STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER

A Dissertation Submitted to

THE TAMILNADU DR. M.G.R MEDICAL UNIVERSITY CHENNAI

In Partial Fulfilment of the Regulations

For the Award of the Degree of

M.D. (GENERAL MEDICINE) - BRANCH - I

REG. NO: 200120102502

HANJAVUR MEDICAL COLLEGE AND HOSPITAL,

THANJAVUR-613004

CERTIFICATE FROM DEAN

THIS IS TO CERTIFY THAT THIS DISSERTATION ENTITLED *A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER*"

IS THE BONAFIDE ORIGINAL WORK DONE BY DR CAUVERY N, IN PARTIAL FULFILMENT OF THE UNIVERSITY REGULATIONS OF THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI, FOR M.D BRANCH - GENERAL MEDICINE EXAMINATION OF THE TAMILNADU DR M.G.R MEDICAL UNIVERSITY TO BE HELD IN MAY 2023.

THANJAVUR

CERTIFICATE FROM THE HOD

THIS IS TO CERTIFY THAT THIS DISSERTATION ENTITLED

"A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER"

IS THE BONAFIDE WORK DONE BY DR CAUVERY N, IN PARTIAL FULFILMENT OF THE UNIVERSITY REGULATIONS OF THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI, FOR M.D GENERAL MEDICINE TO BE HELD IN MAY 2023.

PROF.DR. C. PARANTHAKAN MO. Dr.C. PARANTHAKAN, MD. Reg. No: 43149 HOD & Professor THE HOD, Department of Medicine Thanjavur Medical College & Hor Thanjevur - 513 001

DEPARTMENT OF GENERAL MEDICINE,

THANJAVUR MEDICAL COLLEGE

THANJAVUR

CERTIFICATE FROM THE GUIDE

THIS IS TO CERTIFY THAT THIS DISSERTATION ENTTLED

"A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER"

" IS THE BONAFIDE WORK DONE BY DR CAUVERY N, IN PARTIAL FULFILMENT OF THE UNIVERSITY REGULATIONS OF THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI, FOR M.D GENERAL MEDICINE EXAMINATION TO BE HELD IN MAY 2023.

S. vetrivel

PROF. DR .S VEDRISE VETRIVEL, M.D., Reg. No: 50429 Associate Professor in Medicine, UNIT CHIEF, Thanjavur Medical College Hospital

DEPARTMENT OF GENERAL MEDICINE,

THANJAVUR MEDICAL COLLEGE,

THANJAVUR.

ETHICAL CLEARANCE CERTIFICATE

Registered under National Ethics Committee Registry for Biomedical and Health Research

THANJAVUR MEDICAL COLLEGE

Registered under National Ethics Committee Registry for Biomedical and Health Research (NECRBHR), Ministry of Health and Family Welfare, Govt of India (Reg. No: EC/NEW/INST/2020/1058)

Chairman

Dr. J. Venkatesan M.D., Rtd Professor of Psychiatry, 2956, South Rampart road, Thanjavur

Member Secretary Dr. N. Arumugam M.D., Professor of Pathology, Thanjavur Medical College

Members

Dr. S.Kumaravel M.S. DNB, Ph.D. Professor of Orthopedics, TMC,

Dr. Shanthi Paulraj M.D., Professor of Anesthesiology, TMC,

Dr. Udaya Aruna M.S., Associate Professor of Obs & Gyn, TMC.

Dr. B. Jayapriya D.Ch., M.D, Associate Professor of Pharmacology, TMC,

Dr. M. Senthilkumar M.D., Associate Professor of Pathology, TMC

Dr. Eunice Swarna Jacob M.D Associate Professor of Microbiology, TMC

Dr. A. Vinoth M.D Assistant Professor t of Internal Medicine, TMC

 Dr. G. Karthikeyan M.S., Assistant Professor of General Surgery, TMC

Dr. L. Mageshwaran M.D., Assistant Professor of Pharmacology, TMC

Dr. S. Sangeeta M.A., PhD., Associate Professor Dept. of social science, Tamil University, Thanjavur

Mr. A. Kuppusami B.Sc., B.L., Public Prosecutor, Thanjavur.

Mr. S. Prince Senior Telephone Supervisor, BSNL, Thanjavur. CERTIFICATE

TITLE OF THE STUDY:

A study of serum sodium level and its prognostic significance in patients with acute STEMI in tertiary care center.

PRINCIPAL INVESTIGATOR:

Dr. N. Cauvery, Postgraduate in Department of General Medicine, Thanjavur Medical College.

This to certify that the protocol submitted by the principal investigator of the above mentioned study has been reviewed as per standard ethical guidelines and the same has been **APPROVED** by the members of the Institutional ethical committee at its meeting held on **21.01.2021**.

Dr. N. Arumugam M.D., Member Secretary of IEC Vice Principal & Professor of Pathology, Thanjavur Medical College Thanjavur

DECLARATION

I, DR.CAUVERY N, SOLEMNLY DECLARE THAT THIS DISSERTATION TITLED "A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER" IS A BONAFIDE RECORD OF WORK DONE BY ME AT THE DEPARTMENT OF GENERAL MEDICINE, THANJAVUR MEDICAL COLLEGE AND HOSPITAL, UNDER THE GUIDANCE OF PROF.DR.S.VETRIVEL, M.D. UNIT CHIEF, DEPARTMENT OF GENERAL MEDICINE, THANJAVUR MEDICAL COLLEGE AND HOSPITAL, THANJAVUR.

THIS DISSERTATION IS SUBMITTED TO THE TAMIL NADU DR. M.G.R MEDICAL UNIVERSITY, CHENNAI IN PARTIAL FULFILLMENT OF THE RULES AND REGULATIONS FOR THE AWARD OF M.D DEGREE GENERAL MEDICINE EXAMINATION TO BE HELD IN MAY 2023.

PLACE: THANJAVUR

DATE:

vi

Ouriginal

Document Information

Analyzed document	lyzed document Dr Cauvery Thesis FINAL.pdf (D153241152)	
Submitted 12/13/2022 2:57:00 PM		
Submitted by CAUVERY N		
Submitter email kavery.yuvan@gmail.com		
Similarity 16%		
Analysis address kavery.yuvan.tnmg@analysis.urkund.com		

Sources included in the report

SA	Dr JayaShree Thesis.docx Document Dr JayaShree Thesis.docx (D123346643)	88 45
SA	HYPONATREMIA IN STEMI.docx Document HYPONATREMIA IN STEMI.docx (D123637752)	4
SA	The Tamil Nadu Dr. M.G.R. Medical University / Niranjan C1 30th Oct (1).docx Document Niranjan C1 30th Oct (1).docx (D150894998) Submitted by: niranjan.kishore94@gmail.com Receiver: niranjan.kishore94.tnmg@analysis.urkund.com	88 1

ANTI PLAGIARISM CERTIFICATE

This is to certify that this dissertation work titled ... A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER of the candidate DR CAUVERY N with registration Number 200120102502 for the award of MD degree in the branch of General medicine .I personally verified the urkund.com website for the purpose of plagiarism Check. I found that the uploaded thesis file contains from introduction to conclusion pages and result shows 6 %percentage of plagiarism in the dissertation.

> Dr. S. VETRIVEL, M.D., DR.S.VETRIVEL M.D., Reg. No: 50429 Associate Professor in Medicine, Thanjavur Medical College Hospital PROFESSOR AND GUIDE FOR THE STUDY

THANJAVUR MEDICAL COLLEGE

THANJAVUR

ACKNOWLEDGEMENT

I would like to thank **DR.R. BALAJI NATHAN**., Dean, Thanjavur medical college and hospital, for permitting me to utilize the facilities of Thanjavur Medical College and Hospital facilities for this dissertation.

I wish to express my respect, sincere gratitude and thanks to my beloved teacher and Head of The Department **PROF DR.C. PARANTHAKAN, M.D.**, and my Unit Chief, **PROF.DR. S. VETRIVEL, M.D.**, for his valuable guidance and encouragement during the study and also throughout my course period.

I am extremely thankful to Assistant Professors of Medicine of my Unit DR.S.VENNILA M.D, DR. V.NARESHKUMAR M.D, for their valid comments and suggestions.

I profusely thank the Department of Cardiology and the Department of Biochemistry for their timely help, cooperation and support.

I sincerely thank all the staffs of Department of Medicine and Department Of Cardiology and Biochemistry for their timely help rendered to me, whenever needed.

I extend my thanks to all my friends, batch mates, any senior and junior colleagues who have stood by me and supported me throughout my study and course period.

I express my gratitude to all the patients who participated in the study for their extreme patience and co-operation.

I am extremely thankful to my Parents for their continuous support.

LIST OF ABBREVIATION

- AMI- Acute Myocardial Infarction
- AF- Atrial Fibrillation
- AVP- Arginine Vasopressin
- CAD- Coronary Artery Disease
- CCF- Congestive Cardiac Failure
- CK-MB Creatinine Kinase-MB
- CVD- Cardiovascular Disease
- ECF- Extra Cellular Fluid
- ECG- Electrocardiogram
- IHD- Ischemic Heart Disease
- ICF- Intra cellular Fluid
- LV- Left Ventricle
- LVF- Left Ventricular Failure
- MR- Mitral Regurgitation
- PSVT- Paroxysmal SupraVentricular Tachycardia
- SIADH- Syndrome of Inappropriate Antidiuretic Hormone Secretion
- TR- Tricuspid Regurgitation
- VF- Ventricular Fibrillation
- VPC- Ventricular Premature Complex
- VT- Ventricular Tachycardia

TABLE OF CONTENTS

Table of Contentsxi			
1	ABS	STRACT:	5
2	INT	FRODUCTION	7
3	AIN	M AND OBJECTIVES	9
	3.1	AIM:	9
	3.2	OBJECTIVES:	9
4	RE	VIEW OF LITERATURE	
5	RES	SEARCH QUESTION OR HYPOTHESIS	32
	5.1	Research Question:	
	5.2	Null Hypothesis:	
	5.3	research or Alternate Hypothesis:	
6	ME	CTHODOLOGY	
	6.1	Study Subjects:	33
	6.2	Study Design:	
	6.3	Study parameters:	
	6.4	Study Period:	
	6.5	Study setting:	
	6.6	Sampling Procedure:	
	6.7	Inclusion Criteria:	
	6.8	Exclusion criteria:	
	6.9	Sample Size:	35
	6.10	Ethical Consideration:	
	6.11	Study procedure:	
	6.12	Budget:	
	6.13	Statistical Methods:	
7	RES	SULTS	

8	DISCU	SSION	.74
9	LIMIT	ATIONS	.78
10	STRE	ENGTHs	.79
11	REC	OMMENDATIONS	.80
12	SUM	MARY OF RESULTS	.81
13	CONCLUSION		.83
14	REFI	ERENCES	.84
15	ANN	EXURES	.89
	15.1.1	Questionnaire	.89
	15.1.2	Consent Form	.99
	15.1.3	Patient Information Sheet	.99
	15.1.4	Institutional Ethical Committee Clearance Error! Bookmark not defin	ed.
	15.1.5	Data Sheet	102

LIST of FIGURES

Figure 1.Categorisation of damage to the myocardium	
Figure 2. Pathogenesis of Myocardial infarction.	12
Figure 3.Coronary anatomy in ECG	13
Figure 4. Three stages of cardiac repair following myocardial infarction	14
Figure 5.Forms of the acute coronary syndromes	15
Figure 6.Mechanism of STEMI and NSTEMI	16
Figure 7.ST segment in ECG	16
Figure 8.ST-segment in Myocardial infarction	17
Figure 9. Algorithm for Management in ST elevation MI	
Figure 10.Complications associated with Myocardial infarction	
Figure 11.Renin-Angiotensin-Aldosterone System:	
Figure 12.Pathogenesis of hyponatremia:	
Figure 13.Clinical features associated with Hyponatremia:	24
Figure 14.Algorithm for management of hyponatremia:	25
Figure 15.Mechanisms of hyponatremia in heart failure	
Figure 16. Age (years)	
Figure 17. Age group	40
Figure 18. Gender	41
Figure 19. Smoker	
Figure 20.Alcoholic	
Figure 21. Diabetes Mellitus	
Figure 22. Hypertension	
Figure 23. Prior CAD	46
Figure 24. Prior Diuretic Therapy	47

Figure 25. Serum CKMB (IU/L)
Figure 26. KILIP Class
Figure 27. Serum Sodium
Figure 28. Ejection Fraction (%)
Figure 29. Myocardial Infarction Type
Figure 30. Outcome
Figure 31. Serum Sodium on admission (mEq/L) with Outcome
Figure 32. Serum Sodium at 24 hours (mEq/L) with Outcome
Figure 33. Serum Sodium at 48 hours (mEq/L) with Outcome
Figure 34. Serum Sodium at 72 hours (mEq/L) with Outcome
Figure 35. Serum Sodium with Myocardial Infarction Type59
Figure 36. Serum Sodium with KILIP Class
Figure 37. ROC for predicting Death among STEMI using Serum Sodium
Figure 38. Comparision of Hyponatremia on admission with the Outcome
Figure 39. Comparision of Hyponatremia at 24 hours with the Outcome
Figure 40. Comparision of Hyponatremia at 48 hours with the Outcome
Figure 41. Comparision of Hyponatremia at 72 hours with the Outcome
Figure 42. Comparision of Myocardial Infarction Type with the Hyponatremia on
admission71
Figure 43. Comparision of KILIP Class with the Hyponatremia on admission72

LIST OF TABLES:

Table 1.Drugs increasing the Risk of Hyponatremia: 22
Table 2.Formula for calculation of Sodium infusion 26
Table 3. Summary of Treatment of Hyponatremia: 27
Table 4. Age (years)
Table 5. Age group40
Table 6. Gender41
Table 7. Smoker 42
Table 8.Alcoholic 43
Table 9. Diabetes Mellitus 44
Table 10. Hypertension
Table 11. Prior CAD 46
Table 12. Prior Diuretic Therapy
Table 13. Serum CKMB (IU/L)
Table 14. KILIP Class 49
Table 15. Serum Sodium 50
Table 16. Ejection Fraction (%)
Table 17. Myocardial Infarction Type 52
Table 18. Outcome 53
Table 19. Serum Sodium on admission (mEq/L) with Outcome
Table 20. Serum Sodium at 24 hours (mEq/L) with Outcome
Table 21. Serum Sodium at 48 hours (mEq/L) with Outcome
Table 22. Serum Sodium at 72 hours (mEq/L) with Outcome
Table 23. Serum Sodium with Myocardial Infarction Type
Table 24. Serum Sodium with KILIP Class
Table 25. Correlation of Serum Sodium with CKMB

Table 26. Correlation of Serum Sodium with Ejection Fraction	62
Table 27. ROC for predicting Death among STEMI using Serum Sodium	63
Table 28.Accuracy values of different cutoffs of Serum Sodium (mEq/L) on admission	
for prediction of prognosis.	64
Table 29.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 24 hrs for	
prediction of prognosis.	65
Table 30.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 48 hrs for	
prediction of prognosis	65
Table 31.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 72 hrs for	
prediction of prognosis.	66
Table 32. Comparision of Hyponatremia on admission with the Outcome	67
Table 33. Comparision of Hyponatremia at 24 hours with the Outcome	68
Table 34. Comparision of Hyponatremia at 48 hours with the Outcome	69
Table 35. Comparision of Hyponatremia at 72 hours with the Outcome	70
Table 36. Comparision of Myocardial Infarction Type with the Hyponatremia on	
admission Error! Bookmark not define	ed.
Table 37. Comparision of KILIP Class with the Hyponatremia on admission	72
Table 38.Binomial Logistic Regression for predicting Death in STEMI	73

ABSTRACT:

Introduction:

Following a Myocardial Infarction, hyponatremia is frequent, and a rise in plasma sodium contents coincides with clinical recovery. Hyponatremia was present in about one third of the congestive heart failure patients. It has been demonstrated that in patients with heart failure and STEMI, it is a predictor of cardiovascular death. Acute STEMI patients who presented with hyponatremia at the time of admission and within 72 hrs of admission had high mortality and so serum sodium level (hyponatremia) is a prognostic indicator. Patient at risk can be identified by a simple marker of plasma sodium level.

Objectives:

To study the prognostic importance of serum sodium level (hyponatremia) among 80 patients with acute STEMI.

Methodology:

This is a Cross sectional analytical study, among 80 patients admitted with acute STEMI under the Department of General Medicine, Thanjavur Medical College and hospital, Thanjavur. Relevant history, clinical findings, biochemical measurements especially the serum sodium levels were compared with the outcomes. Prognostic value of the serum sodium levels were analyzed.

Results:

Among the subjects, 71 (88.75%) were Recovered and 9 (11.25%) had Death. The mean Serum Sodium at admission, at 24 hours, at 48 hours and 72 hours (mEq/L) among Death

was lower and statistically significant compared to the Recovered. Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours in predicting Death was significant, with the good diagnostic accuracy value.

Conclusion:

Serum sodium can be used as a prognostic parameter for predicting death among the acute STEMI patients. The role of correction of the hyponatremia in prevention of the mortality rate among the acute STEMI patients' needs to be explored.

Keywords:

Serum sodium level, Hyponatremia, Acute coronary syndrome, Myocardial infarction, acute STEMI.

1 INTRODUCTION

Acute myocardial infarction is one of the prevalent diseases with substantial side effects, causing significantly increased rates of death, morbidity, disability, and societal costs.(1) Acute MI is a major public health concern in industrialised nations and is becoming increasingly significant in developing nations despite excellent studies in diagnosis and management over the past 40 years.(2,3)

Developing countries, particularly India, are anticipated to have a dramatic rise in ischemic heart disease and myocardial infarction due to a drop in infectious disease-related mortality coupled with accelerated economic development and lifestyle changes that promote atherosclerosis..(4,5)

Of the acute coronary syndromes, Acute STEMI is a major cause of morbidity and mortality in the world. With changing lifestyles the incidence seems to increase forever. Nearly 3 million STEMI occur every year in India. Urgent attention and appropriate treatment is essential to save life of the patient. (6–8)

One prevalent electrolyte problem among hospitalised patients is hyponatremia. A serum sodium concentration (Na+) of more than 135 mmol/liter is referred to as hyponatremia, which can result from either greater sodium loss from the body or increased fluid retention (dilution-hyponatremia).(9)

Since the majority of moderate hyponatremia's symptoms are non-specific, severe hyponatremia typically manifests as CNS abnormalities.(10,11) The mortality rate for hyponatremia varies from 5% to 50% depending on how severe it is and how long it lasts.(12)

Following a Myocardial Infarction, hyponatremia is frequent, and a rise in plasma sodium contents coincides with clinical recovery.(13,14) Hyponatremia was present in about one third of the congestive heart failure patients.(15) It has been demonstrated that in patients with heart failure and STEMI, it is a predictor of cardiovascular death.

These patients' low stroke volume, low cardiac output, which leads to underfilling of the arterioles and activation of the Renin Angiotensin Aldosterone System, the non-osmotic release of vasopressin and intense sympathetic stimulation, which causes water retention, and vasoconstriction, which results in dilutional hyponatremia are some of the mechanisms contributing to their low serum sodium levels. The transmembrane potentials in cardiac cells, the production of regulatory proteins and enzymes, and the excitation of muscles may all be impacted by the serum sodium concentration. (16–18)

Need for the study / Justification of the study:

Acute STEMI patients who presented with hyponatremia at the time of admission and within 72 hrs of admission had high mortality and so serum sodium level (hyponatremia) is a prognostic indicator. Patient at risk can be identified by a simple marker of plasma sodium level. Therefore this study aims to study the prognostic importance of serum sodium level (hyponatremia) among 80 patients with acute STEMI.

2 AIM AND OBJECTIVES

2.1 **AIM:**

To study the prognostic importance of serum sodium level (hyponatremia) among 80 patients with acute STEMI.

2.2 **OBJECTIVES:**

• Primary Objectives:

To study the prognostic importance of serum sodium level (hyponatremia) in acute STEMI (without NSTEMI, unstable angina) in a series of 80 cases in Thanjavur medical college

To study the prognostic importance of serum sodium level (hyponatremia) in acute STEMI with age and sex distribution and various risk factor.

• Secondary Objectives:

To study its usefulness in predicting its poor prognosis and short time survival

3 REVIEW OF LITERATURE

Review of Literature of this study on prognostic importance of serum sodium level (hyponatremia) in acute STEMI, is discussed with the following heads:

- a. Myocardial infarction
 - Classification of Myocardial Infarction
 - Pathogenesis of Myocardial Infarction
 - Stages of repair following Myocardial infarction:
 - ST Elevation Myocardial Infarction
 - Non-STEMI
 - Management
 - Complications
- b. Hyponatremia
 - Metabolism of Sodium
 - Renin Angiotensin Aldosterone axis and Regulation of Sodium
 - Hyponatremia -Definition
 - Drugs causing Hyponatremia
 - Pathogenesis of Hyponatremia
 - Clinicals features of Hyponatremia
 - Treatment of hyponatremia
 - Relationship between Hyponatremia and Myocardial Infarction.
- c. Studies focussing on prognostic importance of serum sodium level (hyponatremia) in acute STEMI

a. Myocardial Infarction:

A myocardial infarction (MI) is the term used to describe the death of myocardial cells brought on by insufficient oxygen delivery to the myocardium, most frequently as a result of the coronary thrombus that lies on the underlying pathology of a ruptured atherosclerotic plaque.

Classification of Myocardial infarction:

Cardiac troponin >99th percentile upper reference limit without any acute change indicates chronic myocardial damage. Either one of the immediate symptoms of myocardial ischemia and a cardiac troponin level >99th percentile upper reference limit constitute an acute myocardial damage.

- A. Symptoms of acute ischemia of myocardium.
- B. Newer ischemic changes in ECG.
- C. Appearance of pathological Q waves in ECG.
- D. new regional wall motion abnormalities or imaging evidence of a fresh loss of viable myocardium in a pattern that is consistent with an ischemia cause
- E. Confirmation of the presence of coronary thrombus either by angiography or autopsy (not for type 2-MI)

Acute nonischaemic myocardial damage is defined as the lack of a primary cause with a rise and decrease in cardiac biomarkers. Atherothrombotic coronary artery disease (CAD) is the primary cause of type 1 MI, which is typically brought on by the rupture of atherosclerotic plaque. Non-atherothrombotic causes of type 2 MI lead to an imbalance between oxygen supply and demand.(19) The following figure represents the categorisation of damage to the myocardium ,(19)

Figure 1. Categorisation of damage to the myocardium

Pathogenesis of Myocardial infarction:

The below figure signifies the risk factors, Pathogenesis, clinical presentations, and management options myocardial infarction, (20)

The coronary anatomy of the ECG and the location of the ischemia are shown in the next figure, (21)

Figure 3. Coronary anatomy in ECG

Stages of repair following Myocardial infarction:

The three stages of cardiac repair following myocardial infarction are shown in the following illustration.,(22)

NON-ST Elevation Myocardial Infarction:

Acute Coronary Syndrome is divided into three categories based on the degree of the occlusion.

- I. Unstable angina (partial artery rupture does not result in permanent damage to the myocardium),
- II. STEMI (classic heart attack) in which a major coronary artery is partially or completely blocked by ruptured plaque, and
- III. NSTEMI (believed to be the "intermediate" form of ACS) in which a minor coronary artery or a major coronary artery is partially blocked, but in which the degree of heart tissue damage is much less severe.(23)

According to the severity of the obstruction, the following illustration depicts the many forms of acute coronary syndromes.,(23)

The pathophysiological pathways producing acute plaque rupture and thrombus development in ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) are shown in the accompanying image (dynamic imbalance between the oxygen demand and supply in the myocardium). (24)

Figure 6.Mechanism of STEMI and NSTEMI

The ST segment is shown in the following images for normal, STEMI, and NSTEMI ECG.,(25)

The ST-segment is seen in the following image. Relationship between normal ECG, ECG leads, and period of progression in myocardial infarction, (26)

Figure 8.ST-segment in Myocardial infarction

Management:

The management algorithm for the ST elevation MI is represented by the following algorithm.,(26)

Figure 9. Algorithm for Management in ST elevation MI

Complications:

Myocardial necrosis causes the early complications, and inflammation of necrotic tissue and subsequent recovery cause the later comp[lications. The following illustration shows the underlying mechanism and complications of myocardial infarction., (27)

Figure 10. Complications associated with Myocardial infarction

b. Hyponatremia:

Metabolism of Sodium in body:

All living things require sodium, which is provided from food through salt, which is chemically Sodium-Chloride, to function. (28) Sodium is crucial for maintaining blood volume, osmotic equilibrium, blood pressure, pH level, and appropriate nerve and muscle transmission. It also plays a crucial function in the regulation of fluid and electrolyte balance. (29–31)

Renin-Angiotensin -Aldosterone axis:

Aldosterone, a hormone secreted by the adrenal gland, aids in the reabsorption of Na+ and subsequently the reabsorption of water, which is crucial for controlling the amount of sodium in the blood.(32) The Renin-Angiotensin System is depicted in the following figure. (Angiotensin II promotes the adrenal cortex's release of aldosterone.).)(32)

Figure 11. Renin-Angiotensin-Aldosterone System:

Hyponatremia:

A serum sodium concentration (Na+) of less than 135 mmol/l is referred to as hyponatremia, which can result from either greater sodium loss from the body or increased fluid retention (dilution-hyponatremia). the following are clinical signs of mild gradual hyponatremia,

- i. Nausea,
- ii. Vomiting,
- iii. Headache,
- iv. Cramps in muscle,
- v. Easy fatigability. (33,34)

The following are possible side effects of severe and quickly developing hyponatremia:

- i. Cerebral oedema,
- ii. Coma,
- iii. Unconsciousness,
- iv. Seizures,
- v. Permanent brain damage.

Without immediate and appropriate medical therapy of the disease, acute or severe hyponatremia may result in mortality for the patient.(35)

Drugs resulting in Hyponatremia:

The list of medications that put patients at an elevated risk of hyponatremia is shown in the table below.(31,36)

Medication Family	Examples	
Diuretics	Hydrochlorothiazide, Furosemide (Lasix)	
Non-steroidal anti-inflammatory drugs (NSAIDs)	Ibuprofen (Advil, Motrin), Naproxen sodium (Aleve)	
Opiate derivatives	Codeine, Morphine	
Phenothiazines	Prochlorperazine (Compazine), Promethazine (Phenergan)	
Serotonin-reuptake inhibitors (SSRIs)	Fluoxetine (Prozac), Paroxetine (Paxil)	
Tricyclic antidepressants	Amitriptyline (Elavil), Imipramine (Tofranil)	
Individual Medications Associated with Hyponatremia		
Carbamazepine (Tegretol)		
Chlorpropamide (Diabinese)		
Clofibrate (Atromid-S)		
Cyclophosphamide (Cytoxan)		
Desmopressin (DDAVP; nasal or oral)		
Lamotrigine (Lamictal)		
Oxytocin (Pitocin)		
Vincristine (Oncovin)		

Table 1.Drugs increasing the Risk of Hyponatremia:

Pathogenesis of hyponatremia:

The next picture shows an overview of the pathogenesis of hyponatremia, including risk factors, symptoms, and indicators in various organs..(37)

Figure 12. Pathogenesis of hyponatremia:

Clinical features associated with hyponatremia:

The following illustration depicts hyponatremia symptoms in relation to falling serum sodium levels.;(38)

Figure 13. Clinical features associated with Hyponatremia:

Algorithm for management of hyponatremia:

The algorithm for treating patients who come with hyponatremia is shown in the accompanying graphic. (The initial stage in assessing hyponatremia is taking a patient's history. The clinician's primary responsibility comes after determining the plasma osmolality: determining the bodily fluid state. The FENa computation aids in the final diagnosis assessment.(39)

Figure 14.Algorithm for management of hyponatremia:

Formula for infusion of Sodium:

The formula used to calculate the impact of infusates and fluid losses on Na+ are shown in the following table:(40)

Infusate Formula	Fluid-Loss Formula
$\Delta [Na^+]_s = \frac{[Na^+ + K^+]_{inf} - [Na^+]_s}{TBW + 1}$	$\Delta {\left[{{N}{a}^{+}} \right]_{s}} = \frac{{\left[{{N}{a}^{+}} \right]_{s}} - {\left[{{N}{a}^{+}} + {K}^{+} \right]_{fl}}}{{TBW} - 1}$
Projects the effect of gaining 1 L of any infusate (inf) on the patient's [Na ⁺] _s	Projects the effect of losing 1 L of any fluid (fl) on the patient's [Na ⁺] _s

Table 2. Formula for calculation of Sodium infusion

Treatment Guidelines for hyponatremia:

The following table details the exact ailment and therapy used to treat hyponatremia.(41-

43)

Condition	Therapy
Acute or symptomatic hyponatremia	 Severe symptoms: Bolus 3% saline 100 mL x 3 as needed Moderate symptoms: Continuous infusion 3% saline 0.5-2 mL/kg/hour
Chronic hyponatremia Syndrome of inappropriate antidiuretic hormone secretion	 Fluid restriction (first-line) Loops, diuretics, urea, vaptans, salt tablets, demeclocycline (second-line)
Hypovolemic hyponatremia	 Isotronic saline or balanced crystalloids solutions
Hypervolemic hyponatremia	Fluid restrictions, loop diuretics
Sodium correction rates	 Minimum: 4-8 mmol/L/day, 4-6 mmol/L/day if high risk for osmotic demyelination syndrome (ODS) Limits: 10-12 mmol/L/day, 8 mmol/L/day if high risk for ODS
Management of overcorrection	 Baseline SNA > 120 mmol/L: Start once limit of Na correction is exceeded Baseline SNA < 120 mmol/L: Start relowering with electrolyte-free water (10 mL/kg) with or without desmopressin 2µg IV after correction exceeds 6-8

 Table 3. Summary of Treatment of Hyponatremia:

Relationship between Myocardial Infarction and Hyponatremia:

Patients' with myocardial infarction have low stroke volume, low cardiac output, which leads to underfilling of the arterioles and activation of the Renin Angiotensin Aldosterone System, the non-osmotic release of vasopressin and intense sympathetic stimulation, which causes water retention, and vasoconstriction, which results in dilutional hyponatremia are some of the mechanisms contributing to their low serum sodium levels. The transmembrane potentials in cardiac cells, the production of regulatory proteins, enzymes, and the stimulation of muscles may all be impacted by the serum sodium level..(16–18)

Since the majority of moderate hyponatremia's symptoms are non-specific, severe hyponatremia typically manifests as CNS abnormalities..(10,11) The mechanisms for hyponatremia to develop in people with heart failure are depicted in the next picture,(44,45)

c. Studies focussing on prognostic importance of serum sodium level (hyponatremia) in acute STEMI:

In 2004, Israeli researchers **Alexander Goldberg et al.** examined the prevalence of hyponatremia among the 1047 individuals who had had an acute ST-elevation myocardial infarction and assessed the prognostic significance of the condition. Serum sodium levels were measured during admission and on a daily basis following that. Hyponatremia (135 mmol/L) was present in 12.5% of patients at admission and 19.9% of patients after 72 hours. Hyponatremia (135 mmol/L) upon admission was linked to a 2.0 odds ratio for 30-day death; (95 percent CI: 1.0 to 3.9). Hyponatremia (130 mmol/L) upon admission was associated with a 30-day mortality rate with an odds ratio of 3.4 (95 percent confidence interval: 1.5 to 7.8).(46)

Israel's **Alexander Goldberg et al.** examined the prevalence of hyponatremia among the 978 individuals who had acute ST-elevation myocardial infarction in 2006 and assessed its predictive significance for the length of hospitalisation and long-term mortality of the condition. Serum sodium levels were measured during admission and on a daily basis following that. At admission, 11 percent of the patients had hyponatremia (135 mmol/L). They found that for every 1-mEq/L decrease in serum sodium, the adjusted Hazard Ratio for mortality or heart failure was 1.12.(47)

In a thorough analysis of more than 1400 papers, **Vraj Shah et al.** looked at the prevalence of hyponatremia in the 1047 individuals who had acute ST-elevation myocardial infarction and assessed its predictive significance for the course of the illness. They noted that hyponatremia worsens short-term and long-term mortality, rehospitalization rates, lengthened hospital stays, and decreased ejection fraction rates.(16)

In their EPHESUS experiment, **Pieter Martens et al.** looked at how serum sodium and eplerenone were used by the 6632 patients who had myocardial infarction, left ventricular dysfunction, or heart failure. They saw that eplerenone's positive effects persisted regardless of baseline serum sodium levels or the onset of hyponatremia..(48)

In a study of 100 patients with acute ST-elevation myocardial infarction, **Konsam Biona Devi et al.** from Manipur examined the prevalence of hyponatremia and assessed the prognostic significance of the condition. At admission, they discovered a 44 percent frequency of hyponatremia (135 mmol/L). Serum sodium levels were measured during admission and on a daily basis following that. They found that a considerably greater proportion of Killip III and IV, a higher level of CK-MB, and a higher degree of STelevation were all related to hyponatremia. Out of six hyponatremia patients, four passed away.(49)

Italian researchers **Chiara Lazzeri et al.** examined the prevalence of hyponatremia among the 1231 patients who had acute ST-elevation myocardial infarction and assessed the prognostic significance of the condition. At admission, they discovered a prevalence of hyponatremia (135 mmol/L) of 23.2%. They noted that a considerable proportion of the aged population, diabetics, Killip III and IV, Triple Vein Disease, and increased rates of both long-term and short-term mortality were all associated with hyponatremia..(50)

In a study of 10 patients with acute ST-elevation myocardial infarction, **Makrand B. Mane et al.** examined the prevalence of hyponatremia and assessed the prognostic significance of the condition. They found that a considerably larger percentage of elderly people, tobacco use, diabetes, hypertension, ejection fraction, and both long-term and shortterm mortality were all linked to hyponatremia.(51)

30

In a study by **Vikas et al.,** 200 patients with acute ST-elevation myocardial infarction were examined for the prevalence of hyponatremia and the prognostic significance of the condition. Hyponatremia (135 mmol/L) was seen in 14% of patients at admission and 20% of patients after 72 hours. They discovered that hyponatremia had a strong correlation with both long- and short-term mortality, a greater number of risk factors, a higher Killip class, and a lower ejection percentage.(52)

A total of 100 patients with acute ST-elevation myocardial infarction were analysed by **Suprabhat Giri et al.** to determine the prevalence of hyponatremia and to assess the prognostic significance of the condition. They found that the prevalence of hyponatremia (less than 135 mmol/L) was 29%. Hyponatremia was found to be significantly correlated with both hospital mortality and 7-day MACE in multivariate analysis.(53)

In a study of 100 patients with acute ST-elevation myocardial infarction, **Sidhnath Singh et al.** from Ranchi examined the prevalence of hyponatremia and assessed the prognostic significance of the condition. At admission, 81 percent of patients had hyponatremia (135 mmol/L), and at 72 hours, 77 percent did. They found that long- and short-term mortality, as well as risk variables like smoking, diabetes, anterior infarction, higher Killip class, and reduced ejection fraction, were all strongly correlated with hyponatremia.(54)

RESEARCH QUESTION OR HYPOTHESIS

3.1 **RESEARCH QUESTION:**

What is the prognostic importance of serum sodium level (hyponatremia) in acute STEMI

3.2 NULL HYPOTHESIS:

There is no significant relationship between the serum sodium level (hyponatremia) and the prognosis in acute STEMI.

3.3 **RESEARCH OR ALTERNATE HYPOTHESIS:**

There is a significant relationship between the serum sodium level (hyponatremia) and the prognosis in acute STEMI.

4 METHODOLOGY

4.1 **STUDY SUBJECTS:**

80 patients admitted with acute STEMI under the Department of General Medicine, Thanjavur Medical College and hospital, Thanjavur.

4.2 **STUDY DESIGN:**

Cross sectional analytical study.

4.3 STUDY PARAMETERS:

- **Relevant history**
- □ Smoking, alcoholism
- 🖬 Diabetes, hypertension
- Therefore Previous history of CAD, diuretic therapy
- G Serum CKMB (IU/L)
- G KILIP Class
- Ejection Fraction (%)
- Plasma sodium on admission and 24,48 and 72 hrs.

4.4 STUDY PERIOD:

Data collection -11/2 years (2020 December to 2022 July).

4.5 **STUDY SETTING:**

Department of General Medicine, Thanjavur Medical College and hospital, Thanjavur.

4.6 SAMPLING PROCEDURE:

Consecutive Sampling.

4.7 INCLUSION CRITERIA:

- \checkmark More than 20 minutes of chest pain.
- ✓ Age >18 years
- ✓ ECG alteration consisting of new pathological Q waves or ST segment or T wave changes which are diagnosis of MI in ECG.
- \checkmark Both males and females
- ✓ Elevation of cardiac enzymes such as creatinine kinase (CKMB) or cardiac troponin T and I levels

4.8 **EXCLUSION CRITERIA:**

.

- Acute coronary syndrome without ST elevation
- ☑ Unstable ANGINA
- E Patients with acute MI and cardiac failure with diuretic therapy
- Age less than 18 years
- ☑ Pre-existing renal disease
- E Patients not capable of giving consent (psychiatric patients).
- Patients not willing to participate in the study (who refused to consent)

4.9 SAMPLE SIZE:

According to **Ish Singla et al** study,(55) considering the prevalence of hyponatremia (sodium <135 mEq/L) among ST-elevation myocardial infarction (STEMI) patients as 23.1% with a precision of 9.3% and 95% confidence interval, the minimum required sample size is calculated with the following formula,

 $N = Z21 - \alpha/2 * p * (1 - p) / d2$

p (%) - prevalence of hyponatremia (sodium <135 mEq/L) among ST-elevation myocardial infarction (STEMI) patients = 0.231

Z1- $\alpha/2$ - two tailed probability for 95% confidence interval = 1.96

d (%) - precision or allowable error for hyponatremia (sodium <135 mEq/L) among STelevation myocardial infarction (STEMI) patients = 0.093

 $N = 1.96^2 * 0.231 * (1 - 0.231) / 0.093^2$

N = 78.9

Thus the total sample size required for the study is 79, rounded off to 80.

4.10 ETHICAL CONSIDERATION:

Institutional Ethical Committee approval, from Thanjavur Medical College and hospital, Thanjavur, was applied and granted before the start of the study. Informed written consent was obtained.

Source of Funding: None declared

Conflict of Interest: None declared

4.11 STUDY PROCEDURE:

80 consecutive patients admitted with acute STEMI under the Department of General Medicine, Thanjavur Medical College and hospital, Thanjavur, who fulfilled the eligibility criteria (inclusion and exclusion criteria) were included in the study.

After explaining the study rationale, informed written consent was obtained from all the participants. Relevant history, clinical findings, biochemical measurements especially the serum sodium levels were compared with the outcomes of the study population. Prognostic value of the serum sodium levels were analysed.

4.12 BUDGET:

Self. (No added investigation or intervention)

4.13 STATISTICAL METHODS:

I. Descriptive Statistics:

- Numerical variables like levels of CKMB, Age, Na levels on Admission, Na levels at 24hrs, Na levels at 48hrs, Na levels at 72 hrs, Ejection Fraction, etc., are represented in mean, SD, median, and mode. Histograms are used wherever necessary.
- 2. Categorical variables like presence of smoking, alcoholism, diabetes mellitus, systemic hypertension, previous coronary artery disease, prior diuretic therapy, KILIP score, type of MI, gender, outcomes, etc., are represented in frequency and percentage. Pie-charts and bar diagrams are used as necessary.

3. Data was entered in MSexcel sheet and analysed using SPSS software version 16.

II. Inferential Statistics:

- When a Numerical variable (eg.,Na levels on Admission, at 24hrs, at 48hrs, at 72 hrs) are compared with the another Numerical variable, Pearson's correlation test is used.
- 2. When a Categorical Variable is compared with a serum sodium levels, test of significance, used will be student t test/ ANOVA test as appropriate.
- 3. When a Categorical Variable is compared with a presence of hyponatremia, the variables are represented in both by tables and bar diagrams. For test of significance, chi-square test is used.
- 4. P-values less than 0.05 were considered statistically significant.

5 RESULTS

Results of the study, on prognostic importance of serum sodium level (hyponatremia) in acute STEMI, is discussed with the following headings:

I. Age (years) II. Age group III. Gender IV. Smoker V. Alcoholic VI. Diabetes Mellitus VI. Hypertension VII. Prior CAD VIII. Prior Diuretic Therapy IX. Serum CKMB (IU/L) X. KILIP Class XI. Serum Sodium XII. Ejection Fraction (%) XIII. Myocardial Infarction Type XIV. Outcome XV. Serum Sodium on admission (mEq/L) with Outcome XVI. Serum Sodium at 24 hours (mEq/L) with Outcome XVII. Serum Sodium at 48 hours (mEq/L) with Outcome XVIII. Serum Sodium at 72 hours (mEq/L) with Outcome XIX. Serum Sodium with Myocardial Infarction Type XX. Serum Sodium with KILIP Class XXI. Correlation of Serum Sodium with CKMB XXII. Correlation of Serum Sodium with Ejection Fraction XXX. ROC for predicting Death among STEMI using Serum Sodium

I. Age (years)

The mean Age (years) among the subjects was 55.33 (\pm 12.62) ranging from 25 to 82 years.

Age (years)		
Mean	55.33	
Median	55	
Std. Deviation	12.62	
Range	57	
Minimum	25	
Maximum	82	

Table 4. Age (years)

Figure 16. Age (years)

II. Age group

Among the subjects, 46 (57.5%) were in < 60 years and 34 (42.5%) were in > 60 years

Age group	Frequency	Percent
< 60 years	46	57.50
> 60 years	34	42.50
Total	80	100.00

Table 5. Age group

Figure 17. Age group

III. Gender

Among the subjects, 62 (77.5%) were Males and 18 (22.5%) were Females

Gender	Frequency	Percent
Males	62	77.50
Females	18	22.50
Total	80	100.00

Table 6. Gender

Figure 18. Gender

IV. Smoker

Among the subjects, 50 (62.5%) were Smoker

Table 7. Smoker

Smoker	Frequency	Percent
Yes	50	62.50
No	30	37.50
Total	80	100.00

Figure 19. Smoker

V.Alcoholic

Among the subjects, 62 (77.5%) were Alcoholic

Alcoholic	Frequency	Percent
Yes	62	77.50
No	18	22.50
Total	80	100.00

Figure 20.Alcoholic

VI. Diabetes Mellitus

Among the subjects, 24 (30%) had Diabetes Mellitus

Table 9. Diabetes Mellitus

Diabetes Mellitus	Frequency	Percent
Yes	24	30.00
No	56	70.00
Total	80	100.00

Figure 21. Diabetes Mellitus

VII. Hypertension

Among the subjects, 25 (31.25%) had Hypertension

Table 10. Hypertension

Hypertension	Frequency	Percent
Yes	25	31.25
No	55	68.75
Total	80	100.00

Figure 22. Hypertension

VIII. Prior CAD

Among the subjects, none had Prior CAD

Table 11. Prior CAD

Prior CAD	Frequency	Percent
No	80	100.00

Figure 23. Prior CAD

IX. Prior Diuretic Therapy

Among the subjects, none had Prior Diuretic Therapy

Table 12. Prior Diuretic Therapy

Prior Diuretic Therapy	Frequency	Percent
No	80	100.00

Figure 24. Prior Diuretic Therapy

X. Serum CKMB (IU/L)

The mean Serum CKMB (IU/L) among the subjects was 87.36 (\pm 44.76) ranging from 31 to 221 IU/L.

Serum CKMB (IU/L)				
Mean	87.36			
Median	75.5			
Std. Deviation	44.76			
Range	190			
Minimum	31			
Maximum	221			

Table 13. Serum CKMB (IU/L)

Figure 25. Serum CKMB (IU/L)

XI. KILIP Class

Among the subjects, 42 (52.5%) were in Class I, 26 (32.5%) were in Class II, 8 (10%) were in Class III and 4 (5%) were in Class IV.

KILIP Class	Frequency	Percent
I	42	52.50
П	26	32.50
III	8	10.00
IV	4	5.00
Total	80	100.00

Table 14. KILIP Class

Figure 26. KILIP Class

XII. Serum Sodium

The mean Serum Sodium on admission (mEq/L) among the subjects was 136.69 (\pm 3.12) mEq/L ranging from 126 to 143 mEq/L. The mean Serum Sodium at 24 hours (mEq/L) among the subjects was 135.59 (\pm 2.54) mEq/L ranging from 130 to 140 mEq/L. The mean Serum Sodium at 48 hours (mEq/L) among the subjects was 135.33 (\pm 2.39) mEq/L ranging from 130 to 140 mEq/L. The mean Serum Sodium at 72 hours (mEq/L) among the subjects was 137.56 (\pm 3.46) mEq/L ranging from 130 to 146 mEq/L

Serum Sodium (mEq/L)	Ν	Mean	S.D.	Minimum	Maximum
On admission	80	136.69	3.12	126.0	143.0
At 24 hours	80	135.59	2.54	130.0	140.0
At 48 hours	80	135.33	2.38	130.0	140.0
At 72 hours	80	137.56	3.46	130.0	146.0

Table 15. Serum Sodium

Figure 27. Serum Sodium

XIII. Ejection Fraction (%)

The mean Ejection Fraction (%) among the subjects was 45.56 (\pm 8.13) ranging from 25 to 65 %

Ejection Fraction (%)			
Mean	45.56		
Median	48		
Std. Deviation	8.13		
Range	40		
Minimum	25		
Maximum	65		

Table 16. Ejection Fraction (%)

Figure 28. Ejection Fraction (%)

XIV. Myocardial Infarction Type

Among the subjects, 38 (47.5%) had AWMI, 25 (31.25%) had IWMI and 5 (6.25%) had ASMI

Myocardial Infarction Type	Frequency	Percent
ALMI	3	3.75
ASMI	5	6.25
AWMI	38	47.50
IWMI	25	31.25
IWMI & LWMI	1	1.25
IWMI & PWMI	5	6.25
LWMI	1	1.25
PWMI	1	1.25
QRBBMI	1	1.25
Total	80	100.00

Table 17. Myocardial Infarction Type

Figure 29. Myocardial Infarction Type

XV. Outcome

Among the subjects, 71 (88.75%) were Recovered and 9 (11.25%) had Death

Outcome	Frequency	Percent
Death	9	11.25
Recovered	71	88.75
Total	80	100.00

Table 18. Outcome

Figure 30. Outcome

XVI. Serum Sodium on admission (mEq/L) with Outcome

The mean Serum Sodium on admission (mEq/L) among Death was 132.78 (\pm 4.71) which is lower by 4.41 and statistically significant compared to 137.18 (\pm 2.49) in Recovered

	Outcome	N	Mean	Std. dev.	Mean diff.	p value by 't' test
Serum Sodium	Death	9	132.78	4.71	4 405	0.022
on admission (mEq/L)	Recovered	71	137.18	2.49	4.405	0.023

Table 19. Serum Sodium on admission (mEq/L) with Outcome

XVII. Serum Sodium at 24 hours (mEq/L) with Outcome

The mean Serum Sodium at 24 hours (mEq/L) among Death was 132.56 (\pm 2.3) which is lower by 3.42 and statistically significant compared to 135.97 (\pm 2.31) in Recovered

	Outcome	N	Mean	Std. dev.	Mean diff.	p value by 't' test
Serum Sodium at 24 hours (mEq/L)	Death	9	132.56	2.30	2 416	0.001
	Recovered	71	135.97	2.31	3.416	

Table 20. Serum Sodium at 24 hours (mEq/L) with Outcome

Figure 32. S	Serum S	odium at	t 24 hours	(mEq/L)	with	Outcome
--------------	---------	----------	------------	---------	------	---------

XVIII. Serum Sodium at 48 hours (mEq/L) with Outcome

The mean Serum Sodium at 48 hours (mEq/L) among Death was 133.33 (\pm 2.65) which is lower by 2.24 and statistically significant compared to 135.58 (\pm 2.25) in Recovered

	Outcome	N	Mean	Std. dev.	Mean diff.	p value by 't' test
Serum Sodium	Death	9	133.33	2.65	2 244	0.007
at 48 hours (mEq/L)	Recovered	71	135.58	2.25	2.244	0.007

Table 21. Serum Sodium at 48 hours (mEq/L) with Outcome

Figure 33. Serum Sodium at 48 hours (mEq/L) with Outcome

XIX. Serum Sodium at 72 hours (mEq/L) with Outcome

The mean Serum Sodium at 72 hours (mEq/L) among Death was 134 (\pm 2.65) which is lower by 4.01 and statistically significant compared to 138.01 (\pm 3.3) in Recovered

	Outcome	N	Mean	Std. dev.	Mean diff.	p value by 't' test
Serum Sodium	Death	9	134.00	2.65	4 014	0.001
at 72 hours (mEq/L)	Recovered	71	138.01	3.30	4.014	0.001

Table 22. Serum Sodium at 72 hours (mEq/L) with Outcome

Figure 34. Serum Sodium at 72 hours (mEq/L) with Outcome

XX. Serum Sodium with Myocardial Infarction Type

The mean Serum Sodium on admission (mEq/L) among Other MI was 136.91 which is higher than mean among Anterior Wall MI which was 136.71 followed by Inferior Wall MI with a mean of 136.58 but the difference was not statistically significant (p > 0.05).

The mean Serum Sodium at 24 hours (mEq/L) among Other MI was 136.18 which is higher than mean among Anterior Wall MI which was 135.79 followed by Inferior Wall MI with a mean of 135.13 but the difference was not statistically significant (p > 0.05).

The mean Serum Sodium at 48 hours (mEq/L) among Inferior Wall MI was 135.35 which is higher than mean among Anterior Wall MI which was 135.32 followed by Other MI with a mean of 135.27 but the difference was not statistically significant (p > 0.05).

The mean Serum Sodium at 72 hours (mEq/L) among Other MI was 138.91 which is higher than mean among Anterior Wall MI which was 137.74 followed by Inferior Wall MI with a mean of 136.87 but the difference was not statistically significant (p > 0.05).

Serum Sodium	Муоса	ANOVA p			
(mEq/L)	Anterior Wall MI	Inferior Wall MI	Other MI	value	
On admission	136.7 (±3.1)	136.6 (±3.2)	136.9 (±3)	0.955	
At 24 hours	135.8 (±2.4)	135.1 (±2.7)	136.2 (±2.6)	0.401	
At 48 hours	135.3 (±2.8)	135.4 (±2.2)	135.3 (±1.5)	0.995	
At 72 hours	137.7 (±3.7)	136.9 (±2.8)	138.9 (±4.3)	0.225	

Table 23. Serum Sodium with Myocardial Infarction Type

Figure 35. Serum Sodium with Myocardial Infarction Type

XXI. Serum Sodium with KILIP Class

Class I had higher mean of Serum Sodium on admission (mEq/L) with 137.02 followed by Class II with 136.62 and least in Class IV with 134 but the difference is not statistically significant

Class II had higher mean of Serum Sodium at 24 hours (mEq/L) with 135.92 followed by Class I with 135.76 and least in Class IV with 131.5 and the difference is statistically significant

Class I had higher mean of Serum Sodium at 48 hours (mEq/L) with 135.74 followed by Class II with 135.27 and least in Class IV with 133 but the difference is not statistically significant Class I had higher mean of Serum Sodium at 72 hours (mEq/L) with 138 followed by Class III with 137.75 and least in Class IV with 134.75 but the difference is not statistically significant

Serum Sodium (mEq/L)	KILIP Class				ANOVA
	I	II	III	IV	p value
On admission	137 (± 2.8)	136.6 (± 2.6)	136.5 (± 4.8)	134 (± 5.4)	0.324
At 24 hours	135.8 (± 2.4)	135.9 (± 2)	135.6 (± 3.6)	131.5 (± 1.9)	0.009
At 48 hours	135.7 (± 2.6)	135.3 (± 1.8)	134.5 (± 2.3)	133 (± 2)	0.108
At 72 hours	138 (± 3.4)	137.2 (± 3.7)	137.8 (± 2.9)	134.8 (± 3.4)	0.315

Table 24. Serum Sodium with KILIP Class

Figure 36. Serum Sodium with KILIP Class

XXII. Correlation of Serum Sodium with CKMB

There was no significant correlation between serum sodium and CKMB levels from admission to 72 hours.

Serum Sodium (mEq/L)	N	Correlation coefficient "r"	p value
On admission	80	0.038	0.737
At 24 hours	80	0.163	0.148
At 48 hours	80	0.064	0.573
At 72 hours	80	0.015	0.897

Table 25. Correlation of Serum Sodium with CKMB

XXIII. Correlation of Serum Sodium with Ejection Fraction

Serum Sodium on admission (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation coefficient of 0.357. Serum Sodium at 24 hours (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation coefficient of 0.374. Serum Sodium at 48 hours (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation coefficient of 0.483. Serum Sodium at 72 hours (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation with Ejection Fraction (%) with a correlation coefficient of 0.483. Serum Sodium at 72 hours (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation with Ejection Fraction (%) with a correlation with Ejection Fraction (%) with a correlation coefficient of 0.483. Serum Sodium at 72 hours (mEq/L) has a significant positive correlation with Ejection Fraction (%) with a correlation coefficient of 0.288.

Serum Sodium (mEq/L)	N	Correlation coefficient "r"	p value
On admission	80	0.357	0.001
At 24 hours	80	0.374	0.001
At 48 hours	80	0.483	0.001
At 72 hours	80	0.288	0.001

Table 26. Correlation of Serum Sodium with Ejection Fraction

XXIV. ROC for predicting Death among STEMI using Serum Sodium

The area under the curve for Serum Sodium on admission (mEq/L) in predicting Death is 0.807 (0.663 - 0.951). The area under the curve for Serum Sodium at 24 hours (mEq/L) in predicting Death is 0.855 (0.739 - 0.972). The area under the curve for Serum Sodium at 48 hours (mEq/L) in predicting Death is 0.751 (0.564 - 0.938). The area under the curve for Serum Sodium at 72 hours (mEq/L) in predicting Death is 0.833 (0.731 - 0.936).

The cut off of Serum Sodium on admission (mEq/L) for predicting Death is 129.5 which had a sensitivity of 33.33%, specificity of 100%, positive predictive value of 100%, negative predictive value of 92.21% and a diagnostic accuracy of 92.5%.

The cut off of Serum Sodium at 24 hours (mEq/L) for predicting Death is 131 which had a sensitivity of 33.33%, specificity of 97.18%, positive predictive value of 60%, negative predictive value of 92% and a diagnostic accuracy of 90%.

The cut off of Serum Sodium at 48 hours (mEq/L) for predicting Death is 132.5 which had a sensitivity of 44.44%, specificity of 87.32%, positive predictive value of 30.77%, negative predictive value of 92.54% and a diagnostic accuracy of 82.5%.

The cut off of Serum Sodium at 72 hours (mEq/L) for predicting Death is 130.5 which had a sensitivity of 22.22%, specificity of 100%, positive predictive value of 100%, negative predictive value of 91.03% and a diagnostic accuracy of 91.25%.

95% Confidence Interval Area under Serum Sodium (mEq/L) p value the curve Lower **Upper Bound** Bound **On admission** 0.807 0.663 0.951 0.003 At 24 hours 0.855 0.739 0.972 0.001 At 48 hours 0.564 0.938 0.015 0.751 At 72 hours 0.833 0.731 0.936 0.001

Table 27. ROC for predicting Death among STEMI using Serum Sodium

Table 28.Accuracy values of different cutoffs of Serum Sodium (mEq/L) on admissionfor prediction of prognosis.

Cut off	Sensitivity	Specificity	PPV	NPV	Accuracy			
	Serum Sodium (mEq/L) on admission							
125	0.00%	100.00%	#DIV/0!	88.75%	88.75%			
127	22.22%	100.00%	100.00%	91.03%	91.25%			
129.5	33.33%	100.00%	100.00%	92.21%	92.50%			
131.5	33.33%	98.59%	75.00%	92.11%	91.25%			
133.5	33.33%	92.96%	37.50%	91.67%	86.25%			
135.5	66.67%	77.46%	27.27%	94.83%	76.25%			
136.5	88.89%	57.75%	21.05%	97.62%	61.25%			
137.5	88.89%	45.07%	17.02%	96.97%	50.00%			
138.5	100.00%	25.35%	14.52%	100.00%	33.75%			
139.5	100.00%	21.13%	13.85%	100.00%	30.00%			
140.5	100.00%	7.04%	12.00%	100.00%	17.50%			
141.5	100.00%	5.63%	11.84%	100.00%	16.25%			
142.5	100.00%	1.41%	11.39%	100.00%	12.50%			
144	100.00%	0.00%	11.25%	100.00%	11.25%			

Cut off	Sensitivity	Specificity	PPV	NPV	Accuracy
	Ser	rum Sodium (n	nEq/L) at 24	hours	
129	0.00%	100.00%	#DIV/0!	88.75%	88.75%
131	33.33%	97.18%	60.00%	92.00%	90.00%
132.5	55.56%	88.73%	38.46%	94.03%	85.00%
133.5	55.56%	87.32%	35.71%	93.94%	83.75%
134.5	77.78%	81.69%	35.00%	96.67%	81.25%
135.5	88.89%	59.15%	21.62%	97.67%	62.50%
136.5	100.00%	38.03%	16.98%	100.00%	45.00%
137.5	100.00%	29.58%	15.25%	100.00%	37.50%
138.5	100.00%	11.27%	12.50%	100.00%	21.25%
139.5	100.00%	7.04%	12.00%	100.00%	17.50%
141	100.00%	0.00%	11.25%	100.00%	11.25%

Table 29.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 24 hrs forprediction of prognosis.

Table 30.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 48 hrs for prediction of prognosis.

Cut off	Sensitivity	Specificity	PPV	NPV	Accuracy		
	Serum Sodium (mEq/L) at 48 hours						
129	0.00%	100.00%	0.00%	88.75%	88.75%		
131	22.22%	95.77%	40.00%	90.67%	87.50%		
132.5	44.44%	87.32%	30.77%	92.54%	82.50%		
133.5	44.44%	84.51%	26.67%	92.31%	80.00%		
134.5	77.78%	76.06%	29.17%	96.43%	76.25%		
135.5	77.78%	60.56%	20.00%	95.56%	62.50%		
136.5	88.89%	28.17%	13.56%	95.24%	35.00%		
137.5	88.89%	16.90%	11.94%	92.31%	25.00%		
138.5	100.00%	7.04%	12.00%	100.00%	17.50%		
139.5	100.00%	5.63%	11.84%	100.00%	16.25%		
141	100.00%	0.00%	11.25%	100.00%	11.25%		

Cut off	Sensitivity	Specificity	PPV	NPV	Accuracy			
	Serum Sodium (mEq/L) at 72 hours							
129	0.00%	100.00%	#DIV/0!	88.75%	88.75%			
130.5	22.22%	100.00%	100.00%	91.03%	91.25%			
131.5	22.22%	98.59%	66.67%	90.91%	90.00%			
132.5	33.33%	92.96%	37.50%	91.67%	86.25%			
133.5	33.33%	88.73%	27.27%	91.30%	82.50%			
134.5	33.33%	85.92%	23.08%	91.04%	80.00%			
135.5	66.67%	77.46%	27.27%	94.83%	76.25%			
136.5	88.89%	67.61%	25.81%	97.96%	70.00%			
137.5	100.00%	60.56%	24.32%	100.00%	65.00%			
138.5	100.00%	39.44%	17.31%	100.00%	46.25%			
139.5	100.00%	38.03%	16.98%	100.00%	45.00%			
141	100.00%	19.72%	13.64%	100.00%	28.75%			
142.5	100.00%	5.63%	11.84%	100.00%	16.25%			
143.5	100.00%	4.23%	11.69%	100.00%	15.00%			
145	100.00%	1.41%	11.39%	100.00%	12.50%			
147	100.00%	0.00%	11.25%	100.00%	11.25%			

Table 31.Accuracy values of different cutoffs of Serum Sodium (mEq/L) at 72 hrs forprediction of prognosis.

XXV. Comparision of Hyponatremia on admission with the Outcome

27.27% of the subjects with Hyponatremia on admission had Death which is higher compared to those without Hyponatremia on admission of whom 5.17% had Death and the difference was statistically significant (p < 0.05)

Hyponatremia	Out	come	T - 4 - 1	Fisher
on admission	Death	Recovered	Total	exact p value
Yes	6 (27.27%)	16 (72.72%)	22 (100%)	
No	3 (5.17%)	55 (94.82%)	58 (100%)	0.01
Total	9 (11.25%)	71 (88.75%)	80 (100%)	

Table 32. Comparision of Hyponatremia on admission with the Outcome

Figure 38. Comparision of Hyponatremia on admission with the Outcome

XXVI. Comparision of Hyponatremia at 24 hours with the Outcome

21.6% of the subjects with Hyponatremia at 24 hours had Death which is higher compared to those without Hyponatremia at 24 hours of whom 2.3% had Death and the difference was statistically significant (p < 0.05)

Hyponatremia	Out	come	Tatal	Fisher
at 24 hours	Death	Recovered	Total	value
Yes	8 (21.62%)	29 (78.37%)	37 (100%)	
No	1 (2.32%)	42 (97.67%)	43 (100%)	0.008
Total	9 (11.25%)	71 (88.75%)	80 (100%)	

Table 33. Comparision of Hyponatremia at 24 hours with the Outcome

Figure 39. Comparision of Hyponatremia at 24 hours with the Outcome

XXVII. Comparision of Hyponatremia at 48 hours with the Outcome

27.27% of the subjects with Hyponatremia at 48 hours had Death which is higher compared to those without Hyponatremia at 48 hours of whom 5.17% had Death and the difference was statistically significant (p < 0.05)

Hyponatremia	Out	come	Tatal	Fisher
at 48 hours	Death	Recovered	Total	value
Yes	6 (27.27%)	16 (72.72%)	22 (100%)	
No	3 (5.17%)	55 (94.82%)	58 (100%)	0.01
Total	9 (11.25%)	71 (88.75%)	80 (100%)	

Table 34. Comparision of Hyponatremia at 48 hours with the Outcome

Figure 40. Comparision of Hyponatremia at 48 hours with the Outcome

XXVIII. Comparision of Hyponatremia at 72 hours with the Outcome

20% of the subjects with Hyponatremia at 72 hours had Death which is higher compared to those without Hyponatremia at 72 hours of whom 4.44% had Death and the difference was statistically significant (p < 0.05)

Hyponatremia at	Out	come	Tatal	Fisher
72 hours	Death	Recovered	1 otal	exact p value
Yes	7 (20%)	28 (80%)	35 (100%)	
No	2 (4.44%)	43 (95.55%)	45 (100%)	0.029
Total	9 (11.25%)	71 (88.75%)	80 (100%)	

Table 35. Comparision of Hyponatremia at 72 hours with the Outcome

Figure 41. Comparision of Hyponatremia at 72 hours with the Outcome

XXIX. Comparision of Myocardial Infarction Type with the Hyponatremia on admission

Comparing the Myocardial Infarction Type with Hyponatremia on admission distribution, Inferior Wall MI had higher proportion of Hyponatremia on admission with 32.25% followed by Anterior Wall MI with 26.31% and in Other MI with 18.18%. The difference in Hyponatremia on admission distribution between different Myocardial Infarction Type was not statistically significant (p > 0.05).

Table 36. Comparision of Myocardial Infarction Type with the Hyponatremia on admission

Myocardial	Hyponatremia	Ayponatremia on admission		Fisher exact
Туре	Yes	No	Totai	p value
Anterior Wall MI	10 (26.31%)	28 (73.68%)	38 (100%)	
Inferior Wall MI	10 (32.25%)	21 (67.74%)	31 (100%)	0.127
Other MI	2 (18.18%)	9 (81.81%)	11 (100%)	0.137
Total	22 (27.5%)	58 (72.5%)	80 (100%)	

Figure 42. Comparision of Myocardial Infarction Type with the Hyponatremia on

admission

XXX. Comparision of KILIP Class with the Hyponatremia on admission

Comparing the KILIP Class with Hyponatremia on admission distribution, Class II had higher proportion of Hyponatremia on admission with 30.76% followed by Class I with 26.19% and in Class III with 25%. The difference in Hyponatremia on admission between different KILIP Class was not statistically significant (p > 0.05).

KILIP	KILIP Hyponatremia on admission		Total	Fisher exact p	
Class	Yes	No		value	
I	11 (26.19%)	31 (73.8%)	42 (100%)		
II	8 (30.76%)	18 (69.23%)	26 (100%)		
ш	2 (25%)	6 (75%)	8 (100%)	0.115	
IV	1 (25%)	3 (75%)	4 (100%)		
Total	22 (27.5%)	58 (72.5%)	80 (100%)		

Table 37. Comparision of KILIP Class with the Hyponatremia on admission

Figure 43. Comparision of KILIP Class with the Hyponatremia on admission

XXXI.Binomial Logistic Regression for predicting Death in STEMI

Hyponatremia on admission had an odds of 8.26 times of getting death in STEMI compared to normal sodium level on admission. For each increase in KILIP class, the odds of getting death among STEMI increases by 2.33 times.

Variables	В	Std. Error	Adjusted Odds Ratio (95% C.I.)	p value
Hyponatremia	2.112	0.818	8.26 (1.66 - 41.1)	0.010
KILIP Class	0.846	0.415	2.33 (1.03 - 5.26)	0.042
Constant	-4.602	1.153	0.01 (0 - 0)	0.000

Table 38. Binomial Logistic Regression for predicting Death in STEMI

6 DISCUSSION

Following a Myocardial Infarction, hyponatremia is frequent, and a rise in plasma sodium contents coincides with clinical recovery.(13,14) Hyponatremia was present in about one third of the congestive heart failure patients.(15) It has been demonstrated that in patients with heart failure and STEMI, it is a predictor of cardiovascular death.

Acute STEMI patients who presented with hyponatremia at the time of admission and within 72 hrs of admission had high mortality and so serum sodium level (hyponatremia) is a prognostic indicator. Patient at risk can be identified by a simple marker of plasma sodium level.

The main objective of the study is to study the prognostic importance of serum sodium level (hyponatremia). This is a Cross sectional analytical study, among 80 patients admitted with acute STEMI under the Department of General Medicine, Thanjavur Medical College and hospital, Thanjavur. Relevant history, clinical findings, biochemical measurements especially the serum sodium levels were compared with the outcomes. Prognostic value of the serum sodium levels were analyzed.

Age: Hyponatremia was found to be significantly correlated with age and gender by **RC** Hawkins et al.(56) In our study, the mean Age (years) among the subjects was 55.33 (\pm 12.62) ranging from 25 to 82 years. Among the subjects, 46 (57.5%) were in < 60 years and 34 (42.5%) were in > 60 years. Among the subjects, 62 (77.5%) were Males and 18 (22.5%) were Females

Smoker: Among the subjects, 50 (62.5%) were Smoker and 62 (77.5%) were Alcoholic. Smoking may be directly associated with the onset of hyponatremia in patients, but it also significantly affects the likelihood of positive results. (57–59) **Diabetes:** In this study, 24 (30%) had Diabetes Mellitus. With uncontrolled diabetes and hyperglycemia, hyponatremia is highly frequent and results in electrolyte loss in the urine.(60–62)

Hypertension: In this study, 25 (31.25%) had Hypertension. According to studies, fatality rates were greater in patients with hypertensive STEMI and were more common in older women. (63,64)

Serum CKMB (IU/L): The mean Serum CKMB (IU/L) among the subjects was 87.36 (\pm 44.76) ranging from 31 to 221 IU/L. Although several studies have noted the coexistence of hyponatremia and CKMB levels, it is unclear how they are directly related.(56)

Killip classification: A prognostic indication of acute myocardial infarction is the Killip classification.(65–67) In this study, 42 (52.5%) were in Class I, 26 (32.5%) were in Class II, 8 (10%) were in Class III and 4 (5%) were in Class IV.

Ejection Fraction (%): While **JJ Park et al.** discovered a relationship between hyponatremia, reduced ejection fraction, and higher mortality rate, **Y Cavusoglu et al.** and **C Bavishi et al.** observed a relationship between hyponatremia, reduced ejection fraction, and a decrease in ejection fraction.(68–70) The mean Ejection Fraction (%) among the subjects was $45.56 (\pm 8.13)$ ranging from 25 to 65 %.

Myocardial Infarction Type: Among the subjects, 38 (47.5%) had AWMI, 25 (31.25%) had IWMI and 5 (6.25%) had ASMI.

Outcome: Among the subjects, 71 (88.75%) were Recovered and 9 (11.25%) had Death. **Suprabhat Giri et al.** found that the prevalence of hyponatremia (less than 135 mmol/L) was 29%. Hyponatremia was found to be significantly correlated with both hospital mortality and 7-day MACE in multivariate analysis.(53) Alexander Goldberg et al. observed that, Hyponatremia (135 mmol/L) was present in 12.5% of patients at admission and 19.9% of patients after 72 hours. Hyponatremia (135 mmol/L) upon admission was linked to a 2.0 odds ratio for 30-day death; (95 percent CI: 1.0 to 3.9). Hyponatremia (130 mmol/L) upon admission was associated with a 30-day mortality rate with an odds ratio of 3.4 (95 percent confidence interval: 1.5 to 7.8).(46)

Serum Sodium with Outcome: The mean Serum Sodium at admission, at 24 hours, at 48 hours and 72 hours (mEq/L) among Death was lower and statistically significant compared to the Recovered. **Vraj Shah et al.** noted that hyponatremia worsens short-term and long-term mortality, rehospitalization rates, lengthened hospital stays, and decreased ejection fraction rates.(16)

Correlation of Serum Sodium with CKMB: There was no significant correlation between serum sodium and CKMB levels from admission to 72 hours. **Konsam Biona Devi et al.** found that a considerably greater proportion of Killip III and IV, a higher level of CK-MB, and a higher degree of ST-elevation were all related to hyponatremia. Out of six hyponatremia patients, four passed away.(49)

Correlation of Serum Sodium with Ejection Fraction: Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours has a significant positive correlation with Ejection Fraction (%). **Vikas et al.,** discovered that hyponatremia had a strong correlation with both long- and short-term mortality, a greater number of risk factors, a higher Killip class, and a lower ejection percentage.(52) **Sidhnath Singh et al.** found that long- and short-term mortality, as well as risk variables like smoking, diabetes, anterior infarction, higher Killip class, and reduced ejection fraction, were all strongly correlated with hyponatremia.(54)

ROC for predicting Death among STEMI using Serum Sodium: Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours in predicting Death was significant, with the good diagnostic accuracy value.

Binomial Logistic Regression for predicting Death in STEMI: Hyponatremia on admission had an odds of 8.26 times of getting death in STEMI compared to normal sodium level on admission. For each increase in KILIP class, the odds of getting death among STEMI increases by 2.33 times. Alexander Goldberg et al. found that for every 1-mEq/L decrease in serum sodium, the adjusted Hazard Ratio for mortality or heart failure was 1.12.(47)

Chiara Lazzeri et al. noted that a considerable proportion of the aged population, diabetics, Killip III and IV, Triple Vein Disease, and increased rates of both long-term and short-term mortality were all associated with hyponatremia..(50) **Makrand B. Mane et al.** found that a considerably larger percentage of elderly people, tobacco use, diabetes, hypertension, ejection fraction, and both long-term and short-term mortality were all linked to hyponatremia.(51)

7 LIMITATIONS

Because of the cross-sectional nature of the study's design, it is unable to clearly determine the temporal link of the causal association between hyponatremia and outcomes.

It is impossible to discount the impact of confounding factors' bias on study results and outcomes.

Although the sample size was appropriate to evaluate the frequency of hyponatremia, it was insufficient to investigate the causes of severe hyponatremia.

Due to the fact that the study was carried out in a hospital and in a setting that provides tertiary care, there is a chance that Berkesonian bias will result from the varying rates at which cases are admitted.

The study did not take into account a long-term follow-up of the complications and fatality rates due to limitations in the study period.

8 STRENGTHS

Age, gender, smoking, were not linked to the occurrence of hyponatremia; as a result, their potential to distort the results should be disregarded.

Numerous research have demonstrated the connection between hyponatremia and congestive heart failure; however, this study focuses on the connection between hyponatremia and non-stem MI.

The lead investigator, a general medicine postgraduate, collected the data, therefore there won't be any ascertainment bias or interobserver bias.

The desired sample size was reached despite the COVID-19's limitations and the difficulties in data gathering.

9 RECOMMENDATIONS

Serum sodium can be used as a prognostic parameter for predicting death among the acute STEMI patients.

The role of correction of the hyponatremia in prevention of the mortality rate among the acute STEMI patients' needs to be explored.

Hyponatremia upon admission and after 72 hours will serve as a reliable indicator of severity and prognosis. If hyponatremia is treated or avoided, these values may enable us to deliver a better result.

It is possible to conduct additional research with a follow-up that focuses on the impact of sodium supplementation and level correction on mortality.

A true picture will emerge from further research with slightly larger sample sizes, matched for known confounding variables, and all the different types of instances included.

10 SUMMARY OF RESULTS

- Age (years): The mean Age (years) among the subjects was 55.33 (± 12.62) ranging from 25 to 82 years. Among the subjects, 46 (57.5%) were in < 60 years and 34 (42.5%) were in > 60 years.
- ➤ Gender: Among the subjects, 62 (77.5%) were Males and 18 (22.5%) were Females
- Smoker: Among the subjects, 50 (62.5%) were Smoker
- > Alcoholic: Among the subjects, 62 (77.5%) were Alcoholic
- **Diabetes Mellitus:** Among the subjects, 24 (30%) had Diabetes Mellitus.
- **Hypertension:** Among the subjects, 25 (31.25%) had Hypertension.
- > **Prior CAD:** Among the subjects, none had Prior CAD.
- > **Prior Diuretic Therapy:** Among the subjects, none had Prior Diuretic Therapy.
- Serum CKMB (IU/L): The mean Serum CKMB (IU/L) among the subjects was 87.36 (± 44.76) ranging from 31 to 221 IU/L.
- KILIP Class: Among the subjects, 42 (52.5%) were in Class I, 26 (32.5%) were in Class II, 8 (10%) were in Class III and 4 (5%) were in Class IV.
- Ejection Fraction (%): The mean Ejection Fraction (%) among the subjects was 45.56 (± 8.13) ranging from 25 to 65 %.
- Myocardial Infarction Type: Among the subjects, 38 (47.5%) had AWMI, 25 (31.25%) had IWMI and 5 (6.25%) had ASMI.
- Outcome: Among the subjects, 71 (88.75%) were Recovered and 9 (11.25%) had Death.
- Serum Sodium on admission (mEq/L) with Outcome: The mean Serum Sodium on admission (mEq/L) among Death was 132.78 (± 4.71) which is lower by 4.41 and statistically significant compared to 137.18 (± 2.49) in Recovered.

- Serum Sodium at 24 hours (mEq/L) with Outcome: The mean Serum Sodium at 24 hours (mEq/L) among Death was 132.56 (± 2.3) which is lower by 3.42 and statistically significant compared to 135.97 (± 2.31) in Recovered.
- Serum Sodium at 48 hours (mEq/L) with Outcome: The mean Serum Sodium at 48 hours (mEq/L) among Death was 133.33 (± 2.65) which is lower by 2.24 and statistically significant compared to 135.58 (± 2.25) in Recovered.
- Serum Sodium at 72 hours (mEq/L) with Outcome: The mean Serum Sodium at 72 hours (mEq/L) among Death was 134 (± 2.65) which is lower by 4.01 and statistically significant compared to 138.01 (± 3.3) in Recovered.
- Serum Sodium with Myocardial Infarction Type: The mean Serum Sodium on admission, at 24 hrs, 48 hrs and 72 hrs among the various type of MI, were not significantly different (p > 0.05).
- Correlation of Serum Sodium with CKMB: There was no significant correlation between serum sodium and CKMB levels from admission to 72 hours.
- Correlation of Serum Sodium with Ejection Fraction: Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours has a significant positive correlation with Ejection Fraction (%).
- ROC for predicting Death among STEMI using Serum Sodium: Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours in predicting Death was significant, with the good diagnostic accuracy value.
- Binomial Logistic Regression for predicting Death in STEMI: Hyponatremia on admission had an odds of 8.26 times of getting death in STEMI compared to normal sodium level on admission. For each increase in KILIP class, the odds of getting death among STEMI increases by 2.33 times.

11 CONCLUSION

Among the subjects, 71 (88.75%) were Recovered and 9 (11.25%) had Death. The mean Serum Sodium at admission, at 24 hours, at 48 hours and 72 hours (mEq/L) among Death was lower and statistically significant compared to the Recovered. Serum Sodium on admission, at 24 hours, at 48 hours and 72 hours in predicting Death was significant, with the good diagnostic accuracy value. Hence serum sodium can be used as a prognostic parameter for predicting death among the acute STEMI patients. The role of correction of the hyponatremia in prevention of the mortality rate among the acute STEMI patients' needs to be explored.

12 REFERENCES

- 1. Boersma E, Mercado N, Poldermans D, Gardien M, Vos J, Simoons ML. Acute myocardial infarction. The Lancet. 2003;361(9360):847–58.
- Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010 Feb;35(2):72–115.
- 3. Guha S, Sethi R, Ray S, Bahl VK, Shanmugasundaram S, Kerkar P, et al. Cardiological Society of India: Position statement for the management of ST elevation myocardial infarction in India. Indian Heart J. 2017 Apr;69 Suppl 1(Suppl 1):S63–97.
- 4. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul;12(7):e9349.
- 5. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016 Jul 1;4(13):7–7.
- 6. Management strategies for acute STEMI in low- and middle-income countries: experience of the Tamil Nadu ST-segment elevation myocardialinfarction programme – AsiaIntervention [Internet]. [cited 2022 Dec 12]. Available from: https://www.asiaintervention.org/article/management-strategies-for-acute-stemi-in-lowand-middle-income-countries-experience-of-the-tamil-nadu-st-segment-elevationmyocardialinfarction-programme/
- Kumar A, Cannon CP. Acute Coronary Syndromes: Diagnosis and Management, Part I. Mayo Clin Proc. 2009 Oct;84(10):917–38.
- 8. Bergmark BA, Mathenge N, Merlini PA, Lawrence-Wright MB, Giugliano RP. Acute coronary syndromes. Lancet Lond Engl. 2022;399(10332):1347–58.
- 9. Sahay M, Sahay R. Hyponatremia: A practical approach. Indian J Endocrinol Metab. 2014 Nov;18(6):760–71.
- Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986 Jun;314(24):1529–35.
- 11. Gross SG, Bell RD. Central pontine myelinolysis and rapid correction of hyponatremia. Tex Med. 1982 Oct;78(10):59–60.
- 12. Fall PJ. Hyponatremia and hypernatremia. A systematic approach to causes and their correction. Postgrad Med. 2000 May;107(5):75–82; quiz 179.
- 13. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013 Jan;127(1):143–52.

- 14. Filippatos TD, Mikhailidis DP. Statins and heart failure. Angiology. 2008;59(2 Suppl):58S-61S.
- 15. Milionis HJ, Alexandrides GE, Liberopoulos EN, Bairaktari ET, Goudevenos J, Elisaf MS. Hypomagnesemia and concurrent acid-base and electrolyte abnormalities in patients with congestive heart failure. Eur J Heart Fail. 2002 Mar;4(2):167–73.
- 16. Shah V, Jahan N. Prognostic Significance of Hyponatremia in ST-elevation Myocardial Infarction/Heart Failure Patients. Cureus. 2019 Sep;11(9):e5673.
- 17. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017 Jan;14(1):30–8.
- 18. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82.
- 19. DeFilippis AP, Chapman AR, Mills NL, de Lemos JA, Arbab-Zadeh A, Newby LK, et al. Assessment and Treatment of Patients With Type 2 Myocardial Infarction and Acute Nonischemic Myocardial Injury. Circulation. 2019;140(20):1661–78.
- 20. Tibaut M, Mekis D, Petrovic D. Pathophysiology of Myocardial Infarction and Acute Management Strategies. Cardiovasc Hematol Agents Med Chem. 2017 Feb 22;14(3):150–9.
- Overview of Ischemic Heart Disease | Calgary Guide [Internet]. [cited 2021 Dec 13]. Available from: https://calgaryguide.ucalgary.ca/overview-of-ischemic-heart-disease/
- 22. Weil BR, Neelamegham S. Selectins and immune cells in aucte mycardial infarction and post-infarction ventricular remodelings: Pathophysiology and novel treatments. Front Immunol. 2019;10(FEB):300.
- Richard N. Fogoros. NSTEMI: Non-ST-Segment Myocardial Infarction Explained [Internet]. 2019 [cited 2021 Aug 31]. Available from: https://www.verywellhealth.com/non-st-segment-elevation-myocardial-infarctionnstemi-1746017
- 24. Floyd C, Williams S, Marber M. The Changing Face of Acute Coronary Syndromes. Heart Metab. 2011;
- 25. Introduction to ACS | Thrombosis Adviser [Internet]. [cited 2021 Dec 13]. Available from: https://www.thrombosisadviser.com/en/professionals/knowledgebase/arterial-thrombosis/acute-coronary-syndrome/introduction
- 26. Vogel B, Claessen BE, Arnold S V, Chan D, Cohen DJ, Giannitsis E, et al. STsegment elevation myocardial infarction. Nat Rev Dis Primer. 2019;5(1):39.
- 27. Diaz DrG. Complications of Myocardial Infarction Early complications ... | GrepMed [Internet]. [cited 2021 Dec 13]. Available from: https://www.grepmed.com/images/3541/infarction-diagnosis-cardiology-myocardialcomplications

- 28. Strazzullo P, Leclercq C. Sodium. Advances in Nutrition Narnia; Mar 1, 2014 p. 188–90.
- 29. Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol-Ren Physiol. 2015 Aug 15;309(4):F280–99.
- 30. Rayner B, Ramesar R. The Importance of G Protein-Coupled Receptor Kinase 4 (GRK4) in Pathogenesis of Salt Sensitivity, Salt Sensitive Hypertension and Response to Antihypertensive Treatment. Int J Mol Sci. 2015 Mar 12;16(12):5741–9.
- 31. Mohan S, Gu S, Parikh A, Radhakrishnan J. Prevalence of Hyponatremia and Association with Mortality: Results from NHANES. Am J Med. 2013 Dec;126(12):1127-1137.e1.
- 32. Electrolyte Balance | Boundless Anatomy and Physiology [Internet]. [cited 2019 Sep 12]. Available from: https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/
- 33. Holm JP, Amar AOS, Hyldstrup L, Jensen JEB. Hyponatremia, a risk factor for osteoporosis and fractures in women. Osteoporos Int. 2016 Mar 23;27(3):989–1001.
- 34. Zaino CJ, Maheshwari A V, Goldfarb DS. Impact of mild chronic hyponatremia on falls, fractures, osteoporosis, and death. Am J Orthop Belle Mead NJ. 2013 Nov;42(11):522–7.
- 35. Giuliani C, Peri A. Effects of Hyponatremia on the Brain. J Clin Med. 2014 Oct 28;3(4):1163–77.
- 36. Adrogué HJ, Madias NE. Hyponatremia. N Engl J Med. 2000 May 25;342(21):1581–9.
- 37. Carlos Ayus J, Negri AL, Kalantar-Zadeh K, Moritz ML. Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol Dial Transplant. 2012 Oct 1;27(10):3725–31.
- 38. Josiassen RC, Curtis J, Filmyer DM, Audino B, Skuban N, Shaughnessy RA. Tolvaptan: a new tool for the effective treatment of hyponatremia in psychotic disorders. Expert Opin Pharmacother. 2010 Mar 17;11(4):637–48.
- 39. Zieg J. Evaluation and management of hyponatraemia in children. Acta Paediatr. 2014 Oct;103(10):1027–34.
- 40. Adrogué HJ, Madias NE. The challenge of hyponatremia. J Am Soc Nephrol JASN. 2012 Jul 1;23(7):1140–8.
- 41. Overview of the treatment of hyponatremia in adults [Internet]. [cited 2022 Dec 12]. Available from: https://www.medilib.ir/uptodate/show/2350
- 42. Clinical practice guideline on diagnosis and treatment of hyponatraemia in: European Journal of Endocrinology Volume 170 Issue 3 (2014) [Internet]. [cited 2022 Dec 12]. Available from: https://eje.bioscientifica.com/view/journals/eje/170/3/G1.xml

- 43. Adrogué HJ, Tucker BM, Madias NE. Diagnosis and Management of Hyponatremia: A Review. JAMA. 2022 Jul 19;328(3):280–91.
- 44. Filippatos TD, Elisaf MS. Hyponatremia in patients with heart failure. http://www.wjgnet.com/. 2013;5(9):317–28.
- 45. Urso C, Brucculeri S, Caimi G. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev. 2015 Jul;20(4):493—503.
- 46. Goldberg A, Hammerman H, Petcherski S, Zdorovyak A, Yalonetsky S, Kapeliovich M, et al. Prognostic importance of hyponatremia in acute ST-elevation myocardial infarction. Am J Med. 2004 Aug;117(4):242–8.
- 47. Goldberg A, Hammerman H, Petcherski S, Nassar M, Zdorovyak A, Yalonetsky S, et al. Hyponatremia and long-term mortality in survivors of acute ST-elevation myocardial infarction. Arch Intern Med. 2006 Apr;166(7):781–6.
- 48. Martens P, Ferreira JP, Vincent J, Abreu P, Busselen M, Mullens W, et al. Serum sodium and eplerenone use in patients with a myocardial infarction and left ventricular dysfunction or heart failure: insights from the EPHESUS trial. Clin Res Cardiol Off J Ger Card Soc. 2021 Apr;
- 49. Devi K, Chanu K, Ram R, Narayanaswamy G, Singh K, Chongtham D. Profile of acute ST-elevation myocardial infarction patients with hyponatremia. J Med Soc. 2017 May 1;31(2):119–22.
- 50. Lazzeri C, Valente S, Chiostri M, Attanà P, Picariello C, Gensini GF. Usefulness of Hyponatremia in the Acute Phase of ST-Elevation Myocardial Infarction as a Marker of Severity. Am J Cardiol. 2012 Nov 15;110(10):1419–24.
- 51. Mane MB. Assessing Acute St-Elevation Myocardial Infarction With Prognostic Significance Of The Hyponatramia. IJRPS. 2020;11(3):3251–60.
- 52. Vikas D. Prognostic Importance of Hyponatremia in Acute ST Elevation Myocardial Infarction (STEMI). J Med Sci Clin Res. 2018 Aug 6;6(8).
- 53. Giri S, Mohanty N, Kurian S, George R. Study of Hyponatremia in Acute ST-Elevation Myocardial Infarction and Its Prognostic Importance. 2017;
- Singh S, Mitra J, Kumar B, Madhaw G. Study of hyponatremia as prognostic factor In acute ST elevation myocardial infarction (STEMI). IOSR J Dent Med Sci. 2018;61– 5.
- 55. Singla I, Zahid M, Good CB, Macioce A, Sonel AF. Effect of Hyponatremia (<135 mEq/L) on Outcome in Patients With Non–ST-Elevation Acute Coronary Syndrome. Am J Cardiol. 2007 Aug 1;100(3):406–8.
- 56. Khow KSF, Lau SY, Li JYZ, Yong TY. Asymptomatic elevation of creatine kinase in patients with hyponatremia. Ren Fail. 2014;36(6):908–11.
- 57. Allon M, Allen HM, Deck L V, Clark ML. Role of cigarette use in hyponatremia in schizophrenic patients. Am J Psychiatry. 1990;147(8):1075–7.

- 58. Ellinas PA, Rosner F, Jaume JC. Symptomatic hyponatremia associated with psychosis, medications, and smoking. J Natl Med Assoc. 1993;85(2):135.
- 59. Blum A. The possible role of tobacco cigarette smoking in hyponatremia of long-term psychiatric patients. JAMA. 1984;252(20):2864–5.
- 60. Pun KK, Ho PWM. Subclinical hyponatremia, hyperkalemia and hypomagnesemia in patients with poorly controlled diabetes mellitus. Diabetes Res Clin Pract. 1989;7(3):163–7.
- 61. Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med. 1999;106(4):399–403.
- 62. Ferry Jr RJ, Kesavulu V, Kelly A, Katz LEL, Moshang Jr T. Hyponatremia and polyuria in children with central diabetes insipidus: challenges in diagnosis and management. J Pediatr. 2001;138(5):744–7.
- 63. Picariello C, Lazzeri C, Attana P, Chiostri M, Gensini GF, Valente S. The impact of hypertension on patients with acute coronary syndromes. Int J Hypertens. 2011;2011.
- Rembek M, Goch A, Goch J. The clinical course of acute ST-elevation myocardial infarction in patients with hypertension. Kardiologia Pol Pol Heart J. 2010;68(2):157– 63.
- 65. Khot UN, Jia G, Moliterno DJ, Lincoff AM, Khot MB, Harrington RA, et al. Prognostic importance of physical examination for heart failure in non–ST-elevation acute coronary syndromes: the enduring value of Killip classification. Jama. 2003;290(16):2174–81.
- 66. DeGeare VS, Boura JA, Grines LL, O'Neill WW, Grines CL. Predictive value of the Killip classification in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol. 2001;87(9):1035–8.
- 67. El-Menyar A, Zubaid M, AlMahmeed W, Sulaiman K, AlNabti A, Singh R, et al. Killip classification in patients with acute coronary syndrome: insight from a multicenter registry. Am J Emerg Med. 2012;30(1):97–103.
- 68. Bavishi C, Ather S, Bambhroliya A, Jneid H, Virani SS, Bozkurt B, et al. Prognostic significance of hyponatremia among ambulatory patients with heart failure and preserved and reduced ejection fractions. Am J Cardiol. 2014;113(11):1834–8.
- 69. Park JJ, Cho YJ, Oh IY, Park HA, Lee HY, Kim KH, et al. Short and long-term prognostic value of hyponatremia in heart failure with preserved ejection fraction versus reduced ejection fraction: An analysis of the Korean Acute Heart Failure registry. Int J Cardiol. 2017;248:239–45.
- 70. Cavusoglu Y, Kaya H, Eraslan S, Yilmaz MB. Hyponatremia is associated with occurrence of atrial fibrillation in outpatients with heart failure and reduced ejection fraction. Hellenic J Cardiol. 2019;60(2):117–21.

13 ANNEXURES

14.1 QUESTIONNAIR

NAME: IP. NO: AGE: SEX: DOA: DOA: DOD: OCCUPATION: RELIGION: MARITAL STATUS: ADDRESS: TELEPHONE NO:

STATUS AT DISCHARGE

PRESENTING COMPLAINTS:

I. HISTORY OF PRESENTING ILLNESS:

A. CHEST PAIN:

- Site: Precordial/ Restrosternal Epigastric/ Shoulder/ Neck
- Time of onset:
- Nature: Squeezing/ Crushing/ Compressive/ Tightness
- Radiation: Arm/ Back/ Epigastric/ Neck
- Frequency:

- Severity
- Aggravating Factor:
- Relieving Factor:
- Associated sweating:

B. BREATHLESSNESS:

- Onset: Sudden/ Gradual
- Grade: I/II/III/IV
- H/O Orthopnea: Yes/ No
- Wheeze: Present/ Absent
- H/O PND: Yes/No Associated symptoms

C. COUGH • Onset: acute insidious

- Productive/ Non Productive
- Sputum: Quantity
- Quality
- Colour
- Postural Variation
- Haemoptysis: Yes/ NO

D. PALPITATION

- Onset: Acute/ Insidious
- Duration
- Nature: intermittent/ continuous
- Aggravating Factors: Exertion/ Excitement
- Relieving Factors

E. PRESYNCOPE/ SYNCOPE

- Related to exertion : Yes
- Postural relation : Erect Supine
- Frequency : Isolated Frequent
- Loss of consciousness : Yes No
- Others :

F.SWELLING OF LEGS/ FACE

- Onset: Acute/ Insidious
- Duration:
- Associated with pain: yes/ No
- Diurnal Variation: Yes /No

G. NAUSEA /VOMITING

• Present Absent

H. MISCELLANEOUS

- General weakness/ Fatigue
- Altered sensorium
- Oliguria

Convulsion

• Others

III. PAST HISTORY

- Past history : Present/Absent
- Duration
- Treatment
- IHD Angina
- Infarction
- Hypertension
- Diabetes
- Rheumatic
- Syphilis
- Vascular heart disease
- TIA/ Stroke
- Any other

III. PERSONAL HISTORY

- 1. Diet Vegetarian Mixed
- 2. Sleep Sound Disturbed
- 3. Appetite Good Decreased
- 4. Bladder Normal Polyuria/ Anuria/Dysuria
- 5. Bowel Normal Constipated /Loose stools
- 6. Menstrual history Normal /Irregular Postmenopausal

7. Habits

- a) Smoking : Duration
- b) Alcohol : Duration Type Quantity
- c) Tobacco Chewing: Duration Quantity
- d) History of exposure to STD: Present/ Absen

IV. GENERAL PHYSICAL EXAMINATION

- 1) Built Well/Moderate Poor
- 2) Nourishment Obese/Average Poor
- 3) Emotional state Calm/Anxious Restless
- 4) Pallor Present/ Absent
- 5) Cyanosis Present/ Absent
- 6) Icterus Present/ Absent
- 7) Clubbing Present/ Absent
- 8) Pedal oedema Present/ Absent
- 9) Lymphadenopathy Present/ Absent
- 10) Extremities Warm/ Cold

V. VITAL SIGNS -

Pulse -

Blood pressure –

Respiratory rate –

Temperature

VI. SYSTEMIC EXAMINATION CVS EXAMINATION

1) Pulse

-Rate

-Rhythm

-Volume

-Character

-Condition of Vessel Wall

-Radio Femoral Delay

2) JVP -- Normal /Raised

A. INSPECTION

Precordium Normal/Bulged Apical impulse Visible / Non Visible Other pulsation

B. PALPATION

Apical impulse -Location, Character

Thrills - Apex Parasternal area

Any other

C. PERCUSSION

Cardiomegaly

Pericardial effusion

D. AUSCULTATION

Heart sounds S3/S4 Present/ Absent

Murmur -Timing/Location/Character/Radiation/Grade

Pericardial rub

Basal crepitations

Others

KILLIP CLASS:

RESPIRATORY SYSTEM:

PER ABDOMEN:

CENTRAL NERVOUS SYSTEM

INVESTIGATIONS

gm/dl HAEMOGLOBIN Cells/mm³ TC DC % NEUTROPHILS % LYMPHOCYTES EOSINOPHILS % BASOPHILS % % MONOCYTES ESR % CARDIAC ENZYMES: CPK-MB IU/L Or TROPONIN T. IU/L

I. BLOOD
II.URINE

ALBUMIN	
SUGAR	
MICROSCOPY	

III.BIOCHEMISTRY

RBS		mg/dl
SODIUM LEVELS	ON ADMISSION	mEq/L
-AFTER 24 HRS		mEq/L
-AFTER 48 HRS		mEq/L
-AFTER 72 HRS		mEq/L
TOTAL CHOLESTEROL		mg/dl
HDL CHOLESTROL		mg/dl
LDL CHOLESTROL		mg/dl
VLDL CHOLESTROL		mg/dl
TRIGLYCERIDE		mg/dl

IV.ELECTROCARDIOGRAPHY

V.ECHOCARDIOGRAPHY

EJECTION FRACTION	
CONCLUSIONS	

OTHER RELEVANT INVESTIGATIONS

DIAGNOSIS

IN HOSPITAL COMPLICATIONS

CCF/LVF

Cardiogenic shock

Arrhythmias

Thromboembolism

Pericarditis

Rupture of Interventricular septum

Rupture of papillary muscle

Aneurysm

Any other

FOLLOW UP UPTO 30 DAYS

13.1.1 CONSENT FORM

13.1.2 PATIENT INFORMATION SHEET

INFORMED CONSENT DEPARTMENT OF GENERAL MEDICINE

Thanjavur Medical College, thanjavur

Principal investigator : Dr. Cauvery N.

Research guide : Dr. S.Vetrivel, M.D.

Organisation : Department of General Medicine

Informed consent :

I have been invited to participate in research Project Titled

"A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER"

I understand, it will be answering a set of questionnaire, undergo physical examination, investigations and appropriate treatment.

I also give consent to utilise my personal details for study purpose and can be contacted if necessary.

I am aware that I have the right to withdraw at any time which will not affect my medical care.

Signature of the participant :	Date :
Signature of the witness :	Date :
Signature of the investigator :	Date :

ஒப்புதல் படிவம்

பெயா் : பாலினம் : முகவரி :

கோவை மருத்துவக் கல்லூரியில் பொது மருத்துவத் அரசு துறையில் UĹL பயிலும் மேற்கொள்ளும் மேற்படிப்பு மாணவர் ''கடுமையான மாரடைப்பும் இரத்தத்தின் சோடியம் அளவு குறைப்பாடினால் ஏற்படும் பின் விளைவுகள்'' குறித்த ஆய்வில் செய்முறை மற்றும் அனைத்து விவரங்களையும் கேட்டுக் கொண்டு சந்தேகங்களை தெளிவுப்படுத்திக் கொண்டேன் எனது என்பதை தெரிவித்துக் கொள்கிறேன்.

நான் இந்த ஆய்வில் முழு சம்மதத்துடனும், சுய சிந்தனையுடனும் கலந்து கொள்ள சம்மதிக்கிறேன்.

இந்த ஆய்வில் என்னுடைய அனைத்து விபரங்கள் பாதுகாக்கப்படுவதுடன் இதன் முடிவுகள் ஆய்விதழில் வெளியிடப்படுவதில் ஆட்சேபனை இல்லை என்பதை தெரிவித்துக் கொள்கிறேன். எந்த நேரத்திலும் இந்த ஆய்விலிருந்து நான் விலகிக் கொள்ள எனக்கு உரிமை உண்டு என்பதையும் அறிவேன்.

கையொப்பம் / ரேகை

நாள் :

இடம் :

வயது :

15.3 PATIENT INFORMATION SHEET

I, Dr. Cauvery N (Ph:7373488333) am conducting a "A STUDY OF SERUM SODIUM LEVEL AND ITS PROGNOSTIC SIGNIFICANCE IN PATIENTS WITH ACUTE STEMI IN TERTIARY CARE CENTER"

You are being invited to take part in a research study. Before you decide whether to take part, it is important for you to understand why the research is being done. Feel free to discuss the study with others if you wish. Please take time to decide whether or not you wish to take part. The study will follow patients with *ACUTE STEMI* admitted in ,THANJAVUR MEDICAL COLLEGE Hospital over a period of time. The type of treatment patients receive will not be altered by taking part in this study.

If you agree to take part you will be observed from the time you agree to take part until you leave the hospital. No additional tests will be undertaken as part of the study, but you will be asked to give permission for your medical records to be examined in detail, in order to collect information about your health status and any treatments that you have throughout your hospital stay. Your treatment options will not be altered in any way by taking part in this study. Your doctor will decide on the best treatment for you. Participation in the study does not restrict your ability to change from one treatment option to another. There will be no additional visits as part of the study. There are no anticipated disadvantages or risks involved in this study as it is an observational study. All information that is collected about you during the course of this study will be kept strictly confidential.

This study was reviewed and approved by the Institutional Review Board and Ethics'

Contact details:

Please contact **Dr.CAUVERY N** at Department of Medicine ,THANJAVUR MEDICAL COLLEGE. PHONE NO: 7373488333

D E E
SEX SMOKING ALCOHOL DM
MALE YES YES NO NO
MALE YES YES NO NO
MALE NO YES NO N
MALE YES YES NO N
MALE YES YES YES N
MALE NO YES NO N
MALE NO YES NO Y
MALE YES YES NO
MALE YES YES NO
MALE YES YES YES
MALE NO YES NO
FEMALE NO NO NO
FEMALE NO NO NO
MALE YES YES NO
MALE YES YES NO
MALE YES YES YES
MALE NO NO NO
FEMALE NO NO YES
MALE NO YES NO
MALE NO YES NO
MALE YES YES NO
MALE YES YES NO
MALE YES YES NO
FEMALE NO NO NO
MALE YES YES YES
MALE YES YES NO
FEMALE NO NO NO
MALE YES YES NO
FEMALE NO NO NO
MALE YES YES NO
MALE YES YES YES
MALE YES YES NO 1
FEMALE NO NO NO
MALE YES YES NO
FEMALE NO NO YES
MALE YES YES NO
MALE YES YES YES
MALE YES YES YES
MALE YES YES NO

13.1.3 DATA SHEET

				100				1000	24					2 :	HAIAAC	
48 FEM	ALE N	40	0	0 YE	s	NO	N	152	2	136	135	137	135	48	IMMI	÷
52 FEA	ALE N	4 07	N 01	N O	-	NO	N	179	ŝ	138	138	135	135	52	AWMI	+
72 M.	VLE YI	ES Y	ES N	O NC	-	NO	NO	130	-	140	135	138	136	50	IMMI	+
42 M.	NLE YI	ES Y	N SI	0 YE	s	NO	NO	48	-	139	136	137	137	52	AWMI	+
56 M.	NLE YI	ES Y	S	O NC	0	NO	N	80	2	137	138	140	140	20	AWMI	+
82 M.	NLE YI	ES VI	N SI	O NC	-	NO	NO	36	2	135	137	136	138	48	AWMI	+
65 M.	NE Y	ES Y	N SI	N O	-	NO	N	Ч		136	135	136	142	50	AWMI	+
61 M.	NE Y	ES Y	N SI	N O	-	NO	N	105	-	138	138	140	138	54	AWMI	+
60 M.	NE YI	ES Y	ES N	0 YE	s	NO	NO	45	4	136	132	134	130	38	QRBBMI	1
50 M.	VLE YI	ES Y	N SI	0 YE	s	NO	NO	74	-	140	136	137	142	50	ALMI	+
54 M	VLE Y	ES Y	ES M	ES YE	s	NO	N	20	-	139	136	1385	140	09	IVVVI	+
81 M.	NE Y	ES Y	N SI	ES YE	s	NO	N	36	-	137	138	138	143	50	AWMI	+
60 M.	NLE Y	ES Y	ES N	0 YE	s	NO	N	71	-	128	130	132	135	45	AWMI	r.
40 M	NE Y	ES Y	N SI	O NC	-	NO	N	44	-	141	137	136	140	50	IVWI	+
51 M.	VLE Y	ES Y	N N	S NC	-	NO	ON	85	2	138	136	135	133	30	IVWI	+
62 M	VLE Y	ES Y	N Si	0 YE	s	NO	QN	11	2	143	140	136	138	50	IVWI	+
58 M.	NLE YI	ES Y	N Si	ES YE	s	NO	N	89	2	140	134	133	131	40	AWMI	+
65 FEA	ALE N	4 07	W 0	S NC	-	NO	N	55	ŝ	142	136	136	136	52	AWMI	+
53 M.	NLE N	NO VI	N N	S NC	0	NO	N	115	-	140	136	136	135	65	IVWI	+
50 FEA	ALE N	4 0	W O	SS YE	s	NO	N	39	-	138	137	139	137	20	IMMI	+
53 M	NLE Y	ES Y	ES N	O NC	-	NO	N	40	ŝ	137	138	136	138	40	IMMI-IMMI	+
55 FEA	AALE N	4	V 0	N NC	-	NO	Q	67	e	136	138	136	139	25	AWM	+
47 FEA	ALE N	4 07	W O	S YE	s	NO	ON	2	4	126	130	134	135	25	IWMI-LWMI	,
W 69	N.E. Y.	ES Y	ES M	S NC	-	NO	N	88	2	136	136	136	142	32	IVWI	+
35 M.	ALE A	NO Y	K N	S NC	-	NO	N	36	-	135	135	136	140	40	AWMI	+
75 M	ALE Y	ES VI	ES N	N N	-	NO	Q	45	-	132	132	130	134	30	IMMI	+
75 M.	ALE Y	ES Y	ES Y	S YE	s	NO	N	39	5	136	136	132	132	35	AWMI	+
55 FEA	ALE N	V 07	W O	S YE	s	NO	N	67	2	136	136	135	138	20	IMMI	+
60 M.	NE Y	ES Y	N SI	N O	-	NO	N	22	-	138	135	135	136	48	IMMI	+
44 M.	NLE N	V ON	N SI	O NC	-	NO	NO	74	-	137	140	137	138	50	IVWVI	+
44 M.	NE Y	ES Y	ES N	O NC	0	NO	N	36	-	139	139	138	137	54	IVWI	+
50 M.	NE Y	ES V	N SI	O NC	0	NO	N	54	-	131	132	132	135	40	LWM	+
80 FEA	ALE N	0	N 0	O YE	s	NO	N	89	-	140	135	134	140	48	AWMI	+
73 M	NE Y	ES Y	ES M	S NC	-	NO	N	11	-	142	135	135	142	40	AWMI	+
35 M	VLE N	NO V	N Si	0 NC	0	NO	N	65	2	132	132	135	135	36	IMMI	+
M LL	NE Y	ES Y	N Si	0 YE	s	NO	QN	131	2	135	135	132	132	40	AWMI	+
59 M.	NLE YI	ES Y	N Si	S NC	-	NO	N	145	-	135	135	136	137	35	IVWI	1
65 FEA	ALE N	NO V	SS N	S YE	s	NO	N	40	-	136	138	136	140	48	ASMI	+
60 FEA	ALE N	NO V	SS A	O NC	-	NO	N	70	-	136	137	136	140	48	ASMI	+
AA CA	NE VI	FC VI	N OD	UN O		UN	NO	63			10.1	400	CVL	53	ALLAN	1982