I				
			YES				
			YES				
			YES			1	
			YES		YES		
			•			•	
			_			_	
			YES			YES	
			_			_	I
			1			1	
	 		YES			YES	
		1	1			1	
			YES				
			YES	YES			
L			1	1			J

			YES			
			YES	YES		
			YES	YES	YES	
			YES			
			YES			
			YES			
			YES		YES	
			YES			
			YES			
			VEC			
			YES			

Image: select	 	 					
Image: Section of the section of th							
Image: Section of the section of th							
Image: Section of the section of th							
Image: Section of the section of th							
Image: Section of the section of th							
Image: Sector of the sector					YES		
Image: Sector of the sector							
Image: Section of the section of th							
Image: Section of the section of th			YES				
Image: series of the series			. 20				
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
YES YES Image: Second sec			YES				
YES YES Image: Second sec							
YES YES Image: Second sec							
YES YES Image: Second sec							
YES YES Image: Second sec							
YES YES YES			YES	YES			
YES YES YES							
YES YES YES							
YES YES YES			YES				
YES YES YES							
YES YES YES							
YES YES YES			VEC				
YES							
YES							
YES							
			YES			YES	
					YES		
YES							
YES							
YES							
YES YES							
			YES				

		YES			
		125			
			YES		
		YES		YES	
		123		123	
		YES			
		YES			
		YES			
1.2	4,5	YES			
		VEC			
		YES			
		YES			
		YES			
		-			

Image: series of the series	 			 		
Image: second						
Image: series of the series						
Image: series of the series						
Image: series of the series			VES			
YES YES						
VES VES VES				YES		
VES VES VES						
VES VES VES						
YES YES YES YES YES Image: Second			YES			
YES YES YES YES YES Image: Second						
YES Image: Constraint of the second seco			YES			
Image:			YES		YES	
Image:						
			YES			
1.3 6,7 YES						
	1.3	6,7	YES			
			VEC			
YES			TES			
YES			YES			

		7.0	 ¥50	 	
	1.4	7,8	YES		
			YES		
			125		
			YES		
			125		
			YES		
			YES		
			 _		
			YES		
ļ			123		
			VEC		
			YES	 	
			VEC		
			YES		
	1.6	4,5	YES		
	1				
		1			
			VEC		
			YES		

			YES			
			100		1/50	
			YES		YES	
			YES			
			YES			
			115			
			VEC			
			YES			
			YES			
	1.6	7,8	YES			
-						

		YES			
		TES			
1.4	5,5	YES		YES	
		YES			
		YES			
		YES			
		. 25			
		YES			
		'LJ			

		YES			
		YES			
		125			
		YES			
 	 	1125		 	
		YES			
1					
		YES			
		YES			
 		1125		 	
		YES			
		YES			
		-			
1					
		VEC			
 ļ		YES			
		YES			
		YES	YES		
 		YES			
 		ILJ			
		YES			

			YES		YES	
			YES			
	1 1 1	70	YES			
L	1.2	7,8	IES			
ļ			 			
			YES			
			 IEJ			
1						
			YES		YES	
			YES			
			-			
				YES		

		YES			
		YES			
		YES	YES		
		1/50			
		YES			

			YES			
			YES			
		 	TLS			
			YES			
			YES			
			TES			
			YES			
			TEJ			
			YES			
			123			
L						
						7
	1		1		1	

<u>i</u>					