VARIATIONS IN OLFACTORY PARAMETERS

IN DIFFERENT OLFACTORY DISORDERS -

A RETROSPECTIVE STUDY

A dissertation submitted to the Tamil Nadu Dr. M. G. R. Medical University, Chennai in partial fulfilment of the requirement for the MS Otorhinolaryngology (Branch IV) degree examination to be held in May 2022.

VARIATIONS IN OLFACTORY PARAMETERS

IN DIFFERENT OLFACTORY DISORDERS -

A RETROSPECTIVE STUDY

Dissertation submitted to the

THE TAMIL NADU DR. MGR MEDICAL UNIVERSITY, CHENNAI In partial fulfilment of the requirements for the degree of
MASTER OF SURGERY
IN
OTORHINOLARYNGOLOGY
BERENICE STELLA. B

Register number: 221914351

DEPARTMENT OF OTORHINOLARYNGOLOGY

CHRISTIAN MEDICAL COLLEGE

VELLORE

MAY 2022

CERTIFICATE

This is to certify that "Variations in olfactory parameters in different olfactory disorders - A retrospective study" is the bona-fide work of Dr. Berenice Stella. B under my supervision in the Department of Otorhinolaryngology, Christian Medical College Vellore in partial fulfilment of the requirements for the M.S ENT Examination Branch IV of the Tamil Nadu Dr. M.G.R Medical University to be held in May 2022 and no part thereof has been submitted for any other degree.

Dr. Lalee Varghese D.L.O., M.S., D.N.B.

Professor

Department of ENT

Christian Medical College

Vellore, Tamil Nadu

CERTIFICATE BY THE HEAD OF THE DEPARTMENT

This to certify that "Variations in olfactory parameters in different olfactory disorders - A retrospective study" is the bona-fide work of Dr. Berenice Stella. B under the supervision of Dr. Lalee Varghese, Professor, Department of ENT, Christian Medical College Vellore.

Dr. Ajoy Mathew Varghese

Professor and Head
Department of ENT
Christian Medical College
Vellore, Tamil Nadu

India

CERTIFICATE BY THE PRINCIPAL

This to certify that "Variations in olfactory parameters in different olfactory disorders - A retrospective study" is the bona-fide work of Dr. Berenice Stella. B under the supervision of Dr. Lalee Varghese, Professor, Department of ENT, Christian Medical College Vellore.

Dr Anna B Pulimood

Principal

Christian Medical College

Vellore, Tamil Nadu

India

DECLARATION

I, Berenice Stella. B, do hereby declare that the dissertation titled "Variations in olfactory parameters in different olfactory disorders - A retrospective study" is a genuine record of research done by me under the supervision and guidance of Dr. Lalee Varghese, Professor, ENT, Christian Medical College, Vellore and has not previously formed the basis of award of any degree, diploma, fellowship or other similar title of any university or institution.

Vellore
Berenice Stella. B

Date

CERTIFICATE

This is to certify that the dissertation titled "Variations in olfactory parameters in different olfactory disorders - A retrospective study" is a genuine record of research done by Dr. Berenice Stella. B under the Department of ENT, Christian Medical College, Vellore. I have verified the plagiarism certificate issued by the website urkund.com and it shows 4% plagiarism from introduction to conclusion.

Vellore,

Date:

Curiginal

Document Information

Analyzed document Thesis rough draft PlagerismCheck.docx (D122645840)
Submitted 2021-12-16T07:39:00.0000000
Submitted by Berenice Stella
Submitter email solomon.bernice@googlemail.com
Similarity 4\%
Analysis address solomon.bernice.mgrmu@analysis.urkund.com

Acknowledgements

First and foremost, I thank God for His grace and help from the very beginning to the end as I was doing this dissertation.

I would like to express my heartfelt gratitude to my guide Dr. Lalee Varghese who was there every step of the way with her valuable advice and guidance. This thesis would not have been possible without her support.

I also would like to thank my statistician, Dr. Grace Rebekah. J for her hard work and time spent to help me analyse my data.

I would like to thank Dr. Regi Kurien, Professor and head of ENT 3 for his constant support and words of encouragement. I would also like to thank Dr. Raga Panicker for helping me in each and every step of my thesis journey.

I also feel extremely blessed to have my husband Dr. Geoffery Daniel Kirubakaran, and my father Mr. Brabahar Solomon, who were there every step of the journey, constantly supporting me, helping me keep timelines and always cheering me on.

OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.3. Prashantham, M.A., Dr. Min (clinical)
Director, Christian Counselling Center
Chairperson, Ethics Committee

Dr. Anna Benjamin Pulimood, MD. PhD.
Chairperson. Research Committee \& Principal
Dr. Suceena Alexander, MD., DM., FASN
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

October 31, 2020

Dr. Berenice Stella B,
PG registrar,
Department of ENT - 3,
Christian Medical College,
Vellore - 632002.

Sub: Fluid Research Grant: New Proposal:
Variations in olfactory parameters in different olfactory disorders - A retrospective study.
Dr. Berenice Stella B,(Emp. No. 80269) PG Registrar, Otorhinolaryngology, Dr. Lalee Varghese, ENT Unit -3, Dr. Regi Kurien (Employment number: 31688), ENT Unit -3.

Ref: IRB Min. No. 13359 [OBSERVE] dated 02.09.2020.

Dear Dr. Berenice Stella B,
I enclose the following documents:-

1. Institutional Review Board approval

2. Agreement

Could you please sign the agreement and send it to Dr. Suceena Alexander, Addl. Vice Principal (Research), so that the grant money can be released.

With best wishes,

Cc: Dr. Lalee Varghese, ENT - 3, CMC, Vellore
1 of 5

[^0]
OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., Dr. Min (clinical)
Director, Christian Counselling Center
Chairperson, Ethics Committee

Dr. Anna Benjamin Pulimood, MD. Ph.D
Chairperson, Research Committee \& Principal
Dr. Suceena Alexander, MD., DM. FASN
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

October 31, 2020

Dr. Berenice Stella B, PG registrar,
Department of ENT - 3,
Christian Medical College,
Vellore-632002.

Sub: Fluid Research Grant: New Proposal:
Variations in olfactory parameters in different olfactory disorders - A retrospective study.
Dr. Berenice Stella B,(Emp. No. 80269) PG Registrar, Otorhinolaryngology, Dr. Lalee Varghese, ENT Unit -3, Dr. Regi Kurien (Employment number: 31688), ENT Unit -3.

Ref: IRB Min. No. 13359 [OBSERVE] dated 02.09.2020.

Dear Dr. Berenice Stella B,
The Institutional Review Board (Blue, Research and Ethics Committee) of the Christian Medical College, Vellore, reviewed and discussed your project titled "Variations in olfactory parameters in different olfactory disorders - A retrospective study" on September 02, 2020.

The Committee reviewed the following documents:

1. IRB Application Form
2. Proforma
3. HOU Permission Letter
4. Cvs. of Drs. Regi Kurien, Lalee Varghese, Berenice Stella.
5. No.of Documents $1-4$.

The following Institutional Review Board (Blue, Research \& Ethics Committee) members were present at the meeting held on September 02, 2020 in the New IRB Room, Christian Medical College, Vellore 632004.

[^1]OFFICE OF RESEARCH
INSTITUTIONAL REVIEW BOARD (IRB)
CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., Dr. Min (clinical)
Director, Christian Counselling Center
Chairperson, Ethics Committee

Dr. Anna Benjamin Pulimood, MD. Ph.D.
Chairperson. Research Committee \& Principal
Dr. Suceena Alexander, MD., DM.. FASN.,
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

Name	Qualification	Designation	Affiliation
Dr. Anna B. Pulimood	MD, PhD	Principal, Chairperson- Research Committee, IRB, CMC, Vellore	Internal, Clinician
Dr. B. J. Prashantham	MA (Counseling Psychology), MA(Theology), Dr. Min (Clinical Counselling)	Chairperson, Ethics Committee, IRB. Director, Christian Counseling Centre, Vellore	External, Social Scientist
Dr. Suceena Alexander	MD., DM., FASN	Secretary - (Ethics Committee), IRB, Addl. Vice Principal (Research), Professor of Nephrology, CMC, Vellore	Internal Clinician
Dr. Sathish Kumar	MD, DCH	Professor, Child Health, CMC, Vellore	Internal, Clinician
Ms. Grace Rebekha	M.Sc., (Biostatistics)	Lecturer, Biostatistics, CMC, Vellore	Internal, Statistician
Mr. C. Sampath	BSc, BL	Advocate, Vellore	External, Legal Expert
Dr. Ratna Prabha	MBBS, MD (Pharma)	Associate Professor, Clinical Pharmacology, CMC, Vellore	Internal, Pharmacologist
Rev. Rainard Pearson	BA., B. Th., M. Div.,	Sr. Chaplin, CMC, Vellore.	Internal, Social Scientist
Dr. Anuradha Rose	MBBS, MD, MHSC (Bioethics)	Associate Professor, Community Health, CMC, Vellore	Internal, Clinician
Dr. Barney Isaac	DNB (Respiratory Diseases)	Associate Professor, Pulmonary Medicine, CMC, Vellore	Internal, Clinician
Mrs. Pattabiraman	BSc, DSSA	Social Worker, Vellore	External, Lay Person
Dr. Joe Varghese	MBBS, MD Biochemistry	Professor, Department of Biochemistry	Internal Clinician

IRB Min. No. 13359 [OBSERVE] dated 02.09.2020
3 of 5°

Dr. B..J. Prashantham, M.A., Dr. Min (clinical)
Director, Christian Counselling Center
Chairperson, Ethics Committee

Dr. Anna Benjamin Pulimood, MD. Ph.D.
Chairperson, Research Committee \& Principal
Dr. Suceena Alexander, MD., DM.. FASN..
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

Dr. Balu Krishna	MBBS MD DNB DMRT	Professor, Department of Radiotherapy, CMC Vellore	Internal Clinician
Dr. Rohin Mittal	MS, DNB	Professor, Department of General Surgery, CMC Vellore	Internal Clinician
Mrs. Ida Nirmal	MSc Nursing	Professor, Addl Deputy Dean, College of Nursing, CMC, Vellore	Internal, Nurse
Mrs. Rebecca Sumathi Bai	MSc Nursing	Professor and Head of Specialty Nursing7, CMC Vellore	Internal, Nurse
Dr. HS. Asha	MBBS, DNB	Professor, Department of Endocrinology, CMC Vellore	Internal Clinician
Mrs. Sophia V	M.Sc Nursing	Addl. Deputy Dean CMC, Vellore	Internal, Nurse
Mrs. Nirmala Margaret	MSc Nursing	Addl. Deputy Nursing Superintendent, College of Nursing, CMC, Vellore	Internal, Nurse
Dr. Rekha Pai	MSc, PhD	Associate Professor, Pathology, CMC, Vellore	Internal, Basic Medical Scientist
Dr. John Jude Prakash	MBBS, MD,	Professor, Clinical Virology, CMC, Vellore	Internal, Clinician
Dr. Winsely Rose	MD (Paed)	Professor, Paediatrics, CMC Vellore	Internal, Clinician
Dr. Premila Abraham	M.Sc. Ph.D	Professor, Department of Biochemistry, CMC, Vellore	Internal Clinician

We approve the project to be conducted as presented.
Kindly provide the total number of patients enrolled in your study and the total number of Withdrawals for the study entitled: "Variations in olfactory parameters in different olfactory disorders - A retrospective study" on a monthly basis. Please send copies of this to the Research Office (research@cmcvellore.ac.in).

IRB Min. No. 13359 [OBSERVE] dated 02.09.2020

OFFICE OF RESEARCH

INSTITUTIONAL REVIEW BOARD (IRB)
 CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., Dr. Min (elinical)
Director, Christian Counselling Center
Chairperson, Ethics Committee

Dr. Anna Benjamin Pulimood, MD. Ph.D.
Chairperson, Research Committee \& Principal
Dr. Suceena Alexander, MD., DM., FASN
Secretary, Ethics Committee, IRB
Additional Vice-Principal (Research)

The Institutional Ethics Committee expects to be informed about the progress of the project, Any adverse events occurring in the course of the project, any amendments in the protocol and the patient information / informed consent. On completion of the study you are expected to submit a copy of the final report. Respective forms can be downloaded from the following link: http://172.16.11.136/Research/IRB Polices.html in the CMC Intranet and in the CMC website link address: http://www.cmch-vellore.edu/static/research/Index.html.

Fluid Grant Allocation:

A sum of 8,000/-INR (Rupees Eight Thousand Only) will be granted for 12 Month.
Yours sincerely,

Dr. Suceena Alexander Secretary (Ethics Committee) Institutional Review Board

Dr. Suceena Alexander, MD.,DM.,FASN. Secretary - (Ethics Committee) Institutiona! Review Board Christian Medical College,

[^2]
CONTENTS

ABSTRACT 1
INTRODUCTION 3
REVIEW OF LITERATURE 5
EMBRYOLOGY 5
ANATOMY 7
PHYSIOLOGY OF OLFACTION 16
THEORIES FOR OLFACTION 18
FACTORS AFFECTING OLFACTION 23
TESTS FOR OLFACTION 25
DISORDERS OF OLFACTION 30
TYPES OF OLFACTORY DYSFUNCTION 30
AIMS AND OBJECTIVES 44
METHODOLOGY 45
RESULTS 48
DISCUSSION 71
CONCLUSION 77
BIBLIOGRAPHY 78
ANNEXURES I
LIST OF FIGURES I
LIST OF TABLES III
DATA SHEET IV

ABSTRACT

ABSTRACT

AIM

The aim of this study is to analyse the variations in n-butanol threshold and odour identification scores of the CCCRC test (Connecticut Chemosensory Clinical Research Centre) in patients with various olfactory disorders.

STUDY DESIGN

This was a retrospective observational cohort study.

MATERIALS AND METHODS

Patients for this study were recruited retrospectively from CMC database. All patients who were diagnosed with olfactory dysfunction, between January 2018 and March 2020, based on CCCRC olfaction testing were selected retrospectively after applying the inclusion and exclusion criteria. After patient selection, details of each patient including demography, presenting symptoms, duration of symptoms, clinical examination and olfaction testing details were recorded and analysed.

RESULTS AND CONCLUSION

At the end of the study, the n-butanol threshold scores and the odour identification scores were analysed for variations in each type of the olfactory dysfunction, comorbidities and nasal diseases. We found that the odour identification component of the CCCRC test plays a major role in determining the composite score and thereby the type of olfactory dysfunction. Among the
seven odours tested for odour identification, pepper was the most affected smell among most of the nasal diseases and comorbidity groups.

INTRODUCTION

INTRODUCTION

The nose acts as a major gateway for respiration, but also has other vital functions that are essential for enhancing the quality of life. The functions of the nose are respiration, protection of lower airways, vocal resonance, humidification of inspired air and olfaction.

It plays a vital role in filtering and purifying the inspired air and also alters the temperature and humidity of the air before it reaches the lungs. The mucosal lining of the nose has enormous mucous secreting glands, which secretes a mucous blanket which clears the inspired bacteria, virus and dust and takes it to the nasopharynx, thereby protecting the lower airways.

The olfactory function of the nose is vital in detecting environment chemicals. Humans depend on a well-functioning sense of smell to distinguish hazardous smells like smoke, gas leaks and chemicals. The smell also predicts the general mood of a person. The inability to sense smell results in significant psychological disruption, social vulnerability and victimization. Therefore, it significantly contributes to the quality of daily life.

When sense of smell combines with taste and somatosensory stimuli, the various flavours of foods are identified and thereby enjoyed. This also aids the process of digestion by triggering normal gastrointestinal secretions.

The olfactory region is found in the roof of the nose in humans. It has a specialized epithelium containing sensory neurons carrying olfactory sensation to the brain. They have the ability to regenerate over period of time (1).

The sense of smell is altered by various nasal diseases, of which chronic rhinosinusitis, allergic rhinitis, atrophic rhinitis are most commonly seen. Other causes for acute loss of smell include trauma to the olfactory region or following transnasal approach surgeries.

Olfactory dysfunction can be caused by different mechanisms. It could be a conductive loss due to obstruction of nasal passages, sensorineural loss due to damage to olfactory neuroepithelium or due to a central olfactory neural loss.

The inability to perceive smell is termed as anosmia, while the reduced perception to smell is hyposmia. Threshold depends on the chemical nature of stimuli and the level of inhibitory activity from the higher centres. The threshold of perception is lower than identification that is a smell is sensed before it is recognized.

In this study, the pattern of smell loss in different olfactory disorders using CCCRC olfaction testing has been studied and analyzed. The relationship between systemic illness like diabetes mellitus, hypertension, dyslipidemia, bronchial asthma and hypothyroidism with loss of smell has also been addressed.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

EMBRYOLOGY

The nose is developed from mesenchymal processes that are present around the primitive mouth. This process begins by the fourth week of intrauterine life. Collections of neural crest cells undergo proliferation and form the nasal placodes. These nasal placodes then sink in the centre to transform into nasal pits, which deepens to form the nasal sac. The adjacent mesodermal cells increase rapidly in number and gives rise to the medial and lateral nasal prominences of the frontonasal process. These processes surround the nasal pit and sac which together form the nares.

The maxillary processes enlarge anteriorly to join the medial nasal prominences and combines medially with the frontonasal process forming separate nasal cavities by closing off the nasal pits. The bucconasal membrane separates the primitive nasal cavity and mouth at first. This membrane thins out in due course and finally breaks down to form the choanae.

The frontal and maxillary processes fuses to form the lateral two thirds of the upper lip, superior alveolar ridges and palatal shelves. The medial nasal prominences combine with the maxillary process to develop into the philtrum and medial crus of the lower lateral cartilages. The nasal bones, upper lateral cartilages and lateral crus of the lower lateral cartilages are formed by the lateral nasal prominences.

The posterior midline growth of the frontonasal process into the root of the oral cavity develops the nasal septum which further extends posteriorly to form the opening of the Rathke's pouch. The primitive or primary palate is formed, anteriorly by the fusion of the maxillary and frontonasal processes. The palatal processes which are
derived from the lateral maxillary mesoderm, begins to grow medially towards each other and the nasal septum with the enlargement of the nasal cavity. Initially, the palatal processes are vertically oriented and lateral to the tongue. During the development of the jaw and oral cavity the palatal processes begins to migrate medially towards the midline and fuse. This fusion initiates at the posterior margin of the primitive palate and then progresses from anterior to posterior to form the secondary palate.

WEEKS 4-5
WEEKS 5-6

Nasal processes

Figure 1 - Development of nasal cavity
(Source -Review of Medical embryology Book by Ben Pansky,
Chapter 57. Development of The Nasal Cavities)

Abstract

ANATOMY

The human nose has two nasal passages that serve as channels for both respiration and olfaction. It helps to warm and humidify the inspired air while eliminating most of the airborne pathogens and environment pollutants, most of which are toxic to the olfactory system.

\section*{EXTERNAL NOSE}

The external nose has an osteocartilaginous framework and is further made of muscles and skin. The external nose is bony in its upper one third and cartilaginous for the lower two thirds. The bony part is made up of two nasal bones which articulates in the midline and rest on the upper part of the nasal process of the frontal bones and supported by the frontal processes of the maxillae on either side.

The cartilaginous part is made up of four cartilages. The upper lateral cartilages bridge the undersurface of the nasal bones above, to the alar cartilages below. They are connected with each other in the midline and anteriorly with the upper border of the septal cartilage. The lower lateral cartilages or alar cartilages are two in number which are U-shaped. Each alar cartilage has a lateral crus which constitutes the ala and a medial crus which runs in the columella. The lesser alar or sesamoid cartilages are two or more in number which are situated above and lateral to the alar cartilages. The dorsum of the nose is supported by the septal cartilage.

Figure 2-Osteo-cartilaginous framework of nose
(Source -Atlas of Asian Rhinoplasty pp 1-65-Anatomy and physiology of nose)

There are four muscles which cover the osteocartilaginous framework of nose which are responsible for the movements of the nasal tip, ala and the skin overlying them. They are the procerus, nasalis (transverse and alar parts), levator labii superioris alaeque nasi, anterior and posterior dilator nares and depressor septi.

The skin is thin and freely mobile over the nasal bones and upper lateral cartilages but is thick and adherent over the alar cartilages which has numerous sebaceous glands.

NASAL CAVITY

The nasal cavity from the anterior nares to nasopharynx is lined by ciliated columnar epithelium and by olfactory epithelium in the superior part. The midline
septum separates the nasal cavities into two with each comprising of a roof, floor, lateral and medial walls, and anterior and posterior apertures. Each nasal cavity communicates with the exterior through the nostril and posteriorly with the nasopharynx via the posterior nasal aperture or the choana. Each nasal cavity consists of the vestibule and a nasal cavity proper. The vestibule in the external nose has coarse hairs which helps to keep away the dirt particles from the inspired air from the upper airway.

The roof is narrow arched and it lies below the anterior cranial fossa. The nasal cavity is built by the nasal cartilages, nasal and frontal bones, the cribriform plate of the ethmoid and the body of the sphenoid from anterior to posterior. The floor is horizontal and it also participates in the formation of the roof of the oral cavity mainly by the palatine process of the maxilla and the horizontal plate of the palatine bone.

NASAL SEPTUM

The nasal septum separates the nasal cavity into two, gives support to the nasal dorsum and also maintains the tip of the nose. It consists of a bony part, cartilaginous part and membranous part. The bony part of the septum is formed by the perpendicular plate of ethmoid, vomer, crest of maxilla and palatine bone. The cartilaginous part of the septum is made by the quadrangular cartilage. This cartilage is continuous with the upper lateral cartilages towards the nasal bridge. The membranous part is formed by connective tissue present between the columella and the caudal portion of quadrangular cartilage.

Figure 3 - Anatomy of nasal septum
(Source - Anatomy and physiology Connexions Web site.
http://cnx.org/content/col11496/1.6/, Jun 19, 2013)

LATERAL WALL OF NOSE

The lateral wall of nasal cavity is closely related to the orbit, the ethmoid and maxillary sinuses. There are three horizontal bony projections, the superior, middle and inferior nasal conchae (turbinates) which greatly increase the surface area of the lateral wall. The largest of them is the inferior concha which is an independent bone and it is situated about 1 cm above the floor of the nose. Underneath each concha is a meatus, and just above the superior concha there is a triangular fossa, sphenoethmoidal recess into which the sphenoid sinus opens.

The nasolacrimal duct opens into the inferior meatus, whereas the posterior ethmoidal air cells open into the superior meatus. The middle meatus has a rounded
elevation, the bulla ethmoidalis. A deep semicircular groove just below the bulla is called as the hiatus semilunaris, which receives the openings of the frontal, anterior ethmoidal and maxillary air sinuses. There is a short passage at the anterior end of the hiatus called as the infundibulum (2).

Figure 4-Anatomy of lateral wall of nose
(Source - Earth's lab-Anatomy of nasal cavity)

BLOOD SUPPLY OF NOSE

The nose is primarily supplied by the branches of the external and internal carotid arteries namely maxillary, facial and ophthalmic arteries. These branches anastomose within the nose and on the nasal mucosa. The anterior and posterior ethmoidal arteries are branches of ophthalmic artery and supplies the roof of nose along with ethmoid and frontal sinuses.

The sphenopalatine artery is a branch of maxillary artery which supplies the mucosa of the meatuses, turbinates and posteroinferior part of the septum. This artery divides into posterior septal and posterior lateral nasal branches before entering the nasal cavity. The Little's area or Kiesselbach's plexus is the region of anastomosis on the anteroinferior part of the septum by the sphenopalatine, anterior ethmoid, greater palatine and septal branch of superior labial arteries.

Figure 5 - Blood supply of A) lateral wall of nose, B) nasal septum
(From DrakRL, Vogl AW, Mitchell A (eds), Gray's Anatomy for Students, 2nd ed, Elsevier, Churchill Livingstone. Copyright 2010)

The veins draining the posterior part of the nose drains into the pterygoid venous plexus through the sphenopalatine vein crossing the sphenopalatine foramen. The anterior part of the nose is drained by the anterior ethmoid veins and finally drain into the facial or ophthalmic veins.

OLFACTORY EPITHELIUM

The olfactory cleft is a 1 mm wide opening that is present 7 cm deep to the nostril. The olfactory neuroepithelium is present in this small region of nasal mucosa measuring about approximately 2 cm square situated in the upper recesses of the nasal chamber, which is lining the cribriform plate and also forms part of the superior turbinate, middle turbinate, and septum.

Figure 6-Olfactory region in the nasal cavity
(Source -teachmeanatomy.infolthe nasal cavity)

The major part of the inspired air entering the nose is shunted around the inferior meatus (35\%) and middle meatus (50\%) before reaching the olfactory neuroepithelium, which is only $10-15 \%$. Hence minor alterations involving the nasal architecture and the
airflow can lead to considerable blockage of airflow to the olfactory regions without causing significant impairment in nasal respiratory ability.

Figure 7 - Streamline patterns for resting inspiratory flow through a scale model of a healthy human adult
(Source: The biophysics of nasal airflow: Otolaryngology Clin North Am 1989:22:265)

HISTOLOGY OF OLFACTORY EPITHELIUM

Olfactory neuroepithelium is made up of pseudostratified columnar epithelium, and held by a highly vascularized lamina propria. The following are the six distinct classes of cells which are defined morphologically, biochemically, and functionally present within the neuroepithelium.

1. The bipolar sensory receptor neuron has its embryological origin from olfactory placode. Its main function is to hold out odorant receptor-containing cilia into mucus.
2. The sustentacular or supporting cell interposes between the bipolar receptor cells. It facilitates the production of mucus, transports molecules across the epithelium and also helps in detoxification and degradation of odorants.
3. The duct cell of Bowman's glands is the major contributor in production of mucus in the olfactory epithelium
4. The microvillar cell which is located at the surface of the epithelium, provides tufts of microvilli into the nasal mucus similar to the supporting cell.
5. The horizontal basal or dark cells, represents one of the two principal classes of stem cells within the basement membrane of the epithelium.
6. The globose basal or light cells, is a multipotent basal cell that is capable of giving rise to neurons and non-neuronal cells, including the horizontal basal cells.

Figure 8 - Histology of olfactory epithelium

PHYSIOLOGY OF OLFACTION

1. Olfactory epithelium

The olfactory sensory neurons occupy the yellowish pigmented olfactory epithelium which is present in a specialized portion of the nasal mucosa, in the roof of the nasal cavity, close to the septum. There are about 10 to 20 million bipolar olfactory sensory neurons which are interrupted with glia like sustentacular cells and basal stem cells. Each neuron consists of a thick, short dendrite terminating as a knob with 10 to 20 cilia into the nasal cavity. These cilia are unmyelinated and measures about $2 \mu \mathrm{~m}$ in length with a diameter of $0.1 \mu \mathrm{~m}$. They possess specific receptors for odorants known as odorant receptors.

Figure 9 - Olfactory sensory neurons embedded in the olfactory epithelium
(Source - Kandel ER, Schwartz JH, Jessell TM [editors]: Principles of Neural Science, 4th ed. McGraw-Hill,

The axons of the olfactory sensory neurons enter the olfactory bulb by going through the cribriform plate of the ethmoid bone.

2. Olfactory bulbs

After reaching the olfactory bulbs, the axons of the olfactory sensory neurons join the primary dendrites of the mitral and tufted cells forming discrete synaptic units known as olfactory glomeruli. Then the mitral and tufted cells send the axons to the olfactory cortex. The olfactory bulb has periglomerular cells, which act as inhibitory neurons linking the glomeruli together. The granule cells do not possess any axons, but they are responsible for establishing reciprocal synapses with the lateral dendrites of the mitral and tufted cells. These cells excite the granule cell at the synapse by producing glutamate. Therefore, the excited granule cell inhibits the mitral and tufted cell by causing GABA release (3).

3. Olfactory cortex

The axons of the mitral and tufted cells travel posteriorly via the lateral olfactory stria and ends on the apical dendrites of the pyramidal cells at five regions of the olfactory cortex. These regions are anterior olfactory nucleus, olfactory tubercle, piriform cortex, amygdala and entorhinal cortex. The olfactory information travels from these regions to the frontal cortex, or through the thalamus to the orbitofrontal cortex.

The pathway to the orbitofrontal cortex is responsible for conscious discrimination of odours. The orbitofrontal activation is more on the right than the left side, hence there is asymmetric representation of olfaction. The pathway to the amygdala is related to the emotional responses to olfactory stimuli, whereas the entorhinal cortex pathway is involved with olfactory memories.

Figure 10-Olfactory pathway
(Source - Kandel ER, Schwartz JH, Jessell TM [editors]: Principles of Neural Science, 4th ed. McGraw-Hill, 2000)

THEORIES FOR OLFACTION

1. The Vibrational theory

Malcolm Dyson in 1928 first proposed this theory which suggests that the odorant quality is based on vibrational recurrence of a molecule in the infrared range. The author conducted spectroscopic studies and derived a correlation between certain odours and the vibration frequencies of molecules.

The correlations between odour character and low-frequency molecular vibrations were limited. The other pitfall of this theory is that it failed to prove that some enantiomers produce different smells even though their vibrational spectra were identical. There was no biological mechanism identifiable as a plausible protein-based spectroscope having the ability to convert molecular vibrations into neuronal activation. Hence this theory was disregarded (4).

2. The profile - functional theory

Certain specific chemical groups present in a molecule are characterised by their specific odour. Beets proposed the Profile - Functional theory in 1957. He proposed that, odour is determined by two separate contributions: one from the form, size and bulk shape of the molecule; the other through its functional group or groups that define the molecular orientation at the receptor site. The ability of a functional group to orient effectively the odorant at the site, was supposed to be partly determined by its tendency to participate in hydrogen bonding interactions (5).

3. The electrochemical theory

According to this theory proposed by Briggs and Duncan in 1962, because the olfactory region of the nasal cavity is yellow and the respiratory epithelium is not, it comprises of carotenoids that are responsible for formation of the protein bound molecular receptors of the odorant molecules (6).

4. Chromatography theory

Mozell proposed this theory in 1967. Accordingly, the olfactory discrimination like chromatography depends on the ability with which the molecules of each odorant
migrate along the mucosa. The molecules of certain chemicals which possess a greater capacity to travel along the mucosa could reach the olfactory regions faster (7).

5. The steric theory

This theory states that air-borne molecules are identified as smell when they attach into the complementary receptor sites. Thus, the specific shape and size of the molecule is responsible for the specific odour quality. It resembles a lock and key mechanism. The molecule bonding activates the receptor coupled G - protein which in turn corresponds to the signal transduction (8).

OERP (OLFACTORY EVENT RELATED POTENTIALS)

OERPs are due to activation of areas of brain from the olfactory tracts and bulbs involving the orbitofrontal cortex with rostrum-medial regions of the temporal lobe. They are produced by electrical stimulation of the olfactory mucosa and it can be used as one of the clinical tests to detect olfactory dysfunction. The sensory input is traveling from the roof of the nasal cavity, where the olfactory neuroepithelium is located via the olfactory bulbs and cranial nerves. In the first cranial nerve, the sensations communicate with the second order neurons which are the dendrites of the mitral and tufted cells. The postsynaptic fibers arise from the second order neurons and travels to the primary olfactory areas in brain and form the olfactory tracts. The primary olfactory regions are anterior olfactory nucleus, tenia tecta, olfactory tubercle, amygdala, piriform cortex, anterior cortical amygdaloid nucleus, and entorhinal cortex (9).

OLFACTORY TRANSDUCTION

After the odorant molecule is dissolved in the olfactory mucus, a set of events ensue. The odorant-binding protein increases the concentration of the odorants in the proximity of the receptor cells as high as 1,000 to 10,000 , increasing the ease of access of odorants to the olfactory receptors.

The odorant chemical information is converted to an electrical action potential by the specific interactions between odorant molecules and receptor proteins on the surface of olfactory cilia. At the receptor cell membrane, many second-messenger systems help in depolarizing the cell and starts the action potential.

The cyclic adenosine monophosphate (cAMP) and inositol phosphate $\left(\mathrm{IP}_{3}\right)$ are the prime signaling pathways channeling olfactory transduction. As the receptor is bound to an odorant, adenylate cyclase is energized by $\mathrm{G}_{\text {olf }}$ and converts adenosine triphosphate (ATP) into cAMP. The cAMP bound to Na, Ca ion channel permits the influx of these ions. When more channels open, in sequence, the cell depolarizes and an action potential is produced.

The peripheral olfactory receptor cells depolarization then starts a convergence of electrical information toward the olfactory bulb. The axons from olfactory receptor subtype converge if identical and synapse with mitral cells within only a few glomeruli of each olfactory bulb. A particular odorant may trigger a specific olfactory receptor types which in turn signals to specific glomeruli. Thus, a design of action similar to the designs of action of other sensory systems is created in the brain.

Figure 11-Signal transduction in an odorant receptor
(Source -https://www.researchgate.net/figure/Transduction-in-the-cilia-of-the-olfactory-sensory-neurons-Golf-olfactory-G-protein_fig2_262980675)

EFFECTS OF OLFACTION

1. Eating

The olfactory and gustatory responses provoke pleasurable moments which are transmitted to the brain. They are responsible for eating food with pleasure. Hence, if the olfaction is lost, it affects the eating considerably leading to eating disorder. The olfaction also affects the ingestive as well as digestive capacity leading to loss of weight following the loss of smell. In a systematic review done from 14 studies among anorexic
and obese patients, it was concluded that olfactory capacity is reduced in anorexia nervosa patients (10).

2. Sexuality

Studies have shown strong relationship between the olfaction and the sexual behaviour. Smell acts as a very powerful sexual stimulus. The smell from the body secretions is found pleasant in infants, whereas they are found to be repulsive or not stimulating later in life (11).

3. Psychosocial

Patients with smell dysfunction develop depressive symptoms due to low selfesteem and quality of life. In a study conducted among 22 anosmic patients in Austria, it was found that anosmic patients have reduced body related self-esteem and reduced quality of life (12).

FACTORS AFFECTING OLFACTION

1. Age

Reduced olfactory capacity is usually seen in older individuals. It is seen in half of the people between 65 to 80 years and in three quarters among people more than 80 years of age. Men have early loss of smell when compared to women. The factors that are responsible to age related loss of smell are, repeated damage to the nasal epithelium following viral infections, altered nasal engorgement, reduction of metabolizing
enzymes in the nasal mucosa, cribriform plate forming ossification, reduction in the receptor cells for odorants (13)

2. Gender

Women have better olfactory awareness compared to men from the early childhood, leading to better olfactory capacity in them. This is due to better neuroendocrine and cognitive abilities in women than men. Thus, women are more sensitive to low level odours compared to men in everyday life.

3. Hormones

There are olfactory changes associated with the different phases of menstrual cycle. It is found that the olfactory sensitivity is more pronounced during the ovulation and the luteal phase.

4. Genetic factors

Kallmann syndrome also known as hypogonadotropic hypogonadism is one the most common genetic cause of anosmia or hyposmia. The incidence ranges from 1:8000 among men to $1: 40000$ in women. Anosmin -1 is a protein which acts as a positive regulator of FGFR1 thereby playing a major role in neuronal cell functions. The gene coding Anosmin-1 is mutated in Kallmann syndrome (14).

5. Smoking

In a study conducted in Germany among 1300 patients who are smokers between 25 and 75 years, it was found that 3.6% of the participants were anosmic and 18% had significant olfactory loss (15).

TESTS FOR OLFACTION

1. UPSIT (University of Pennsylvania Smell Identification Test)

The UPSIT is a self-administered test done while in the waiting room and it takes about 10 to 15 minutes by most patients, which can be scored in less than one minute by non-medical personnel. This test contains of four booklets in many languages comprising 10 microencapsulated ('scratch and sniff') odorants in every piece. The test results are validated based on the percentile score of a patient's performance in relation to the age- and sex-matched controls. The olfactory function is then categorized into one of the following: normosmia, mild microsmia, moderate microsmia, severe microsmia, anosmia, and probable malingering.

2. Sniffin' sticks test

In this test, the nasal chemosensory performance is tested with pen-like odour dispensing devices. They comprise of three tests of olfactory function, such as odour threshold, odour discrimination, and odour identification. These three subgroups yield a global olfactory score and the results are calibrated according to gender and age specific normal ranges. The odorants were impregnated in felt-tip pens. Odour thresholds were tested with n-butanol by a single-staircase procedure with sixteen dilutions. Three pens were given randomly among which two had the solvent and the third with the odorant, and the patients were asked to identify the pen with the odorant. Batches of three pens were presented at 20 seconds interval. The patients' scores ranged from 1 to 16 . Then odour discrimination was assessed by presenting triplets of odour
containing pens containing the same and a different odorant. Subjects had to determine which of three pens smelled differently. The scores ranged from 1 to 16 .

Thirdly, odour identification was tested using a multiple-choice task identification of 16 different odours. The scores ranged from 1 to 16 . The sum of the three tests odour threshold, discrimination, and identification measures are together combined as 'TDI Score’ (16).

3. CCCRC (Connecticut Chemosensory Clinical Research Center) olfactory test

The test is portable and inexpensive and consists of two components:

1. Butanol threshold test: The threshold of subjects for butanol is assessed by means of squeeze-bottles using the method of ascending limits. Patients are presented with two bottles for each trial, one with water and the other with dilute concentrations of butanol. The n-butyl alcohol is an ideal odorant because it is readily soluble in water, less toxic and has neutral odour quality. The strongest butanol concentration (bottle 0) is 4% butanol in deionized water. Each subsequent dilution (bottles 1-9) is a 1:3 dilution with deionized water.

The solutions are given for sniffing in a 250 ml squeezable polyethylene bottle. Each bottle contains 60 ml of the test solution with a popup snout that fits into the nostril. To test the sample, the patient has to place the snout into the nostril and then the bottle is squeezed, while being sniffed.

A testing batch consists of an empty bottle to learn the sniffing technique, two bottles in every concentration and six bottles of deionized water as controls. The patient
is presented with the test concentration and blank deionized water and had to identify which smelt stronger. If the answer is wrong, then a higher concentration is presented. Four correct answers in a row are taken and test is stopped. The total scores ranged from 0 to 9 , but all scores 7 and higher were scored as 7 per the CCCRC test.
2. Odour identification test: Eight odours namely cinnamon, asafoetida, coffee, tea, pepper, clove oil, baby powder and vicks are given in opaque jars and the patients are asked to identify the odours one nostril at a time. A list of items which containing the above substances and also another 8 distractors are given in a paper before starting the test. Apart from the correct and wrong response, 'no response' and 'don't know' are also included in the results. Two trials are given for each nostril for every odour. The scores from both the nostrils are averaged to arrive at a final score. Vicks indicates intact trigeminal nerve function; hence it will not be included in the scoring process.

Based on the results of the 2 components of CCCRC test, a composite score is calculated and diagnosis of anosmia, hyposmia and normosmia are made.

Composite score:

0 to 1.75 - anosmia

2 to 3.75 - severe hyposmia

4 to 4.75 - moderate hyposmia

5 to 5.75 - mild hyposmia

6 to 7 - normosmia

As the CCCRC test is easy to perform and can be administered within a few minutes, it is a preferred test for assessment of olfaction (17).

4. Electro-olfactogram (EOG)

Electro-olfactograms are electrical potentials of the olfactory epithelium which are produced in response to olfactory stimulation. It displays the total sum of generator potentials of the olfactory neuroepithelium. The EOGs display the role of the central nervous system in olfactory desensitization, topographical distribution of olfactory receptors and also the specific expression of olfactory receptors in response to the respective odorants. Thus, it sums up the electrical potentials of the olfactory receptor neurons.

The above-mentioned tests were psychophysical while this is an objective test. The EOG was first demonstrated and termed by Ottoson in 1959. It is carried out by endoscopically placing an electrode on the olfactory epithelium. The olfactory stimuli is presented in a high concentration for less than 20 milliseconds, but without mechanically inducing sensations in the olfactory epithelium and the response was recorded (18).

OLFACTORY DYSFUNCTION

The ability of human beings to thoroughly know our surroundings is dependent on the sense of smell. The qualities of a well-functioning olfactory system ranges from the ability to identify dangerous situations like fires to remembering a fond memory
triggered by different odours. It also gives the pleasure of eating and helps to avoid spoiled food.

Olfaction also plays a vital role in everyday life by being the most important sensation. There are various effects smell and therefore, the loss of smell can diversely affect the patients. It ranges from markedly reducing the quality of life to being life threatening because the patients cannot identify hazardous situations.

In a study conducted among 22 anosmia patients in Austria, it was found that these patients have reduced quality of life, low body related self-esteem and depressive symptoms. The consequences of loss of smell not only affect the patients, but also bring a burden for the family and the health system (12).

The disorders of smell are frequently identified several months after the onset of the symptoms. Some of the surveys conducted in the United States have described the prevalence of olfactory dysfunction being $1-4 \%$, but more recent statistics point out that are more than 20% of them general population are affected by the inability to perceive smell (19). Hence it is essential to identify and help in making guidelines for prompt diagnosis and management of olfactory dysfunction.

The olfactory receptors are activated by the central nervous system for the perception of the sense of smell. Normosmia is defined as normal perception of smell. Olfactory dysfunction can be a result of reduced intensity of the stimulus. Olfactory deficits can also be due to distorted perception of stimulus (20). They can be manifested as the following:

DISORDERS OF OLFACTION

Anosmia - complete inability of sense the smell
Partial anosmia - inability to perceive limited only to certain odorants
Hyposmia - reduced perception of smell
Parosmia - perception of an unpleasant odour following presentation of the stimulus
Heterosmia - where all the odorants smell similar

Phantosmia - perception of smell without the presence of a stimulus
Hyperosmia - abnormal increased sensitivity to perceive odours
Dysosmia - perception of distorted olfactory sensation
Olfactory agnosia - inability to recognize odours despite a normal functioning olfactory system

Prebyosmia - age related decline in the perception of smell
Osmophobia - fear, dislike or aversion in perceiving odours

TYPES OF OLFACTORY DYSFUNCTION

It is divided into three groups based on the etiology: conductive, sensorineural and central

CONDUCTIVE TYPE

Conductive type of olfactory dysfunction is due to the prevention of odorants from reaching the olfactory epithelium in the roof of nose and the olfactory receptors because of certain anatomical barriers. This is seen in obstructive nasal diseases like
chronic rhinosinusitis, allergic rhinitis, nasal polyposis and nasal masses. These can hinder the nasal airflow towards the olfactory cleft.

Olfactory dysfunction is seen in 61 to 83% of chronic rhinosinusitis patients and they are more prone to develop loss of smell if the age is above 65 years, associated with nasal polyposis and with a history of smoking. The pathology responsible for the higher incidence of olfactory dysfunction in chronic rhino sinusitis patients is attributed to the combined effect of nasal obstruction by the polyps or edematous mucosa and injury caused by inflammation. The olfactory impairment in chronic rhinosinusitis patients is attributed to the level of mucosal eosinophilia by Soler, et al. (21).

SENSORINEURAL TYPE
Sensorineural type of olfactory dysfunction is due to reduced reception or processing of the stimulus by one or more of the components in the olfactory pathway which includes olfactory receptors, olfactory neurons or the centers of olfaction in the central nervous system. Examples include viral infection, age related, drug induced or congenital.

Other causes of anosmia include head trauma, in which $20-30 \%$ patients develop some amount of olfactory impairment, while 5\% develop complete olfactory loss. The mechanism involves injury induced hematoma, contusions and most importantly shearing of the olfactory nerves and tracts. The coup or the contra coup movement of the brain in relation to the skull causes extensive shearing of the olfactory nerve filaments at the level of the cribriform plate. The return of sense of smell following head trauma in majority of patients is incomplete which is due to the
incomplete regeneration of the olfactory neuroepithelium and the tracts traveling to the olfactory bulb through the cribriform plate. In turn, the damaged olfactory epithelium is disrupted and replaced by respiratory epithelium, where the number of ciliated olfactory receptor cells are reduced in number (22).

There is presence of recent history of upper respiratory tract infections in 20 30% patients with olfactory dysfunction. The frequent causative agents for upper respiratory infections include influenza virus, rhinovirus, parainfluenza virus and respiratory syncytial virus. The relationship between the viral infection and loss of smell is not well understood yet.

There are a few postulated mechanisms including scarring of the olfactory epithelium following viral infections. There is also evidence of replacement of the olfactory epithelium with the respiratory type epithelium. In such conditions, the receptors were found abnormal. The dendrites in those receptors did not reach the surface of the epithelium and also lacked sensory cilia, which is the site of odorant transduction. These patients also had reduced number of olfactory receptors (23).

In a study conducted by Yamagishi in Japan on 13 patients, the author has described three patterns of olfactory neuroepithelium in patients who had olfactory dysfunction following viral respiratory infections. In the first pattern, the basic cellular structure of the epithelium was preserved but had a smaller number of receptor cells. The second pattern showed thinner olfactory epithelium which consisted only of supporting cells and basal cells. While the third pattern, which is also most severe among the three showed that the neuroepithelium was replaced by metaplastic squamous epithelium (24).

Olfactory dysfunction is also noted in increasing age among the human population. The incidence is around $62-80 \%$ in people more than 80 years of age. The pathology behind the smell loss is multifactorial resulting in a decrease in odour identification, quality discrimination and threshold detection. The following possible etiologies have been proposed as the cause for age related loss of smell. They are high expression of a proapoptotic gene in the olfactory epithelium, age related narrowing of the foramina in the cribriform plate and degeneration of olfactory epithelium with increasing age (20).

Isolated congenital anosmia is seen in 1 in 10000 people, and it is characterized by loss of sense of smell since birth in otherwise healthy individuals. It requires detailed history, examination with electrophysiological and radiological investigations to arrive at a diagnosis. Radiological workup has shown hypoplastic or aplastic olfactory bulbs with shallow olfactory sulcus in otherwise healthy people. These patients are unaware of the olfactory loss in childhood while the parents are suspicious that they are not aware of the spoiled food or toxic environmental chemical odours (25).

Other causes of sensorineural type of olfactory dysfunction include Kallmann syndrome, which is characterized by hypogonadotropic hypogonadism. Medications like angiotensin converting enzyme inhibitors frequently cause olfactory dysfunction. Other medications that are reported to cause smell loss are diuretics, calcium channel blockers and statins. Environmental air pollutants and industrial dusts like ashes, benzene, chromium, lead, nickel, silicone dioxide and many others also cause loss of smell.

There are multiple types of chemical agents which can cause loss of smell like cadmium, formaldehyde, benzene, solvents and nickel dust. It is found that in approximately 5% of people that present with olfactory loss to a hospital there is direct relationship with exposure to a toxic compound.

Tobacco smokers have olfactory loss and is directly proportional to the cumulative smoking dose and the duration of smoking. Also, cessation of smoking promises improvement in the olfactory ability over time.

CENTRAL TYPE

Tumours in the region of olfactory bulbs or tracts can cause significant olfactory dysfunction. They are olfactory groove meningioma, frontal lobe glioma and suprasellar ridge meningioma seen arising from the dura of the cribriform plate. The vision is frequently affected along with the smell as the olfactory nerve is in close proximity to the medial wall and roof of the orbit, optic nerve and tracts.

Foster- Kennedy syndrome results from mass lesions around the olfactory region and is characterized by ipsilateral anosmia, ipsilateral optic atrophy and contralateral papilledema due to increased intracranial pressure. Tumours in the olfactory processing area like the medial temporal lobe mass has the potential to present with loss of smell. The hallmark of olfactory loss seen in association with tumours is presence of headache as an accompanying symptom.

Granulomatous diseases like syphilis, systemic lupus erythematosus, granulomatosis with polyangiitis, sarcoidosis also cause anosmia. Lymphoma infiltrating the olfactory area in the roof of nose also present with loss of smell.

The following are some examples intranasal neoplasms causing olfactory dysfunction: esthesioneuroblastoma, neurofibroma, schwannoma, paranasal and nasopharyngeal tumours with extension. Neoplasms involving the distant organs like lung, ovary, testes, larynx and gastrointestinal tract can also present with anosmia.

Olfactory dysfunction is seen frequently in a multitude of neurological diseases. Neurodegenerative disorders like Alzheimer's disease and idiopathic Parkinson's disease also present with loss of smell, frequently the first clinical presentation. In Parkinson's disease, the smell loss is bilateral and it presents early before the classical neurological signs and symptoms. The severity of the loss of smell is not linked to the disease stage, duration of the disease, intake of antiparkinson drugs or the severity of the symptoms.

Graves and colleagues have found that in Alzheimer disease the olfactory dysfunction is in association with one or more APOE-e4 alleles. This association is predicted to carry a very high risk of cognitive decline compared to the patients who did not have olfactory dysfunction (26).

Multiple sclerosis is also a cause of central type of olfactory dysfunction. The severity of the loss of smell in multiple sclerosis is directly proportional to the number of demyelinating lesions in the brain closely related to the regions of olfactory processing like inferior middle temporal lobe and periorbital frontal cortex. The loss of smell fluctuates according to the number of plaques in the nervous system.

There is significant amount of deficiency in the odour identification capacity and olfactory threshold sensitivity in patients with schizophrenia. There is an inverse relationship between the disease progression and the olfaction testing scores, which
predicts possible progressive neurodegenerative changes involving the olfactory pathways in schizophrenia. Hence it can be used as a marker of progression of disease.

Olfactory auras or hallucinations are seen rarely in association with headache and seizures. They occur as sudden unpleasant smell sensation. Anosmia is also seen in temporal lobe epilepsy, which houses structures like amygdala and hippocampus responsible for the processing of olfaction.

In a study done among 3100 diabetic patients over the age of 40 in the United States, it was found that a significant number of them had severe hyposmia or anosmia. There is increased incidence of cortical thinning in the orbitofrontal cortex as a result of hyperglycemia and type 2 diabetes has been associated with cortical and subcortical atrophy. Phantosmia is linked with loss of grey matter volume at the orbitofrontal cortex, hence it is thought that diabetes can exaggerate the risk of olfactory dysfunction by affecting the same region in the brain (27).

Another study done in Greece among 154 diabetics, showed reduction in odour threshold and odour identification. This was seen more in association with diabetic peripheral neuropathy and retinopathy which are due to microangiopathy. Hence it was postulated that microangiopathy is the cause for olfactory dysfunction among diabetic patients (28).

The relationship between smell dysfunction and hypertension is thought to be due to the alteration of the chemosensory function. The antihypertensives play a major role in altering the chemosensory function, which in turn causes smell and taste disturbance. The exact mechanism by which this results is yet to be known (29).

The relationship between allergic rhinitis and the occurrence of olfactory loss has been studied in a group of 90 patients in Philadelphia. It was found that there is increased incidence of damage to olfactory epithelium due to frequent respiratory infection in allergic rhinitis patients. This results in olfactory dysfunction more than the patients with other nasal diseases like chronic rhino sinusitis and nasal polyps (30).

There is increased occurrence of smell loss among chronic rhinosinusitis patients which accounts for the most common cause of smell loss. There are many mechanisms that can lead to reduced olfactory ability like changes in mucus composition, effects of inflammatory mediators at the olfactory receptor level and altered air flow to the olfactory region (31).

TREATMENT OF OLFACTORY DYSFUNCTION

There are many successful treatments available for the anosmia that is caused primarily by the airflow obstruction through the nose to the olfactory neuroepithelium. The most common causes for conducive anosmia include sinonasal disease, infections and nasal masses. Sensorineural type of anosmia is not easy to treat and the prognosis is poor in patients having a chronic course following upper respiratory infections and trauma to head.

CORTICOSTEROIDS

Patients with conductive smell loss often respond well with oral corticosteroid therapy, whereas sensorineural loss is refractory. The chronic rhino sinusitis related smell loss improves by corticosteroid related modulation of sodium potassium
adenosine triphosphate which is present in the olfactory receptor neurons. In cases of anosmia related to upper respiratory tract infections, a combination of topical and systemic corticosteroids is proven to improve the olfaction (20).

The reason behind the failure of improvement in smell loss by topical nasal steroids is that they are unsuccessful in reaching the olfactory region which is situated in the roof of the nasal cavity. There has been seen increased efficacy if steroids are delivered in formulations like drops or sprays in the head down position.

In a study conducted in Germany, among 92 patients with olfactory dysfunction where 55 of them were prescribed oral prednisolone course while the rest 37 used mometasone steroid spray. The conclusions were that local administration of steroid sprays improve only the odour identification but did not effect the olfactory function. But in contrast, systemic steroids significantly improved the olfactory function in all categories of causes even in post upper respiratory tract infections and idiopathic olfactory dysfunction. The other conclusion was that the response to oral corticosteroids were unaffected by the duration of disease, age and gender of patients, or the association of parosmia (32).

OLFACTORY TRAINING

The olfactory training is a therapeutic approach which is attractive due to its simplicity, low cost and lack of potential side effects. It is done by regular structured exposure to different odours for a period of 12 weeks. Four ml of four odours namely lemon, rose, cloves and eucalyptus are soaked in cotton pads and placed in four amber coloured glass bottles of 60 ml capacity and given to the patients.

Patients are instructed to open each glass bottle, hold it under their nose, and breathe slowly and deeply for 15 seconds. They are advised to perform this training method twice a day, preferably after a meal every day for 3 months. All the glass bottles are named with the respective odorant. Olfactory testing is done before and after the olfactory training.

In a study done in 56 patients, 40 patients performed olfactory training and 16 patients did not. Compared to the baseline, patients who performed olfactory training experienced an increase in their olfactory function while the olfactory function remained unchanged in patients who did not perform training. It appears to increase the olfactory function in approximately 30% as compared to the patients with no olfactory training. Olfactory training is well tolerated and easy for patients to perform on their own and can be offered to any patient who complains of olfactory loss, regardless of the cause (33).

ALPHA LIPOIC ACID

Alpha-lipoic acid is a fatty acid and it crosses the blood brain barrier. It is metabolized to dihydrolipoic acid which is the active metabolite as soon as it is taken up by the cells, and then released into the extracellular space. One of the actions of the active metabolite is to reduce the levels of superoxide and peroxide radicals. Dihydrolipoic acid restores thioredoxin and vitamin C helps regenerate vitamin E by raising the intracellular glutathione concentration.

Therefore, both alpha lipoic acid and dihydrolipoic acid acts towards repairing the oxidative lesions in the body. It has been approved for the treatment of diabetic
neuropathy and has been found safe. The possible mechanism of action is release of nerve growth factor, substance P and neuropeptide Y which increases the motor nerve conduction and microcirculation which results in the improvement of the smell.

Oral alpha lipoic acid at a dose of $600 \mathrm{mg} /$ day taken for 3 to 11 months showed significant improvement in the olfactory function. In a study done in 23 patients, 19 of them were hyposmic and 4 had anosmia. They took 600 mg / day of oral alpha lipoic acid for an average period of 4.5 months. Six patients (26%) showed moderate and eight patients (35\%) showed remarkable increase in olfactory function (34).

ZINC

Zinc is a trace metal which exerts enzyme activity involved in cell proliferation. Hence, it has been proposed that zinc has an important role in the olfaction and taste as it helps in regeneration of the sensory cells. Patients who undergo chemotherapy often develop loss of smell and its due to inhibition of various growth factors that participate in the sensory functions of olfactory neuroepithelium. Zinc has been used in these patients as it acts as one such growth factor and improves the olfaction.

In a study done in 95 patients with post traumatic olfactory loss, participants were categorized into three groups. One group received Zinc only, second had a combination of zinc sulphate along with the conventional treatment (vitamin B with topical corticosteroids) and the last group received only the conventional treatment. It showed significant improvement in olfaction rates in the zinc sulphate group compared to those who took the conventional therapy (35).

VITAMIN A

Vitamin A is involved in the functional regeneration of smell due to the role of retinol in the olfactory receptor neurons. Studies have shown evidence of cell death among olfactory receptor neurons with defective retinoid acid receptors. Hence, retinoic acid is formulated to stimulate immune response and help in the fast recovery following damage in the olfaction system. The reason is the capacity of retinoic acid to regenerate by modulation of gene expression (36).

In a study conducted by Duncan and Briggs in 56 patients of olfactory loss, 50 of them showed improvement following treatment with Vitamin A. The oral formulation was found helpful in the maintenance while injectable vitamin A yielded good improvement in the olfaction. The vitamin A plays a vital role in the olfaction and the site of action is the vesicle and process of the olfactory cells. It also returns the normal adaptation rate of the olfactory mucosa (37).

THEOPHYLLINE

Theophylline is a non-specific phosphodiesterase inhibitor and acts by increasing the intracellular cAMP levels in the neurons. In the patients with olfactory dysfunction, it was seen that the levels of cAMP and cGMP in the saliva and nasal mucous were below normal range. These cyclic nucleotides function as growth factors for various neural tissues, including the olfactory epithelium.

Hence a study was conducted with treating two groups of anosmia patients, one with theophylline and the other group without it. The phosphodiesterase inhibitor was given to elevate the levels of cyclic nucleotides in the nasal mucosa and saliva. It was
found that theophylline corrected hyposmia in many of the patients, which was seen by psychosocial measurements of olfaction (38).

MINOCYCLINE

Minocycline belongs to the tetracycline group of drugs which are primarily used in the treatment of infections of upper respiratory and urogenital system. Apart from the antibiotic and anti-inflammatory property, it also has effects on the apoptotic pathway in the neurons. It has been used in various other conditions like Huntington's disease, Parkinson's disease and cerebral ischemia due to the neuroprotective potential.

One of the proposed causes for olfactory loss is the reduction in the number of mature and functional olfactory neurons in the olfactory neuroepithelium. This reduction is due to the possible apoptosis that occurs more readily due to their exposed location. Thus, minocycline is thought to inhibit the apoptosis occurring in the olfactory neurons and thereby increase the total number of the olfactory receptor neurons (39).

ANTIHISTAMINES

There is a direct relationship between the severity of persistent allergic rhinitis and the loss of smell. A randomized control trial has shown that antihistamines greatly improve the visual analogue scores in patients with olfactory dysfunction (40).

OMALIZUMAB

Omalizumab is an anti-immunoglobulin directed against the IgE antibody. In patients with olfactory loss associated with chronic rhinosinusitis and bronchial asthma,
this drug has shown good results. In a study, subcutaneously administered omalizumab for a period of 16 weeks has shown increase in the olfactory awareness scores compared to placebo in olfactory loss patients (41).

ROLE OF SURGERY

Olfactory dysfunction secondary to sinonasal polyposis benefit good improvement in olfaction following endoscopic sinus surgery.

AIMS AND OBJECTIVES

AIMS AND OBJECTIVES

Abstract

AIM

The aim of this study is to analyze the variations in n-butanol threshold and odor identification scores of the CCCRC test (Connecticut Chemosensory Clinical Research Centre) in patients with various olfactory disorders.

OBJECTIVES

Primary objective

a. To determine n-butanol olfactory threshold in different olfactory disorders
b. To determine smell identification score in different olfactory disorders

Secondary objective:

To analyze the relative change in olfactory threshold and odor identification scores in different olfactory disorders

METHODOLOGY

METHODOLOGY

STUDY DESIGN

This is a retrospective observational cohort study done in a tertiary hospital.

STUDY POPULATION

Patients for this study were recruited retrospectively from institutional database. All patients who were diagnosed with olfactory dysfunction, between January 2018 and March 2020, based on CCCRC olfaction testing were selected retrospectively after applying the inclusion and exclusion criteria.

INCLUSION CRITERIA

Patients above 16 years of age who underwent olfaction testing from January 2018 to March 2020 and were found to have olfactory dysfunction

EXCLUSION CRITERIA

Patients with normal olfaction and children

STUDY PERIOD

January 2018 to March 2020

PATIENT RECRUITMENT

All patients fulfilling the inclusion and exclusion criteria were recruited and then the details of each patient including demography, presenting symptoms, duration of symptoms, clinical examination and olfaction testing details were recorded. At the end
of the study, the CCCRC test n-butanol threshold scores and the odour identification scores were analysed for variations in each of the olfactory disorder and in various systemic diseases.

CCCRC test is a test in which, the threshold of subjects for butanol is assessed by means of squeeze-bottles using the method of ascending limits. Subjects will be instructed to occlude one nostril. The participant is presented with a bottle with the test concentration and a blank bottle with water and has to decide which smelled stronger. If incorrect, the participant receives another blank paired with the next higher concentration. Errors trigger increments in concentration whereas correct choices led to another presentation of the same concentration and a blank. Four correct choices in a row led to cessation of testing and the concentration at which this occurred is taken as the olfactory threshold. Now testing is switched to the other nostril. The scores for both nostrils will be averaged to arrive at the final score. The strongest butanol concentration (bottle 0) is 4% butanol in deionized water. Each subsequent dilution (bottles 1-9) is a $1: 3$ dilution with deionized water. Possible scores ranged from 0 to 9 , but all scores 7 and higher were scored as 7 per the CCCRC test.

Odour identification is performed by means of eight bottles containing different odorants with a multiple choice from a list of 16 items identical for all odorants.

The analysis on the change in parameters with regard to patient related factors like gender, age and sex. The analysis based on pre-existing systemic conditions like diabetes, hypertension, dyslipidemia and hypothyroidism are also done.

RESULTS

RESULTS

A total of 245 patients were recruited for this study. All patients underwent olfaction testing by CCCRC (Connecticut Chemosensory Clinical Research Centre) olfaction test. As each nasal cavity was assessed separately, the total sample size was taken as 490.

Types of olfactory dysfunction:

Based on the results of the two components of the CCCRC test, the composite score was calculated. A diagnosis of anosmia, severe hyposmia, moderate hyposmia, mild hyposmia or normosmia was made as follows.

Composite score:

0 to 1.75 - Anosmia

2 to 3.75 - Severe hyposmia

4 to 4.75 - Moderate hyposmia

5 to $5.75 \quad$ - Mild hyposmia

6 to 7 - Normosmia

Nasal cavities with normosmia were excluded from the analysis. In the cohort maximum number of patients had anosmia followed by severe hyposmia. The incidence of different grades of olfactory loss is shown in Table 1.

Table 1: Incidence of olfactory dysfunction

Types	Anosmia	Severe hyposmia	Moderate hyposmia	Mild hyposmia
Number	231	102	87	63
Percentage	47.14%	20.82%	17.76%	12.86%

(Note: Normosmia is not shown here)

Figure 12 - Incidence of olfactory dysfunction

Demographics:

Age

Age ranged from 18 to 72 years with a mean of 41 years in the entire cohort.

Figure 13-Age distribution
Majority of patients in all four types of olfactory dysfunction fell in the 18-45 age group.

Gender

The study population consisted of 151 males (61.63%) and 94 females (38.37%). Among the patients, all the four grades of olfactory dysfunction were seen predominantly in the male population.

Table 2: Gender distribution

Sex	Anosmia		Severe hyposmia		Moderate hyposmia		Mild hyposmia	
	No.	$\%$	No.	$\%$	No.	$\%$	No.	$\%$
Male	67	58.26%	35	64.81%	25	69.44%	22	61.11%
Female	48	41.74%	19	35.19%	11	30.56%	14	38.89%

Prevalence of comorbidities

The comorbidities prevalent among the study population were diabetes mellitus, hypertension, hypothyroidism, bronchial asthma and dyslipidemia. The most common comorbidity was found to be systemic hypertension followed by diabetes mellitus.

Table 3: Prevalence of comorbidities

Comorbidities	Diabetes mellitus	Hypertension	Hypothyroi dism	Bronchial asthma	Dyslipidemia
Number	52	74	22	22	10
Percentage	10.61%	15.10%	4.49%	4.49%	2.04%

(Note: Percentage shown is out of 490 samples)

Figure 14 - Prevalence of comorbidities

Olfactory threshold and odour identification:

The two components of CCCRC test are n-butanol threshold and odour identification. The n-butanol threshold has scores from 0 to 6 and odour identification scores range from 0 to 7 .

Olfactory threshold in types of olfactory dysfunction:

The distribution of olfactory threshold in all grades of olfactory loss is shown in table 4

Table 4: Olfactory threshold in types of olfactory dysfunction

CCCRC Olfactory threshold	Anosmia $\mathrm{N}=231$	Severe hyposmia $\mathrm{N}=102$	Moderate hyposmia $\mathrm{N}=87$	Mild hyposmia $\mathrm{N}=63$
0	93.94\% ($\mathrm{N}=217$)	67.65\% ($\mathrm{N}=69$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)
1	4.76\% ($\mathrm{N}=11$)	14.71% ($\mathrm{N}=15$)	20.69\% ($\mathrm{N}=18$)	0.00\% ($\mathrm{N}=0$)
2	0.43\% ($\mathrm{N}=1$)	13.73\% ($\mathrm{N}=14$)	59.77\% ($\mathrm{N}=52$)	0.00\% ($\mathrm{N}=0$)
3	0.87\% ($\mathrm{N}=2$)	3.92% ($\mathrm{N}=4$)	10.34\% (N=9)	84.13\% ($\mathrm{N}=53$)
4	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	8.05\% ($\mathrm{N}=7$)	9.52\% ($\mathrm{N}=6$)
5	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	6.35\% ($\mathrm{N}=4$)
6	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	1.15\% ($\mathrm{N}=1$)	0.00\% ($\mathrm{N}=0$)

Most of the patients with anosmia and severe hyposmia had a predominant olfactory threshold score of zero. Among patients with moderate hyposmia, a majority had a threshold score of 2 followed by score 1 . In the mild hyposmia group, the dominant score was 3 .

Figure 15-Olfactory threshold scores in anosmia

Figure 16-Olfactory threshold scores in severe hyposmia

Figure 17-Olfactory threshold scores in moderate hyposmia

Figure 18-Olfactory threshold scores in mild hyposmia

Odour identification scores in types of olfactory dysfunction:

The second component of the CCCRC test is odour identification. The scoring was based on the ability of the patient to identify odours (cinnamon, asafoetida, coffee, tea, pepper, clove oil and baby powder). In the study cohort, majority of patients with anosmia had an odour identification score of 0 , whereas it was 6 followed by 5 within severe hyposmia group. In the moderate and mild hyposmia population the most common score was 7 (Table 5).

Table 5: Odour identification scores in types of olfactory dysfunction

Odour Identification	Anosmia $\mathrm{N}=231$	Severe hyposmia $\mathrm{N}=102$	Moderate hyposmia $\mathrm{N}=87$	Mild hyposmia $\mathrm{N}=63$
0	80.95\% ($\mathrm{N}=187$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)
1	6.93\% ($\mathrm{N}=16$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)
2	8.23\% ($\mathrm{N}=19$)	0.00\% ($\mathrm{N}=0$)	1.15\% (N=1)	0.00\% ($\mathrm{N}=0$)
3	3.90% (N=9)	7.84\% (N=8)	0.00\% ($\mathrm{N}=0$)	0.00\% ($\mathrm{N}=0$)
4	0.00\% ($\mathrm{N}=0$)	17.65\% (N=18)	1.15\% (N=1)	0.00\% ($\mathrm{N}=0$)
5	0.00\% ($\mathrm{N}=0$)	28.43\% ($\mathrm{N}=29$)	10.34\% (N=9)	4.76\% (N=3)
6	0.00\% ($\mathrm{N}=0$)	28.43\% ($\mathrm{N}=29$)	20.69\% (N=18)	6.35\% ($\mathrm{N}=4$)
7	0.00\% ($\mathrm{N}=0$)	17.65\% (N=18)	66.67\% ($\mathrm{N}=58$)	88.89\% ($\mathrm{N}=56$)

Odour identification in anosmia

Figure 19- Odour identification scores in anosmia

Figure 20-Odour identification scores in severe hyposmia

Odour identification in moderate hyposmia

Figure 21 - Odour identification scores in moderate hyposmia

Odour identification in mild hyposmia

Figure 22 - Odour identification scores in mild hyposmia

Most common odour affected in various types of olfactory dysfunction:

The four different types of olfactory dysfunction namely anosmia, severe hyposmia, moderate hyposmia and mild hyposmia showed specific predilection in the loss of smell. More than 90% of patients with anosmia showed a failure to identify all the seven tested odours. Pepper was the least perceived smell among the patients with anosmia, severe hyposmia and moderate hyposmia. Mild hyposmia group showed less perception of cinnamon among other smells.

Table 6: Odour affected vs olfactory dysfunction

	Cinnamon	Asafoetida	Coffee	Tea	Pepper	Clove oil	Baby powder
Anosmia	91%	90%	95%	97%	$\mathbf{9 9 \%}$	95%	97%
Severe hyposmia	5%	14%	9%	20%	$\mathbf{6 5 \%}$	12%	46%
Moderate hyposmia	5%	5%	5%	2%	$\mathbf{1 7 \%}$	6%	10%
Mild	$\mathbf{5 \%}$	3%	0%	3%	3%	2%	0%
hyposmia							

Figure 23-Odour vs olfactory dysfunction

Co-morbidities

Among the study population the following comorbidities were seen. They were diabetes mellitus, systemic hypertension, hypothyroidism, bronchial asthma and dyslipidemia. Anosmia was seen predominantly among the diabetics, hypertensives and dyslipidemia patients, whereas severe hyposmia was the most common type of olfactory dysfunction seen in hypothyroid patients and moderate hyposmia in asthmatics.

Table 7: Comorbidities vs olfactory dysfunction

Types	Anosmia		Severe hyposmia		Moderate hyposmia		Mild hyposmia	
Comorbidities	No.	$\%$	No.	$\%$	No.	$\%$	No.	$\%$
Diabetes mellitus (N=52)	26	50.00%	9	17.31%	11	21.15%	6	11.54%
Hypertension (N=74)	39	52.70%	9	12.16%	13	17.57%	13	17.57%
Hypothyroidism (N=22)	3	13.64%	11	50.00%	3	13.64%	4	18.18%
Bronchial asthma $(N=22)$	5	22.73%	4	18.18%	7	31.82%	5	22.73%
Dyslipidemia (N=10)	6	60.00%	0	0.00%	3	30.00%	1	10.00%

Most common odour affected in various comorbidities:

The most frequent smell which was not perceived among each type of comorbidity revealed that the diabetics had difficulty perceiving pepper and baby powder. Among the hypertensives and patients with hypothyroidism, it was pepper. The baby powder was less perceived by the patients who had bronchial asthma and dyslipidemia.

Table 8: Odour identification loss vs comorbidities

	Cinnamon	Asafoetida	Coffee	Tea	Pepper	Clove oil	Baby powder
Diabetes mellitus $\mathrm{N}=52$	$\begin{aligned} & \hline 42.31 \% \\ & (\mathrm{~N}=22) \end{aligned}$	$\begin{aligned} & \hline 50.00 \% \\ & (\mathrm{~N}=26) \end{aligned}$	$\begin{aligned} & 46.15 \% \\ & (\mathrm{~N}=24) \end{aligned}$	$\begin{array}{\|l\|} \hline 55.77 \% \\ \\ (\mathrm{~N}=29) \end{array}$	$\begin{aligned} & 57.69 \% \\ & (\mathrm{~N}=30) \end{aligned}$	$\begin{aligned} & 48.08 \% \\ & \\ & (\mathrm{~N}=25) \end{aligned}$	$\begin{gathered} 57.69 \% \\ (\mathrm{~N}=30) \end{gathered}$
Hypertension $\mathrm{N}=74$	$\begin{aligned} & 51.35 \% \\ & (\mathrm{~N}=38) \end{aligned}$	$\begin{aligned} & 56.76 \% \\ & (\mathrm{~N}=42) \end{aligned}$	$\begin{array}{\|l\|} \hline 51.35 \% \\ (\mathrm{~N}=38) \end{array}$	$\begin{array}{\|l\|} \hline 59.46 \% \\ (\mathrm{~N}=44) \end{array}$	$\begin{aligned} & \hline 64.86 \% \\ & (\mathrm{~N}=48) \end{aligned}$	$\begin{array}{\|l\|} \hline 52.70 \% \\ (\mathrm{~N}=39) \end{array}$	$\begin{aligned} & \hline 60.81 \% \\ & (\mathrm{~N}=45) \end{aligned}$
Hypothyroidism $\mathrm{N}=22$	$\begin{gathered} 18.18 \% \\ (\mathrm{~N}=4) \end{gathered}$	$\begin{aligned} & 9.09 \% \\ & (\mathrm{~N}=2) \end{aligned}$	$\begin{array}{c\|} \hline 13.64 \% \\ (\mathrm{~N}=3) \end{array}$	$\begin{array}{c\|} \hline 18.18 \% \\ (\mathrm{~N}=4) \end{array}$	$\begin{aligned} & \hline 54.55 \% \\ & (\mathrm{~N}=12) \end{aligned}$	$\begin{array}{c\|} \hline 18.18 \% \\ (\mathrm{~N}=4) \end{array}$	$\begin{aligned} & \hline 50.00 \% \\ & (\mathrm{~N}=11) \end{aligned}$
Bronchial asthma $\mathrm{N}=22$	$\begin{gathered} 22.73 \% \\ (\mathrm{~N}=5) \end{gathered}$	$\begin{gathered} 22.73 \% \\ (\mathrm{~N}=5) \end{gathered}$	$\begin{array}{r} 22.73 \% \\ (\mathrm{~N}=5) \end{array}$	$\begin{gathered} 22.73 \% \\ (\mathrm{~N}=5) \end{gathered}$	$\begin{gathered} 31.82 \% \\ (\mathrm{~N}=7) \end{gathered}$	$\begin{gathered} 27.27 \% \\ (\mathrm{~N}=6) \end{gathered}$	$\begin{gathered} 36.36 \% \\ (\mathrm{~N}=8) \end{gathered}$
Dyslipidemia $\mathrm{N}=10$	$\begin{gathered} 50.00 \% \\ (\mathrm{~N}=5) \end{gathered}$	$\begin{gathered} 50.00 \% \\ (\mathrm{~N}=5) \end{gathered}$	$\begin{array}{c\|} \hline 60.00 \% \\ (\mathrm{~N}=6) \end{array}$	$\begin{array}{c\|} \hline 60.00 \% \\ (\mathrm{~N}=6) \end{array}$	$\begin{gathered} 60.00 \% \\ (\mathrm{~N}=6) \end{gathered}$	$\begin{array}{c\|} \hline 60.00 \% \\ (\mathrm{~N}=6) \end{array}$	$\begin{gathered} \hline 70.00 \% \\ (\mathrm{~N}=7) \end{gathered}$

Figure 24 - Odour vs comorbidities

Prevalence of nasal diseases:

The patients within the study population had the following nasal diseases namely, allergic rhinitis (AR), chronic rhinosinusitis without nasal polyposis (CRS without NP), chronic rhinosinusitis with nasal polyposis and sinonasal polyposis (CRS with $N P+S N P$), post traumatic anosmia, atrophic rhinitis and idiopathic olfactory loss. Post surgical patients were not included in the study. The most common nasal disease found among them was allergic rhinitis.

Table 9: Prevalence of nasal diseases

S1 No.	Nasal disease	No.	$\%$
1	AR	212	44.35%
2	CRS without NP	32	6.69%
3	CRS with NP + SNP	96	20.08%
4	Post traumatic anosmia	26	5.44%
5	Atrophic rhinitis	20	4.18%
6	Idiopathic	92	19.25%

(Post viral and post FESS patients within the 490 have been taken out as their numbers were very small and analysis could not be done. Hence the total number among the nasal diseases is 478.)

Prevalence of nasal diseases vs types of olfactory dysfunction:

The patients with allergic rhinitis were more in number as compared to other types of nasal diseases and they showed anosmia and moderate hyposmia type of olfactory dysfunction. Among the patients who had chronic rhinosinusitis, post traumatic smell loss, atrophic rhinitis and idiopathic loss of smell anosmia was the predominant type of olfactory dysfunction.

Table 10: Prevalence of nasal diseases vs types of olfactory dysfunction

Types	Anosmia	Severe hyposmia	Moderate hyposmia	Mild hyposmia
AR	30.66%	23.11%	26.89%	18.87%
$\mathrm{~N}=212$	$\mathrm{~N}=65$	$\mathrm{~N}=49$	$\mathrm{~N}=57$	$\mathrm{~N}=40$
CRS without NP	53.13%	34.38%	6.25%	6.25%
$\mathrm{~N}=32$	$\mathrm{~N}=17$	$\mathrm{~N}=11$	$\mathrm{~N}=2$	$\mathrm{~N}=2$
CRS with NP + SNP	58.33%	9.38%	13.54%	15.63%
$\mathrm{~N}=96$	$\mathrm{~N}=56$	$\mathrm{~N}=9$	$\mathrm{~N}=13$	$\mathrm{~N}=15$
Post traumatic anosmia	92.31%	0.00%	7.69%	0.00%
$\mathrm{~N}=26$	$\mathrm{~N}=24$	$\mathrm{~N}=0$	$\mathrm{~N}=2$	$\mathrm{~N}=0$
Atrophic rhinitis	90.00%	10.00%	0.00%	0.00%
$\mathrm{~N}=20$	$\mathrm{~N}=18$	$\mathrm{~N}=2$	$\mathrm{~N}=0$	$\mathrm{~N}=0$
Idiopathic	46.74%	33.70%	11.96%	4.35%
$\mathrm{~N}=92$	$\mathrm{~N}=43$	$\mathrm{~N}=31$	$\mathrm{~N}=11$	$\mathrm{~N}=4$

(Note: No. and \% of Normosmia is not shown here)

Most common odour affected in various nasal diseases

While analysing the specific smell loss in every nasal disease group, pepper was the least perceived smell among the allergic rhinitis, CRS without nasal polyposis, CRS with nasal polyposis and idiopathic anosmia patients.

Table 11: Odour vs nasal diseases

Nasal diseases	Cinnamon	Asafoetida	Coffee	Tea	Pepper	Clove Oil	Baby Powder
AR	28.30%	29.25%	33.02%	37.26%	$\mathbf{5 0 . 9 4 \%}$	32.08%	42.45%
CRS without NP	46.88%	53.13%	43.75%	62.50%	$\mathbf{7 1 . 8 8 \%}$	56.25%	65.63%
CRS with NP + SNP	58.33%	56.25%	55.21%	56.25%	$\mathbf{6 4 . 5 8 \%}$	59.38%	62.50%
Post traumatic anosmia	84.62%	80.77%	92.31%	92.31%	92.31%	92.31%	88.46%
Atrophic rhinitis	90.00%	$\mathbf{9 5 . 0 0 \%}$	90.00%	90.00%	90.00%	90.00%	$\mathbf{9 5 . 0 0 \%}$
Idiopathic	50.00%	55.43%	50.00%	50.00%	$\mathbf{7 3 . 9 1 \%}$	50.00%	66.30%

MOST COMMON ODOUR AFFECTED
\square Cinnamon \quad Asafoetida \quad Coffee \quad Tea \quad Pepper $■$ Clove Oil $■$ Baby Powder

Figure 25-Most common odour affected in nasal diseases

Odour identification scores in nasal diseases:

Among the study population, patients with chronic rhinosinusitis with and without polyposis, post traumatic anosmia, atrophic rhinitis and idiopathic anosmia had an odour identification score of 0 , whereas it was 7 among patients with allergic rhinitis.

Table 12: Odour identification scores in nasal diseases

Odour Identific ation	$\begin{gathered} \text { AR } \\ \mathrm{N}=212 \end{gathered}$		$\begin{aligned} & \text { CRS without } \\ & \text { NP } \\ & \mathrm{N}=32 \end{aligned}$		$\begin{aligned} & \text { CRS with NP + } \\ & \text { SNP } \\ & \mathrm{N}=96 \end{aligned}$		Post traumatic anosmia $\mathrm{N}=26$		Atrophic rhinitis $\mathrm{N}=20$		Idiopathic $\mathrm{N}=92$	
	No	\%	N o	\%								
0	41	$\begin{gathered} 19.34 \\ \% \end{gathered}$	14	$\begin{gathered} 43.75 \\ \% \end{gathered}$	47	48.96\%	20	$\begin{aligned} & 76.9 \\ & 2 \% \end{aligned}$	18	$\begin{gathered} 90.00 \\ \% \end{gathered}$	43	$\underset{\%}{46.74}$
1	9	$\begin{gathered} 4.25 \\ \% \end{gathered}$	0	0.00\%	4	4.17\%	2	$\begin{gathered} 7.69 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$
2	13	$\begin{gathered} 6.13 \\ \% \end{gathered}$	0	0.00\%	5	5.21\%	2	$\begin{gathered} 7.69 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$
3	8	$\begin{gathered} 3.77 \\ \% \end{gathered}$	4	12.50\%	1	1.04\%	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	1	1.09 $\%$
4	13	$\begin{gathered} 6.13 \\ \% \end{gathered}$	2	6.25\%	0	0.00\%	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	4	$\begin{gathered} 4.35 \\ \% \end{gathered}$
5	16	$\begin{gathered} 7.55 \\ \% \end{gathered}$	2	6.25\%	4	4.17\%	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	19	$\begin{gathered} 20.65 \\ \% \end{gathered}$
6	28	$\begin{gathered} 13.21 \\ \% \end{gathered}$	4	12.50\%	7	7.29\%	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	2	$\begin{gathered} 10.00 \\ \% \end{gathered}$	9	$\begin{gathered} 9.78 \\ \% \end{gathered}$
7	84	$\begin{gathered} 39.62 \\ \% \end{gathered}$	6	18.75\%	28	29.17\%	2	$\begin{gathered} 7.69 \\ \% \end{gathered}$	0	$\begin{gathered} 0.00 \\ \% \end{gathered}$	16	$\begin{gathered} 17.39 \\ \% \end{gathered}$

Figure 26-Odour identification vs nasal diseases

Olfactory threshold scores in nasal diseases:

The patients in the study cohort had a predominant olfactory threshold score of zero among all the nasal diseases.

Table 13: Olfactory threshold scores in nasal diseases

$\begin{gathered} \text { Olfact } \\ \text { ory } \\ \text { Thresh } \end{gathered}$	$\begin{gathered} \text { AR } \\ \mathrm{N}=212 \end{gathered}$		CRS without NP $\mathrm{N}=32$		$\begin{aligned} & \text { CRS with } \\ & \text { NP + SNP } \\ & \text { N=96 } \end{aligned}$		Post traumatic anosmia $\mathrm{N}=26$		Atrophic rhinitis $\mathrm{N}=20$		Idiopathic $\mathrm{N}=92$	
	N	\%										
0	90	$\begin{gathered} \mathbf{4 2 . 8 6} \\ \% \end{gathered}$	24	$\begin{gathered} 75.00 \\ \% \end{gathered}$	58	$\begin{gathered} 61.05 \\ \% \end{gathered}$	24	$\begin{gathered} 92.31 \\ \% \end{gathered}$	18	$\begin{gathered} 90.00 \\ \% \end{gathered}$	64	$\underset{\%}{71.11}$
1	21	$\begin{gathered} 10.00 \\ \% \end{gathered}$	4	$\begin{gathered} 12.50 \\ \% \end{gathered}$	13	$\begin{gathered} 13.68 \\ \% \end{gathered}$	0	0.00\%	1	5.00\%	4	4.44\%
2	43	$\begin{gathered} 20.48 \\ \% \end{gathered}$	2	6.25\%	4	4.21\%	2	7.69\%	0	0.00\%	16	$\begin{gathered} 17.78 \\ \% \end{gathered}$
3	45	$\begin{gathered} 21.43 \\ \% \end{gathered}$	2	6.25\%	14	$\begin{gathered} 14.74 \\ \% \end{gathered}$	0	0.00\%	1	5.00\%	4	4.44\%
4	9	4.29\%	0	0.00\%	3	3.16\%	0	0.00\%	0	0.00\%	0	0.00\%
5	2	0.95\%	0	0.00\%	3	3.16\%	0	0.00\%	0	0.00\%	2	2.22\%
6	0	0.00\%	0	0.00\%	0	0.00\%	0	0.00\%	0	0.00\%	0	0.00\%

Figure 27-Olfactory threshold in nasal diseases

DISCUSSION

DISCUSSION

Olfactory dysfunction has a worldwide incidence of 1.4% adult population. It is usually disregarded by the clinicians and the patients visit multiple physicians to get the problem addressed. Most of the patients who complain of taste disturbance also have a coexisting olfactory dysfunction. The evaluation and timely management of olfactory dysfunction is very important as it interferes with the quality of life, appetite and psychological wellbeing (1).

A retrospective analysis of all the patients who underwent the CCCRC (Connecticut Chemosensory Clinical Research Centre) olfaction test within the study period from January 2018 to March 2020 were done. Based on the composite score calculated from the results of the 2 components of the CCCRC test, a diagnosis of anosmia, severe hyposmia, moderate hyposmia, mild hyposmia and normosmia was made. Patients who had olfactory dysfunction were included in the study and those with normal olfaction were excluded. Patients who had undergone transnasal endoscopic surgeries were excluded for the sake of eliminating bias in the results owing to the surgical intervention.

Though there were 245 patients satisfying the inclusion and exclusion criteria, as there was different grade of olfactory dysfunction for each nostril in every patient, the total sample size was taken as 490 nostrils. In our study, we collected data including demography, endoscopic findings, clinical findings and olfactory test scores.

Among the study population, there were 151 males (61.63\%) and 94 females (38.37%) and all four types of olfactory dysfunction were seen predominantly in men
compared to women. Richard L Doty has compiled the epidemiological statistics of olfactory dysfunction from 16 other studies with a wide range of age population. The prevalence of olfactory loss was more pronounced in the women than men in 11 out of 16 studies. He attributed the female preponderance to their involvement in cooking and caregiving (42). This is in contrast to our cohort where the male gender is more affected than the women.

In our study, the age of the patients ranged from 18 to 72 years. The majority of the patients in all four types of olfactory dysfunction belonged to the 18-45 age group. Doty, et al., has studied the age-related changes in chemosensory functions like taste and smell. He assessed the olfaction by the UPSIT (University of Pennsylvania Smell Identification Test) in a group of general population with age ranging from 5 to 90 years. It was found that people who are 60 years and above have decline in olfactory perception. He has attributed the incidence to three reasons: 1. Exposure to air pollution, bacteria, cigarette smoke and viruses causing damage to olfactory epithelium, 2. Reduced receptor cell regeneration following damage in the elderly, 3. Reduced size and less number of foramina in cribriform plate blocking the passage of olfactory receptor cell axons to the brain through the nasal cavity (43). The comparatively lower mean age (41 years) in our study population could be because this was not a community study and only done among patients who sought medical care for the olfactory loss.

There were many nasal diseases among the study population, namely, allergic rhinitis, chronic rhinosinusitis without polyposis, chronic rhinosinusitis with polyposis, atrophic rhinitis and post traumatic anosmia. Out of all the nasal diseases, allergic rhinitis was seen in 44.35%, making it the most predominant.

Patients with allergic rhinitis had anosmia followed by moderate hyposmia as the most common olfactory dysfunction, whereas chronic rhinosinusitis with or without polyposis patients showed anosmia followed by severe hyposmia. While performing the odor identification test, we found that pepper was least perceived among both allergic rhinitis and chronic rhinosinusitis patients.

In 1999, Andrea, et al., studied about the correlation between olfactory loss among the patients with allergic rhinitis and chronic rhinosinusitis. The patients underwent endoscopic nasal examination, olfactory testing (butanol threshold and odor identification using common household items like coffee, baby powder, peanut butter and chocolate) and computed tomography to look for olfactory clefts. It was found that the incidence and severity of olfactory loss is more among the allergic rhinitis patients with rhinosinusitis as they are prone for respiratory infections which can cause olfactory epithelial loss. However, they have not mentioned the specific odor loss with respect to allergic rhinitis and chronic rhinosinusitis (30). In another study by Jamie, et al., in 2008, on patients with pre-existing chronic rhinosinusitis, age more than 65 years, nasal polyposis, asthma and smoking had significant olfactory dysfunction. But allergic rhinitis was not a major contributor for causing smell loss (44).

In our cohort, 19% of patients had idiopathic anosmia which can be attributed to olfactory loss following viral upper respiratory tract infections. In a compilation by Allen.M. Seiden of postviral olfactory loss statistics, he has mentioned that there was 18.6% of patients in the Connecticut Chemosensory Clinical Research Centre who had postviral anosmia following upper respiratory tract infections. As the pathophysiology behind the postviral loss is unclear, he suggests that it can be due to destruction or
degeneration of the olfactory receptor cells either in the central or peripheral pathways following a viral infection (23).

The comorbidities prevalent among the study population were diabetes mellitus, hypertension, hypothyroidism, bronchial asthma and dyslipidemia. The most common comorbidity was found to be systemic hypertension followed by diabetes mellitus. Anosmia was seen predominantly among the diabetics, hypertensives and dyslipidemia patients, whereas severe hyposmia was the most common type of olfactory dysfunction seen in hypothyroid patients and moderate hyposmia in asthmatics. The odour identification revealed that the diabetics had difficulty perceiving pepper and baby powder. Among the hypertensives and patients with hypothyroidism, it was pepper that was the least perceived. The baby powder was less perceived by the patients who had bronchial asthma and dyslipidemia.

In our study, men were affected more than the women among the diabetics. Ruth, et al., studied 111 diabetic patients and assessed their olfaction by Confusion Matrix test and found that the olfactory dysfunction is related to increasing age, presence of macrovascular disease, smoking and male sex (45). In another study done by Gouveri, et al., olfactory dysfunction was analysed among 154 adults with diabetes. He concluded that the diabetic peripheral neuropathy and retinopathy are increasingly associated with olfactory loss than diabetes alone (28). In our study, the evidence of diabetic peripheral neuropathy and retinopathy were lacking as it was a retrospective cohort. Hence the association between the smell loss and the diabetic neuropathy was not noted.

In our study, 52% of the hypertensive patients had anosmia and odor identification test revealed that pepper was the least perceived odor among the seven odors. Being a retrospective cohort, our study has not assessed the onset of olfactory loss in relation to the onset of systemic hypertension. A prospective study done in China among 5190 adults by Liu, et al., studied the relationship between the rising blood pressures and smell taste perception over a period of two years. Blood pressures were measured at the beginning of the study and after two years while olfaction was also assessed with the help of a questionnaire. It was found that the number of people who had high blood pressures at the end of two years also showed reduced perception of smell and taste overtime. The systolic blood pressure as well as the mean arterial pressure was found to be higher in people with chemosensory dysfunction (46). In this study the severity of olfactory dysfunction such as anosmia or hyposmia and loss of specific odors were not assessed because subjective olfaction test was not performed among the study population.

In our cohort, the bronchial asthma patients showed reduced smell perception and majority of them fell in the moderate hyposmia type of olfactory dysfunction. In a retrospective study conducted in Japan by Koichiro, et al., among 56 bronchial asthma patients, the olfaction was assessed by self-administered odor questionnaire (SAOQ). The patients with bronchial asthma and eosinophilic chronic rhinosinusitis had significant low SAOQ scores indicating olfactory dysfunction in those patients. But the severity of olfactory dysfunction was not identified in that study (47).

The two components of the CCCRC test were analysed with the different grades of olfactory dysfunction. The n-butanol threshold has scores from 0 to 6 and odour
identification scores range from 0 to 7 . The patients with anosmia and severe hyposmia had a predominant olfactory threshold score of zero. Among patients with moderate hyposmia, a majority had a threshold score of 2 followed by score 1 . In the mild hyposmia group, the dominant score was 3 . In the odour identification component, majority of patients with anosmia had an odour identification score of 0 , whereas it was 6 followed by 5 within severe hyposmia group. In the moderate and mild hyposmia population the most common score was 7 . The odour identification scores were higher even among severe hyposmia, moderate hyposmia and mild hyposmia groups. Therefore, the novel finding from our study is that the odour identification component gives a majority weightage in determining the composite score thereby the type of olfactory dysfunction. Our study is the first one to arrive at a conclusion as there are no similar studies to compare this analysis.

The limitation of our study is that being a retrospective study, the level of evidence is low when compared to the prospective studies.

CONCLUSION

CONCLUSION

Olfactory dysfunction is a debilitating health problem which is usually undiagnosed. Patients who are young most often present with complaints of smell loss, whereas elderly population tend to live with the problem. All grades of olfactory dysfunction are predominantly noted among the male population. People in the fourth to sixth decade has the highest incidence of smell loss. Anosmia was seen predominantly among the diabetics, hypertensives and dyslipidemia patients, whereas severe hyposmia was the most common type of olfactory dysfunction seen in hypothyroid patients and moderate hyposmia in asthmatics. Pepper was the least perceived and most probably the early odor to be lost in patients with diabetes, hypertension, hypothyroidism. Baby powder was not perceived by the patients with bronchial asthma and dyslipidemia.

Anosmia and moderate hyposmia were seen among the allergic rhinitis patients, whereas in those with chronic rhinosinusitis, post traumatic smell loss, atrophic rhinitis and idiopathic loss of smell, anosmia was the predominant type of olfactory dysfunction. Pepper was the least perceived smell among the allergic rhinitis, CRS with and without nasal polyposis, and idiopathic anosmia patients. In patients with atrophic rhinitis, asafoetida and baby powder were affected.

On analysing the components of the CCCRC test against the types of olfactory dysfunction, it was seen that the odour identification component gives a majority weightage in determining the composite score thereby the type of olfactory dysfunction.

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Doty RL, Bromley SM. Abnormalities of smell. In: Scott-Brown's Otorhinolaryngology Head and Neck Surgery. CRC Press; 2018. p. 1227-41.
2. Hopkins C. Nose, nasal cavity and paranasal sinuses. Gray's Anat. 2016;561.
3. Barrett KE, Boitano S, Barman SM, Brooks HL. Ganong's review of medical physiology twenty. 2010;
4. Cheok AD, Karunanayaka K. Virtual taste and smell technologies for multisensory internet and virtual reality. Springer; 2018.
5. Zarzo M. The sense of smell: molecular basis of odorant recognition. Biol Rev. 2007;82(3):455-79.
6. Briggs MH, Duncan RB. Odour receptors. Nature. 1961;191(4795):1310-1.
7. Mozell MM. Evidence for a chromatographic model of olfaction. J Gen Physiol. 1970;56(1):46-63.
8. Amoore JE. Current status of the steric theory of odor. Ann N Y Acad Sci. 1964;116(2):457-76.
9. Giessel AJ, Datta SR. Olfactory maps, circuits and computations. Curr Opin Neurobiol. 2014 Feb;24(1):120-32.
10. Islam MA, Fagundo AB, Arcelus J, Agüera Z, Jiménez-Murcia S, FernándezReal JM, et al. Olfaction in eating disorders and abnormal eating behavior: a systematic review. Front Psychol. 2015;6:1431.
11. Buxbaum MD. Olfaction and Sexuality. Jefferson J Psychiatry. 1983;1(1):3.
12. Kollndorfer K, Reichert JL, Brückler B, Hinterleitner V, Schöpf V. Self-esteem as an important factor in quality of life and depressive symptoms in anosmia: A pilot study. Clin Otolaryngol. 2017;42(6):1229-34.
13. Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol. 2014;5:20.
14. Cadman SM, Kim S-H, Hu Y, González-Martínez D, Bouloux P-M. Molecular pathogenesis of Kallmann's syndrome. Horm Res Paediatr. 2007;67(5):231-42.
15. Vennemann MM, Hummel T, Berger K. The association between smoking and smell and taste impairment in the general population. J Neurol. 2008;255(8):1121-6.
16. Hummel T, Kobal G, Gudziol H, Mackay-Sim A. Normative data for the "Sniffin'Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol. 2007;264(3):237-43.
17. Veyseller B, Ozucer B, Karaaltin AB, Yildirim Y, Degirmenci N, Aksoy F, et al. Connecticut (CCCRC) olfactory test: normative values in 426 healthy volunteers. Indian J Otolaryngol Head Neck Surg. 2014;66(1):31-4.
18. Knecht M, Hummel T. Recording of the human electro-olfactogram. Physiol Behav. 2004;83(1):13-9.
19. Rawal S, Hoffman HJ, Bainbridge KE, Huedo-Medina TB, Duffy VB. Prevalence and risk factors of self-reported smell and taste alterations: results from the 2011-2012 US National Health and Nutrition Examination Survey (NHANES). Chem Senses. 2016;41(1):69-76.
20. Scangas GA, Bleier BS. Anosmia: differential diagnosis, evaluation, and management. Am J Rhinol Allergy. 2017;31(1):e3-7.
21. Soler ZM, Sauer DA, Mace J, Smith TL. Relationship between clinical measures and histopathologic findings in chronic rhinosinusitis. Otolaryngol Neck Surg. 2009;141(4):454-61.
22. Doty RL, Yousem DM, Pham LT, Kreshak AA, Geckle R, Lee WW. Olfactory dysfunction in patients with head trauma. Arch Neurol. 1997;54(9):1131-40.
23. Seiden AM. Postviral olfactory loss. Otolaryngol Clin North Am. 2004;37(6):1159-66.
24. Yamagishi M, Fujiwara M, Nakamura H. Olfactory mucosal findings and clinical course in patients with olfactory disorders following upper respiratory viral infection. Rhinology. 1994 Sep;32(3):113-8.
25. Croy I, Negoias S, Novakova L, Landis BN, Hummel T. Learning about the functions of the olfactory system from people without a sense of smell. PloS One. 2012;7(3):e33365.
26. Graves AB, Bowen JD, Rajaram L, McCormick WC, McCurry SM, Schellenberg GD, et al. Impaired olfaction as a marker for cognitive decline: Interaction with apolipoprotein E $\varepsilon 4$ status. Neurology. 1999;53(7):1480-1480.
27. Chan JYK, García-Esquinas E, Ko OH, Tong MC, Lin SY. The association between diabetes and olfactory function in adults. Chem Senses. 2018;43(1):5964.
28. Gouveri E, Katotomichelakis M, Gouveris H, Danielides V, Maltezos E, Papanas N . Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014;65(10):869-76.
29. Doty RL, Philip S, Reddy K, Kerr K-L. Influences of antihypertensive and antihyperlipidemic drugs on the senses of taste and smell: a review. J Hypertens. 2003;21(10):1805-13.
30. Apter AJ, Gent JF, Frank ME. Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis. Arch Otolaryngol Neck Surg. 1999;125(9):100510.
31. Dalton P. Olfaction and anosmia in rhinosinusitis. Curr Allergy Asthma Rep. 2004;4(3):230-6.
32. Heilmann S, Huettenbrink K-B, Hummel T. Local and systemic administration of corticosteroids in the treatment of olfactory loss. Am J Rhinol. 2004;18(1):29-33.
33. Hummel T, Rissom K, Reden J, Hähner A, Weidenbecher M, Hüttenbrink K-B. Effects of olfactory training in patients with olfactory loss. The Laryngoscope. 2009;119(3):496-9.
34. Hummel T, Heilmann S, Hüttenbriuk K-B. Lipoic acid in the treatment of smell dysfunction following viral infection of the upper respiratory tract. The Laryngoscope. 2002;112(11):2076-80.
35. Aiba T. Effect of zinc sulfate on sensorineural olfactory disorder. Acta Otolaryngol (Stockh). 1998;118(538):202-4.
36. Reden J, Lill K, Zahnert T, Haehner A, Hummel T. Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial. The Laryngoscope. 2012;122(9):1906-9.
37. Duncan RB, Briggs M. Treatment of uncomplicated anosmia by vitamin A. Arch Otolaryngol. 1962;75(2):116-24.
38. Henkin RI, Velicu I, Schmidt L. An open-label controlled trial of theophylline for treatment of patients with hyposmia. Am J Med Sci. 2009;337(6):396-406.
39. Reden J, Herting B, Lill K, Kern R, Hummel T. Treatment of postinfectious olfactory disorders with minocycline: a double-blind, placebo-controlled study. The Laryngoscope. 2011;121(3):679-82.
40. Guilemany JM, García-Piñero A, Alobid I, Cardelus S, Centellas S, Bartra J, et al. Persistent allergic rhinitis has a moderate impact on the sense of smell, depending on both nasal congestion and inflammation. The Laryngoscope. 2009;119(2):233-8.
41. Miwa T, Ikeda K, Ishibashi T, Kobayashi M, Kondo K, Matsuwaki Y, et al. Clinical practice guidelines for the management of olfactory dysfunctionsecondary publication. Auris Nasus Larynx. 2019;46(5):653-62.
42. Doty RL. Epidemiology of smell and taste dysfunction. Handb Clin Neurol. 2019;164:3-13.
43. Doty RL. Age-related deficits in taste and smell. Otolaryngol Clin North Am. 2018;51(4):815-25.
44. Litvack JR, Fong K, Mace J, James KE, Smith TL. Predictors of olfactory dysfunction in patients with chronic rhinosinusitis. The Laryngoscope. 2008;118(12):2225-30.
45. Weinstock RS, Wright HN, Smith DU. Olfactory dysfunction in diabetes mellitus. Physiol Behav. 1993;53(1):17-21.
46. Liu Y-H, Huang Z, Vaidya A, Li J, Curhan GC, Wu S, et al. A longitudinal study of altered taste and smell perception and change in blood pressure. Nutr Metab Cardiovasc Dis. 2018;28(9):877-83.
47. Takahashi K, Sadamatsu H, Suzuki K, Tashiro H, Kimura S, Kuratomi Y, et al. Evaluation of olfactory dysfunction to estimate the presence of eosinophilic chronic rhinosinusitis in patients with asthma. Respir Investig. 2021;59(1):12634.

ANNEXURES

ANNEXURES

LIST OF FIGURES

Figure 1 - Development of nasal cavity
Figure 2 - Osteo-cartilaginous framework of nose
Figure 3 - Anatomy of nasal septum
Figure 4 - Anatomy of lateral wall of nose
Figure 5 - Blood supply of A) lateral wall of nose, B) nasal septum
Figure 6 - Olfactory region in the nasal cavity
Figure 7 - Streamline patterns for resting inspiratory flow through a scale model of a healthy human adult

Figure 8 - Histology of olfactory epithelium
Figure 9 - Olfactory sensory neurons embedded in the olfactory epithelium
Figure 10 - Olfactory pathway
Figure 11 - Signal transduction in an odorant receptor
Figure 12 - Incidence of olfactory dysfunction
Figure 13 - Age distribution
Figure 14 - Prevalence of comorbidities
Figure 15 - Olfactory threshold scores in anosmia
Figure 16 - Olfactory threshold scores in severe hyposmia
Figure 17 - Olfactory threshold scores in moderate hyposmia
Figure 18 - Olfactory threshold scores in mild hyposmia
Figure 19- Odour identification scores in anosmia
Figure 20 - Odour identification scores in severe hyposmia

Figure 21 - Odour identification scores in moderate hyposmia
Figure 22 - Odour identification scores in mild hyposmia
Figure 23 - Odour vs olfactory dysfunction
Figure 24 - Odour vs comorbidities
Figure 25 - Most common odour affected in nasal diseases
Figure 26 - Odour identification vs nasal diseases
Figure 27 - Olfactory threshold in nasal diseases

LIST OF TABLES

Table 1: Incidence of olfactory dysfunction
Table 2: Gender distribution
Table 3: Prevalence of comorbidities
Table 4: Olfactory threshold in types of olfactory dysfunction
Table 5: Odour identification scores in types of olfactory dysfunction
Table 6: Odour affected vs olfactory dysfunction
Table 7: Comorbidities vs olfactory dysfunction
Table 8: Odour identification loss vs comorbidities
Table 9: Prevalence of nasal diseases
Table 10: Prevalence of nasal diseases vs types of olfactory dysfunction
Table 11: Odour vs nasal diseases
Table 12: Odour identification scores in nasal diseases
Table 13: Olfactory threshold scores in nasal diseases

DATA SHEET

[^0]: Ethics Committee Blue, Office of Research, I Floor, Carman Block. Christian Medical College, Vellore. Tamil Nadu 63200 Tel: 0416-2284294.2284202 Fax:0416-2262788 E-mail: research@cmevellore.ac.in

[^1]: Ethics Committee Blue. Office of Research, I Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 63200
 Tel: 0416-2284294.2284202 Fax:0416-2262788 E-mail: research@cmcvellore.ac.in

[^2]: Ethics Committee Blue, Office of Research, I Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 63200 Tel: 0416-2284294.2284202 Fax:0416-2262788 E-mail: research@cmcvellore.ac.in

