ENDOTHELIAL CELL DAMAGE AFTER CATARACT SURGERY: MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION

Dissertation submitted by Dr. T. SOWMIYA KALAIVANI

In partial fulfillment of the requirements for the degree of

MASTER OF SURGERY

IN

OPHTHALMOLOGY

THE TAMILNADU Dr. M.G.R. MEDICAL UNIVERSITY, CHENNAI

DEPARTMENT OF OPHTHALMOLOGY

PSG INSTITUTE OF MEDICAL SCIENCES&RESEARCH

COIMBATORE

APRIL 2020

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled "COMPARISON OF ENDOTHELIAL CELL DENSITY IN MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION" is a bonafide and genuine research by Dr.T.Sowmiya Kalaivani in partial fulfillment of the requirement for the degree of MASTER OF SURGERY IN OPHTHALMOLOGY as per regulations of PSG INSTITUTE OF MEDICAL SCIENCE AND RESEARCH, COIMBATORE and THE TAMILNADU Dr. MGR MEDICAL UNIVERSITY. I have great pleasure in forwarding this dissertation to the university.

Place: Coimbatore Date:

Dr.K.Divya M.S.,DNB

Associate professor Department of ophthalmology PSG Institute of Medical Science and Research, Coimbatore.

ENDORSEMENT BY THE HEAD OF THE DEPARTMENT

This is to certify that the dissertation entitled "COMPARISON OF ENDOTHELIAL CELL DENSITY IN MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION" is a bonafide and genuine research done by Dr.T.Sowmiya Kalaivani under the guidance of Dr.K.Divya MS, DNB., Associate Professor, Department of Ophthalmology, PSG Institute of Medical Science and Research, Coimbatore. I have great pleasure in forwarding this dissertation to the University.

Place: Coimbatore Date:

Dr.D.Sundar M.S, D.O.,

Professor and Head Department of ophthalmology PSG Institute of Medical Science and Research, Coimbatore.

ENDORSEMENT BY THE PRINCIPAL

This is to certify that the dissertation entitled "COMPARISON OF ENDOTHELIAL CELL DENSITY IN MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION" is a bonafide and genuine research done by Dr.T.Sowmiya Kalaivani under the guidance of Dr.K.Divya,MS,DNB., Associate Professor , Department of Ophthalmology, PSG Institute of Medical Sciences and Research, Coimbatore. I have great pleasure in forwarding this dissertation to the university.

Place: Coimbatore Date:

Dr.S.Ramalingam

Dean

PSG Institute of Medical Sciences and Research,

Coimbatore.

DECLARATION BY THE CANDIDATE

I hereby declare that the dissertation entitled "COMPARISON OF ENDOTHELIAL CELL DENSITY IN MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION" is a bonafide and genuine research work carried out by me under the guidance of Dr.K.Divya MS, DNB., Associate Professor, Department of Ophthalmology, PSG Institute of Medical Sciences and Research, Coimbatore in partial for the award of Master of Surgery Degree in Ophthalmology to be held in 2020. This dissertation has not been submitted in part or full to any other University or towards any other degree before this mentioned date.

Place: Coimbatore

Date:

Signature of the Candidate **Dr.T.Sowmiya Kalaivani**

COPYRIGHT

DECLARATION BY THE CANDIDATE

I hereby declare that PSG Institute of Medical Sciences and Research, Coimbatore, shall have the rights to preserve, use and disseminate this dissertation in print or electronic format for academic / research purposes.

Place: Coimbatore Date:

Signature of the Candidate **Dr.T.Sowmiya Kalaivani**

PSG Institute of Medical Sciences & Research Institutional Human Ethics Committee

Recognized by The Strategic Initiative for Developing Capacity in Ethical Review (SIDCER) POST BOX NO. 1674, PEELAMEDU, COIMBATORE 641 004, TAMIL NADU, INDIA Phone : 91 422 - 2598822, 2570170, Fax : 91 422 - 2594400, Email : ihec@psgimsr.ac.in

To Dr Sowmiya Kalaivani T Postgraduate Department of Ophthalmology **Guide:** Dr K Divya PSG IMS & R Coimbatore

Ref: Project No. 17/375

Date: December 26, 2017

Dear Dr Sowmiya Kalaivani,

Institutional Human Ethics Committee, PSG IMS&R reviewed and discussed your application dated 06.12.2017 to conduct the research study entitled "Endothelial cell damage after cataract surgery: Manual small incision cataract surgery versus phacoemulsification" during the IHEC meeting held on 15.12.2017.

.The following documents were reviewed and approved:

- 1. Project submission form
- 2. Study protocol (Version 1 dated 06.12.2017)
- 3. Informed consent forms (Version 1 dated 06.12.2017)
- 4. Data collection tool (Version 1 dated 06.12.2017)
- 5. Current CVs of Principal investigator, Co-investigator
- 6. Budget

The following members of the Institutional Human Ethics Committee (IHEC) were present at the meeting held on 15.12.2017 at IHEC Secretariat, PSG IMS & R between 10.00 am and 11.00 am:

SI. No.	Name of the Member of IHEC	Qualification	Area of Expertise	Gender	Affiliation to the Institution Yes/No	Present at the meeting Yes/No
1	Mr R Nandakumar (Chairperson, IHEC)	BA., BL	Legal Expert	Male	No	Yes
2	Dr D Vijaya (Member – Secretary, IHEC)	M Sc., Ph D	Basic Medical Sciences (Biochemistry)	Female	Yes	Yes
3	Dr S Shanthakumari	MD	Pathology, Ethicist	Female	Yes	Yes
4	Dr Sudha Ramalingam	MD	Epidemiologist, Ethicist Alt. member-Secretary	Female	Yes	Yes
5	Dr G Subhashini	MD	Epidemiologist	Female	Yes	Yes

The study is approved in its presented form. The decision was arrived at through consensus. Neither PI nor any of proposed study team members were present during the decision making of the IHEC. The IHEC functions in accordance with the ICH-GCP/ICMR/Schedule Y guidelines. The approval is valid until one year from the date of sanction. You may make a written request for renewal / extension of the validity, along with the submission of status report as decided by the IHEC.

Proposal No. 17/375 dt.26.12.2017, Title Endotheliar oversus phacoemulsification

damage after cataract surgery: Manual small incision cataract surgery Page 1 of 2

PSG Institute of Medical Sciences & Research Institutional Human Ethics Committee

Recognized by The Strategic Initiative for Developing Capacity in Ethical Review (SIDCER) POST BOX NO. 1674, PEELAMEDU, COIMBATORE 641 004, TAMIL NADU, INDIA Phone: 91 422 - 2598822, 2570170, Fax: 91 422 - 2594400, Email: ihec@psgimsr.ac.in

Following points must be noted:

- IHEC should be informed of the date of initiation of the study
- 2. Status report of the study should be submitted to the IHEC every 12 months
- 3. PI and other investigators should co-operate fully with IHEC, who will monitor the trial from time to time
- 4. At the time of PI's retirement/intention to leave the institute, study responsibility should be transferred to a colleague after obtaining clearance from HOD, Status report, including accounts details should be
- submitted to IHEC and extramural sponsors In case of any new information or any SAE, which could affect any study, must be informed to IHEC and sponsors. The PI should report SAEs occurred for IHEC approved studies within 7 days of the 5. occurrence of the SAE. If the SAE is 'Death', the IHEC Secretariat will receive the SAE reporting form
- within 24 hours of the occurrence In the event of any protocol amendments, IHEC must be informed and the amendments should be 6. highlighted in clear terms as follows:
 - a. The exact alteration/amendment should be specified and indicated where the amendment occurred in the original project. (Page no. Clause no. etc.)

b. Alteration in the budgetary status should be clearly indicated and the revised budget form should

be submitted c. If the amendments require a change in the consent form, the copy of revised Consent

Form should be submitted to Ethics Committee for approval d. If the amendment demands a re-look at the toxicity or side effects to patients, the same should

e. If there are any amendments in the trial design, these must be incorporated in the protocol, and be documented other study documents. These revised documents should be submitted for approval of the IHEC

and only then can they be implemented f. Any deviation-Violation/waiver in the protocol must be informed to the IHEC within the stipulated

7. Final report along with summary of findings and presentations/publications if any on closure of the study period for review should be submitted to IHEC

Kindly note this approval is subject to ratification in the forthcoming full board review meeting of the IHEC.

Thanking You,

Yours Sincerely

Dr D Vijaya Member - Secretary Institutional Human Ethics Committee

the start the start of the Enderhand cell damage after cataract surgery: Manual small incision	cataract surgery
Proposal No. 1//3/5 dl.20.12.20 II (Ind. Science)	Page 2 01 2

PLAGIARISM CERTIFICATE II

This is to certify that this dissertation work titled "COMPARISON OF ENDOTHELIAL CELL DENSITY IN MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION" of the candidate Dr.T.Sowmiya Kalaivani for the award of MASTER OF SURGERY in the branch of OPHTHALMOLOGY. I personally verified the urkund.com website for the purpose of plagiarism check. I found that the uploaded thesis file contains pages from Introduction to Conclusion and the result shows **3** percentage of plagiarism in the dissertation.

Signature of Guide

Urkund Analysis Result

Analysed Document:	Sowmiya thesis.docx (D57113642)
Submitted:	10/16/2019 12:20:00 PM
Submitted By:	sowmiyathangavelu@gmail.com
Significance:	3 %

Sources included in the report:

13. PL Check OPHTHALM (Manasi R. Ketkar Nov.2019).docx (D55543214) Aesha's thesis.docx (D44548635) https://www.researchgate.net/ publication/41427011_Comparison_of_endothelial_cell_loss_after_cataract_surgery_Phacoemuls ification_versus_manual_small-incision_cataract_surgery_Sixweek_results_of_a_randomized_control_trial https://www.researchgate.net/ publication/261105485_Comparison_of_Morphological_and_Functional_Endothelial_Cell_Chang es_after_Cataract_Surgery_Phacoemulsification_Versus_Manual_Small-Incision_Cataract_Surgery https://eyewiki.aao.org/Manual_Small_Incision_Cataract_Surgery https://www.researchgate.net/ publication/12486050_Endothelial_cell_loss_after_phacoemulsification_Relation_to_preoperativ e_and_intraoperative_parameters https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742955/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959043/ https://www.aao.org/eyenet/article/how-to-perform-manual-small-incision-cataract-surg

Instances where selected sources appear:

22

ACKNOWLEDGEMENT

This journey of dissertation has been a wonderful path of enlightment not only in my studies but also in my life. The experience gained through is to be cherished for lifetime.

I take this as a great opportunity to thank my guide, Dr.K.Divya without whom this dissertation would have not seen the light of the day. I would like to thank her for the unceasing support and for always having the doors open for newer ideas and to do anything with the state of art technology. I would like to thank her for her immense patience, motivation, enthusiasm not only regarding the thesis but for all educational endeavors. I would like take the freedom in thanking her and express my life time debt.

I would also like to express my deepest gratitude to Dr.D.Sundar, HOD of the Department of Ophthalmology, for his immense interest in my study. I take great pleasure in thanking him for all the encouragement and extra effort from his side for the study. I would like to thank him for his valuable advice and suggestions not only for my study but also for all the circular activities.

I would like to thank my faculty Dr.Jeeva Mala Mercy Janaki and Dr.T.Lekha for their immense support and guidance throughout the study period and also for their support in data collection and data assembly. I would like to thank my parents for their belief in me and for their immense emotional support throughout the course.

I would also like to thank my colleagues for the timely help for aiding me in finishing of thesis.

I would like to take this opportunity to thank my patients, for their dedicated participation and for providing their valuable time and patience.

CONTENTS

S.NO	TITLE	PAGE NO.
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
3.	AIM AND OBJECTIVE	66
4.	MATERIALS AND METHODS	67
5.	RESULTS	70
6.	DISCUSSION	88
7.	CONCLUSION	93
8.	LIMITATION	94
9.	BIBLIOGRAPHY	95
10.	 ANNEXURE i. CASE PROFOMA ii. CONSENT FORM ENGLISH iii. CONSENT FORM TAMIL iv. MASTER CHART 	

INTRODUCTION

Blindness is a severe debilitating condition to the mankind. Nearly 36 million people are blind all over the world due to various causes. ⁽¹⁾Cataract and uncorrected refractive errors are the most common cause of blindness and severe visual impairment. In India blindness is around 12 million, of which also cataract is the leading cause of preventable blindness that is around 7.75 million⁽²⁾.

Cataract surgery is one the most frequently performed surgeries throughout the world. In India around 5 million cataract surgeries are performed annually. Manual small incision cataract surgery(MSICS) and phacoemulsification are the preferred techniques for performing cataract surgeries.

In India majority of the cataract surgeries are performed by MSICS considering the cost and prevalence. Studies have shown that visual outcome and complication rate are similar in SICS and phacoemulsification. In all types of cataract surgeries there is bound to be some amount of corneal endothelial cell loss along with morphological and functional change.

In studying the effects of cataract surgery, it is essential to understand the anatomy and functions of the cornea and crystalline lens. One also needs to have a working knowledge of the investigations used in diagnosis of corneal pathologies and techniques of cataract surgery. In the following sections, these details are presented in a brief manner.

REVIEW OF LITERATURE

SECTION I: THE CORNEA

The cornea is a transparent avascular structure with a convex outer surface which is smooth and concave inner surface. The cornea is covered anteriorly by the tear film and posteriorly it lies in contact with the aqueous humor. A highly vascularized limbus surrounds the whole circumference of the cornea, by acting as a source of pluripotent stem cell⁽³⁾.Cornea measures about 11-12 mm horizontally and10-11mm vertically⁽⁴⁾.The cornea measures about 0.5mm thickness in the center and gradually increases in thickness towards the periphery. Its refractive index is 1.376. Cornea is a asphericstructure, with the curvature being recorded as a aspherocylinder convex mirror, with central 3 mm being the optical zone of the cornea.

Cornea has various functions. First and foremost being maintenance of the transparency for the light rays to reach the retina, secondly being optical, by refracting light forming the principal refractive surface (74%,ie +43.25 dioptric power (D) of the total+63 D of the eye). The +43.25D is obtained not only from the cornea, it is a composition of various refractive components such as air-tear fluid, fluid- cornea interface and cornea –aqueous humor interface, with each of +44D, +5D, -6D respectively thus making cornea a major astigmatic source.

The optical properties of the cornea are maintained by its transparency, smooth surfaces, contour arrangement of corneal layers and refractive index of each interface in the tissue.

1. CORNEALANATOMY

Behind the pre-corneal tear film, cornea is histopathologically composed of 5 tissue layers

- a) Epithelium
- b) Bowman's layer
- c) Stroma
- d) Descemet's membrane
- e) Endothelium

a. Epithelium

A good corneal optics requires a smooth surface, which is maintained by the corneal epithelium and healthy tear film. The corneal epithelium is made of stratified squamous non keratinized epithelium, being 50-90µm thick. This forms the smooth outer surface of the cornea along the ocular tear film. The epithelium makes up to 5% of the corneal thickness and is continuous with the conjunctival bulbar epithelium, with exception of goblet cells. It is formed by 5-6 layers of

nucleated cells. These cells attached to one another by Zonula occludens. Clarity of the cornea is due to tight packing of the epithelial cells, which contributes to the uniform refractive index.

The first two or three layers of the epithelium are polyhedral shaped cells and are placed wider and flat over the surface. There is no keratinization of this surface.

The second layer is umbrella shaped cells with oval nuclei. This layer has decreased organelles compare to basal layers.

The deeper layer is basal layer formed of basal cells which are $12\mu m$ with density of approximately 6000 cells /mm². These cells are columnar polygonal shaped cells with an oval nucleus. The basal layer acts as the fundamental layer of epithelium. Deeper layers are formed by continuous proliferation of perilimbal basal epithelial cells and these layers subsequently differentiate into superficial cells and are moved to the superficial layer. With maturation, these cells become coated with microvilli on their outermost surface and then desquamate into the tears. This process of differentiation takes about 7 - 14 days.

The cells of basal lamina are joined laterally to other basal cells and superficial to the umbrella cells by desmosomes and macula occludes. These tight junctions maintain the corneal transparency by acting as barrier function. The basement membrane of the basal cells is made of basal lamina synthesized by the hemidesmosomal structures. It is an irregular layer which is thicker in the periphery compared to the center. The basal lamina has collagen and glycoproteins and helps in its attachment with the bowman's layer.

Epithelial cell loss is followed by cell repair. Within hours following insult, fibrin and neutrophils appear from the tear film. The epithelial cells flatten and components of adhesion complex , which are holding the epithelial cells are disrupted resulting in sliding of cells and compensation of loss⁽⁵⁾

b. Bowman's Layer (Anterior Limiting Layer)

Bowman's layer, the second layer of the cornea, is a homogenous a cellular layer, measuring 8-14µm thick, lies below to the basement membrane. Anterior surface of the bowman's is smooth layer and being attached to the lamina of basement membrane and posteriorly attached to that of the stroma. Bowman's layer consists of fine collagen fibrils. In the posterior part of the bowman's the layer of collagen fibrils intertwine and attach to the stromal lamellae. The compact nature of this layer provides resistance to trauma, both mechanical and infective nature. But once destroyed, bowman's layer does not regenerate

c. Stroma (Substantia Propria):

The stroma about 500µm thick, constitutes most of the thickness of the cornea. It is made of collagen lamellae and collagen fibrils, both of which are embedded in proteoglycan ground substance. Keratocytes, wandering macrophages, histocytes and few lymphocytes are present in the lamina, which helps in production of the ground substance for the stroma.

The central part of the corneal stroma has around 200 lamella throughout thickness, with density higher in anterior part compared to posterior⁽⁶⁾. Anterior lamella are short narrow sheets and are highly interwoven with oblique orientation and also insert into the bowman's layer⁽⁷⁾whereas the posterior lamella are long wide thick lamellae and are less interwoven and is interwoven at right angles

The collagen fibrils, are very thin compared to any other connective tissue. These fibrils help in maintaining transparency of the cornea. There are about 300-400 triple helical molecules on cross section of each fibril⁽⁸⁾. Type I and Type V fibrillar collagen, intertwined with type IV fibrillar collagen form the lamellar arrangement which is parallel to each other not only in the corneal plane but also in the scleral plane. These corneal collagen acts as principal component of load barring component for the cornea.

Proteoglycans is a gel based matrix in which the collagen fibrils and corneal stroma are embedded. The stromal fibers are regularly spaced with each other with the help of this proteoglycans, which reduces scattering of light and helps in transparency of cornea. This gel like structure helps in maintaining the transparency. It contains glycosaminoglycans (GAG), keratin sulphate, dermatin sulphate and chondratin sulphate. The adult cornea has decorin, lumican, keratocan and mimeca, types of proteoglycan.

The GAGs express a swelling pressure of 60 mm Hg in the stroma, thus making stroma swell up to few folds than its normal capacity. This causes alteration in the fibrillar arrangement, which in turn causes increased scattering of light and thus loss of transparency of cornea in corneal edema.

d. Descemet's Membrane:

Descemet's membrane is a true basement membrane, measuring around $3-4\mu m$ thick and it increases with age reaching up to $10-12\mu m$ in adulthood. Descemet's membrane is rich in type IV collagen like any other basement membrane.

e. Endothelium

It is made of hexagonal cells, closely interdigitated in a single layer. It lies posterior to the Descemet's membrane with density of around 6000cells/mm² at birth, which reduces 26% in the first year of life as the corneal surface increases

and again a fall of 26% is lost over the next half decade. This leads to maintenance of 2700-2900 cells/mm² in adults.⁽⁹⁾⁽¹⁰⁾

These cells seldom divide. The cell loss and the reduction of the cell count is maintained by the enlargement of the remaining cells, that is by polymegethism. This leads to alteration of cell diameter, which is smaller around 18-20 μ m in early life, becoming around 40 μ m in later adult life. The endothelial cells are attached to the Descemet's membrane by hemidesmosomes and by tight junctions sideward. These linkages are calcium dependent and helps maintain the barrier function of endothelium. This helps endothelium to maintain the corneal transparency and integrity by active pump mechanisms. The high metabolic activity of the endothelium is maintained by the presence of large nucleus and numerous cytoplasmicorganelles, like mitochondria, ribosome's, rough and smooth endoplasmic reticulum, golgi apparatus.

Studies have proven that there is a gradual decrease in cell density in the endothelial layer associated with increasing age. (Figure 1).⁽¹¹⁾⁽¹²⁾⁽¹³⁾⁽¹⁴⁾

9

Figure-1: Layers Of Cornea

VASCULAR SYSTEM OF CORNEA:

The cornea is a vascular structure, but it obtains its nutrient from the blood derived products. These products help in corneal metabolism and healing. These source of nutrients reach the cornea from the blood components derived from the arcade of limbal region, formed by the anterior ciliary artery and facial branch of external carotid.

INNERVATION OF CORNEA:

Though an a vascular structure, cornea is highly innervated by the long posterior ciliary nerve, which is a branch of ophthalmic division of Trigerminal nerve. It

penetrates the cornea at the conjunctival, episcleral and scleral planes. These nerve endings lose their myelination, within a short distance from the corneal entry point. These nerve endings are of 300-400 times of more density compared to skin surface nerve endings.

The nerve fibers of the cornea, penetrate the corneal stroma at the periphery along the radial axis and then move on anteriorly, forming a subepithelial plexus, penetrate bowman's layer and terminate in the wing cells of epithelial layer.

2. CORNEAL PHYSIOLOGY

The physiological functions of the cornea are largely a function of its endothelium. The corneal endothelium is made up of various pumps, these help in flow of fluids and nutrients from the aqueous humor into the cornel layers. The basolateral layer of endothelium, consists of a Na⁺ K⁺ dependent ATPase that creates low intra cellular Na⁺ and high intracellular K⁺. There are 2 more pumps in the basolateral side, Na⁺/2 HCO₃⁻ cotransporteer and Cl⁻/ HCO₃⁻ exchanger and Na⁺/H⁺ exchanger. The Na+/H+ exchanger loads the endothelium with HCO3⁻ with removal of H⁺ resulting in formation of HCO₃⁻ andCO₂, catalyzed by carbonic anhydrase II. TheCl⁻/ HCO₃⁻ exchanger moves HCO3⁻ from the cell and adds Cl⁽¹⁵⁾⁽¹⁶⁾(Figure 2).

Figure -2: Illustration Of Ion Channels And Pumps On The Corneal

Endothelium

3. CORNEAL BIOCHEMISTRY

Cornea is composed of 80% water and 20% solids. Epithelial cells constitutes the water, proteins, lipids and enzymes necessary for glycolysis, Krebs cycle. It also contains ATP 2000mmol/kg, glycogen10mg/g, glutathione10mg/dl and ascorbic acid 47-94mg/dl

Stroma constitutes main bulk of cornea, which is also formed by 80 % water and 20% solids. Extracellular collagen like glycosaminoglycans GAG (dermatin sulphate, chondratin sulphate A and keratin sulphates) or mucopolysaccharide forms 4% of the solid weight. These GAGs constitute to the stromal swelling pressure, that is they have the tendency to imbibe water and maintain corneal hydration. These soluble proteins of the stroma are albumin, immunoglobulin G, A and M and glycoproteins.

Glycolytic and Krebs pathway are present in the keratocytes of the stroma. Oxygen and glucose are the main nutrient source for the cornea. Oxygen is obtained from the diffusion of the tear film. Glucose is the primary metabolic substrate for the epithelium, stromal keratocytes and endothelium. The glucose is obtained from aqueous humor by carrier mediated mechanism through endothelium. Glucose transporters are present on both the apical and basolateral side of the endothelium. The glucose, via passive diffusion through stroma, reaches the epithelium.

80% of glucose utilized by the cornea is converted to lactate and it diffuses into aqueous through the endothelium.

The cornea is metabolically active layer, the metabolic activity in this layer takes place with the help of ATPs,

The 3 major biochemical pathways in cornea are:

1. Anaerobic glycolysis

13

- 2. Hexose Monophosphate shunt
- 3. Tricarboxylic acid pathway

Epithelium utilize the HMP shunt and breaks down approximately 35-65 % of the glucose. Under anaerobic condition that is via glycolysis and pentose phosphate shunt one molecule of glucose is converted into 2 molecules of lactic acid with 2 ATP, whereas in aerobic mechanism that is in Krebs cycle 1 molecule of glucose will utilize the pyruvic acid , producing oxygen and 36 ATP but this is very less in the stoma.

In somecases when there is decreased supply of oxygen to the cornea, the mechanism shifts from aerobic to anaerobic. The product of glycolysis, pyruvate is converted to lactic acid via anaerobic mechanism. This Lactic acid diffuses into the stroma resulting in stromal edema.

4. UNIQUE FEATURES OF THE CORNEA

CORNEAL TRANSPARENCY:

Corneal transparency is a very important feature of the cornea as it helps to maintain the clear path for light to travel and reach the neurosensory retina and formation of the image. The corneal transparency is maintained by the physical and physiological factors. The physical factors being that the arrangement of lamellae in the stroma and the physiological factor being the relative state of dehydration in maintain the transparency. Alterations in this transparency can happen at various scenarios

Alteration of tear film happens due to various factors like , increased atmospheric exposure of the surface tear film, leads to alteration of tear film and decrease in oxygenation to the cornea. The alteration of tear film also happens in contact lens wear, prolonged use of contact lens wear causes decreased oxygen supply to the cornea

All these alterations in tear film lead to decrease in supply of oxygen to the cornea, which shifts the metabolism from aerobic to anaerobic, this metabolic alteration of cornea leads to accumulation of lactic acids, which leads to increased osmotic solute load, causing corneal edema or stromal acidosis causing endothelial pump failure.

The stroma continuously absorbs water from the aqueous via the endothelium. with the active transport of fluid in the basolateral pumps demonstrated in the endothelium helps in maintaining the corneal thickness by preventing the swelling of normal corneal stroma.

The transparency of cornea is also mainly maintained by the collagen fibrils, which have a regular and finer arrangement with homogeneity. Endothelium constantly pump out water from the cornea maintain the transparency, and homogeneity of

15

the corneal layers, preventing swelling and clouding⁽¹⁷⁾. The arrangement of stromal fibrils, which are embedded in the proteoglycan matrix is responsible for corneal transparency. The arrangement helps in reducing the scattering of light by destructive interface. The scattering of light rays decreases as ray passes from anterior to posterior layer, by being 1.401 at epithelium to 1.380 at the stroma. The lattice structure is so fine, compared to that of wavelength of light, thus helping in maintain the transparency of cornea.

Corneal transparency also depends on the relative state of dehydration. It is maintained by maintaining the stroma water content level. This is done with the help of intact epithelium and endothelium. Corneal hydration varies from anterior to posterior with increasing wetness closer to the endothelium and resistance of the movement of water laterally within the stroma.

ENDOTHELIAL PUMPS:

 $Na^+ K^+$ dependent ATPase and Na^+/H^+ exchanger are present in the basolateral membrane of the endothelium. These are ion transport channels which help in maintain the corneal transparency, by preventing imbibition of water into the stroma. The $Na^+ K^+$ gradient, results in flow of Na^+ from the aqueous into the stroma and K^- into the opposite direction. Carbon dioxide also diffuses into the endothelial cell and there on combination with H₂0 results in formation ofHCO₃⁻. ThisHCO₃⁻ is transported in to the aqueous, along with this HCO_3 ⁻ transport,H₂0 is also transported into the aqueous.

Pump leak mechanism states that endothelium is capable of pumping fluid across the surface against pressure, where the stroma does not allow transport of water. It is suggested that any cell layer can actively transport fluids into a cell layer than into an open space

Therefore, it is evident that corneal transparency depends on lamellar collagen arrangement in the stroma and on proper endothelial function. Corneal decompensation and opacity occur when either of these is compromised. Accordingly, the treatment depends on which layer has been affected. Recent trends involve lamellar corneal grafting to optimize surgical and visual outcomes. The following surgeries are performed for specific indications:

- a) Endothelial keratoplasty
- b) Descemet's stripping with automated endothelial keratoplasty
- c) Descemet's membrane endothelial keratoplasty

5. PATHOLOGICAL RESPONSESIN THE CORNEA

Cornea formed of 2 cellular layers, epithelium and endothelium. With each resting on the basement membrane that is epithelial basement membrane and Descemet's membrane. These 2 layers sandwich the thin and thick a cellular and cellular connective tissue respectively.

The cornea can be subjected to variety of insults, response to these insults which can be grouped as 6 different categories of pathological response.

Each of these pathological responses are described as:

- Defects These are alteration in the corneal lining , it can be partial or complete, these defects usually are self-healing
- Fibrosis and vascularization these are the usual normal tissue repair mechanism employed by the body's defense mechanism
- Edema and cyst it is accumulation of fluid in between the cell spaces, which leads to alteration of the normal cellular morphology.
- 4. Inflammation and immune response a starting of an pathological response, to a stimuli, causing activation of host and cellular immunity activation and finally acts as a repair process.
- 5. Deposits- materials getting deposited in each layer of the cornea, it may vary from exogenous and endogenous sources to degenerations and dystrophies.
- 6. Proliferation
 - a) Growth and maturation abnormality hypertrophy, dysplasia, metaplasia, neoplasia

18

- b) Ectopic migration
- c) Stem cell deficiency

CHANGES IN THE ENDOTHELIUM:

Normal adult endothelium is 2500 cells/mm³, with cell size of 250µm and a density of 500 cells/mm² remain clear. The adult endothelium does not divide under normal circumstances, but do divide when stimulated by injury. When endothelium is subjected to injury, the cells near to the site of injury participate to the healing.

Endothelium when subjected to defect, defect may be acute or chronic.

- 1. Acute
 - a. accidental trauma
 - b. surgical trauma cataract surgery, most commonly in phacoemulsification and corneal transplant, in posterior lamellar endothelial keratoplasty
- 2. Chronic
 - a. dystrophies involving the endothelium
 - b. chronic irritation of endothelium by the anterior chamber IOL

Defect in the endothelium results in aqueous humor rush via the defect, resulting in formation of stromal and epithelial edema. The damaged endothelium is capable of

repairing itself with primarily with cell migration, cell division and hypertrophy. The damaged endothelium is healed by altering cell shape and size. Alteration happens by enlargement of the normal hexagonal cells. With healing normal number of hexagonal cells decrease as the hexagonal cell's near to the defect enlarge to fill it up. If the loss of endothelial cells loss continues, the remaining cells of the endothelium enlarge and flatten and try to maintain the corneal contour. But at one point cell loss is more than that of the capacity of the remaining cells to correct, resulting in stromal and epithelial edema, causing corneal decompensation

Six-sided cells are an indication of even distribution of membrane surface tension and of normal cells. The polygon that has greatest surface area relative to its perimeter is the hexagon. Thus, the most efficient cells hape to cover a given area is the hexagon; i.e. a perfect cornea should have 100% hexagons⁽¹⁸⁾

Maintenance of corneal endothelium happens with the tight junctions. These tight junctions resist flow of electrolytes and fluid into the endothelium. The most important factor for maintenance of corneal detergence is an active metabolic pump mechanism in the endothelium. These pump via active transport mechanism, makes fluid transport from corneal stroma into the aqueous humor. This process requires oxygen and energy in the form of adenosine triphosphate. Deprivation of oxygen or ATPs result in, hypoxiaof cornea, which results in corneal edema.

The corneal edema is attributed to either leak or imbibition of water from across the anterior chamber via endothelium. Water reflex across the epithelium is highly inconspicuous because of the tight junctions in it. Whereas the water flow from the anterior chamber to cornea via endothelium, due to capacity of stroma to imbibe water. Imbibition of water happens until stroma reaches a swelling pressure. For maintenance of transparent cornea, water influx into the stroma is matched with pump out from the endothelium this forms the pump leak mechanism⁽¹⁹⁾

The endothelial layer of the cornea has specialized pumps, that help in maintain the integrity of the layer. These pumps regulate fluid and ion transport under normal conditions to the cornea. These pumps also transport fluid from the corneal stroma to aqueous. This process requires oxygen and energy in the form of ATP. The depletion of these sources leads to alteration of pumps and corneal edema. Dactinomycin, ouabain and oligomycin are potent inhibitors which are present in the endothelium. Treatment with ouabain causes stromal edema⁽²⁰⁾⁽²¹⁾

CAUSES OF ENDOTHELIAL EDEMA:

Primary endothelial failure:

- 1. Congenital hereditary endothelial dystrophy
- 2. Fuchs dystrophy
- 3. Iridocorneal endothelial syndrome

21

4. Posterior polymorphous endothelial dystrophy

Secondary endothelial failure

- 1. Acute or chronic trauma
- 2. Chemical
- 3. Inflammatory
- 4. Hypoxia

Normal endothelial edema is caused by raised IOP and failure of endothelial pumps. The endothelium unlike the epithelium has no regenerating capacity. Thus cell damage caused by any of these factors to endothelium results in enlargement and migration of the remaining endothelial cells which are located near to the damage site.

Corneal endothelial decompensation results in blurred vision, discomfort and severe pain. Although it can be managed with medical treatment, the main stay of treatment is corneal transplantation. Selective endothelial keratoplasty has become popular in corneal endothelial dysfunction management owing to quicker visual rehabilitation and lower complication rate.

6. ENDOTHELIAL CHANGES AFTER CATARACT SURGERY

Endothelial cell loss depending upon the surgery performed. The variation is mostly dependent on the site of manipulation under the cornea. In small incision corneal damage is observed at the incision site and peripherally at the side port site. Inaba et al conducted a study on comparison of endothelial loss in intracapsular cataract extraction without IOL implantation. The results of the study state that there is decrease in post operative endothelial cell loss in 2 weeks in all quadrant. Whereas on follow up of 6 months, the loss over the surgical incision was reduced more compared to the other areas.⁽²²⁾The same type of results was noted for extracapsular cataract extraction as well.⁽²³⁾

7. INVESTIGATIONS FOR CORNEAL PATHOLOGY

PACHYMETRY:

Pachymetry is measurement of corneal thickness, which is an indicator of corneal endothelium⁽²⁴⁾. It is derived from Greek word pachy, which means thick and metry being measurement. There are four various methods employed in measurement of corneal thickness

- *a*) Optical pachymetry
- **b)** Ultrasonic pachymetry
- *c)* Specular pachymetry
- *d*) Anterior segment optical coherence tomography (OCT)
a. Optical Pachymetry:

Technique used before advent of ultrasonic pachymetry. This instrument is attached to the slit lamp. By alignment of the slit image, the central corneal thickness is obtained

b. Ultrasonic Pachymetry:

Ultrasonic pachymertey was invented by a group of scientists including Wallace, DavidAFeldon, Steven whiting, Douglas in 1985. At present the most widely employed method for measuring pachymetry, is hand held ultrasound pachymetry. It operates at a frequency of 20-5- MHz, emits short acoustic pulses, these pulses reflect from anterior and posterior surface of cornea. From the time of flight of reflections from the corneal surface, thickness of cornea is calculated and the accepted speed of sound in the cornea of 1636–1640 m/s⁽²⁵⁾.

From the return of the pulse from the cornea, corneal thickness is calculated with formula

Corneal thickness = total time travel * speed of sound in the cornea ⁽²⁶⁾

2

c. Anterior Segment OCT:

Oct measures the cornea layers by the principal of optical backscattering of light.

As light travels faster than sound, the time of returning of light to OCT is measured by low coherence interferometry.

This is a noncontact method compared to ultrasonic B scan, though both follow the same principal. Image resolution is less than or equal to $10\mu m$, compared to UBM in which image measurement is 35-70 μm .

A study conducted by Wirbelauer et al stated that comparing the central corneal measurements with OCT and pachymetry, a high degree of acceptance was noted with pachymetry and OCT. Thus making it an alternative to pachymetry⁽²⁷⁾.

d. Specular Microscopy:

The corneal endothelium was visualized by Vogt in 1918. Then specular was later then identified by David Maurice in 1960s for corneal epithelium analysis⁽²⁸⁾. Then specular was further modified for easy and conventional use by Bourne and Kaufmann.⁽²⁹⁾. The corneal endothelial cell layer is analyzed with specular microscopy. Specular microscopy is one of the non-invasive techniques to access the structure and function of the corneal endothelium. Oldest method employed in measuring corneal thickness. The specular reflex occurs ata smooth surfaced interface of two refractive indices, with light from cornea having angle of incidence equal to angle of reflection to the observer. The endothelial cells are seen because of the varying refractive index, between the endothelium and aqueous. That is refractive index of endothelial cells is 1.336 times greater and that of aqueous humor, thus reflecting the projected light.

Further theories also state that the light reflex is caused by the proximity of the two concentric surfaces, i.e. the epithelium and the endothelium. The epithelial surface is highly reflective because of the large refractive index difference between air and the tear/epithelium. As the beam of light passes through the cornea it is reflected off the tear/epithelium interface and endothelial interface. The viewable specular area is a compromise between the beam width and the corneal thickness.

The Specular microscopy can be used to view the corneal stroma, endothelium and lens depending on the instrument used⁽³⁰⁾.

In recently a study conducted on comparing various methods to measure corneal thickness using non contact specular microscopy, ultrasonic, orbscan and contact specular microscopy. The mean thickness values differed significantly, and increased thickness was observed with the noncontact specular microscopic. The results indicate that these instruments cannot be simply used interchangeably⁽³¹⁾.

26

Figure 3: Specular Microscopy

SPECULAR MICROSCOPY FOR MORPHOLOGY:

Endothelial cell loss happens due to various factors such as disease, trauma, chemical toxicity, post intraocular surgery. Any pathology that causes damage to the endothelial cell causes it to decrease in density meanwhile with an increase in cell surface area.

The endothelial cell alteration is studied using specular under:

- 1. cell surface area in $\mu m \pm$ standard deviation in μm^2
- 2. coefficient of variation of cell surface (CV)

a. Cell Density:

Corneal endothelium consists of $130\mu m^2$ cells in the surface. Endothelial cell density reduces with age as age progresses. At birth endothelial cell density is around 6000 cells/mm² which gradually reduces with 26% over the course of years and reach 3500-4000 cells/mm² by 4 years of age⁽³²⁾. On reaching the adult life it furthermore reduces to 2400-3000 cells/mm².

b. Polymegethism:

It Is the Description of variation in cell surface area. When there is alteration in the hexagonal shape of the cell, resulting in enlargement of the nearby cell structures causing alteration of the cell surface area. The cell density has an inverse

relationship with the standard deviation of cell surface area. Thus and increased polymegethism leads to decrease in average cell surface area.

c. Cell Morphology:

Hexagonal, this structural arrangement has equally distributed surface area and tension .These hexagonal shaped cells have equal sized sides with each at an angle of 120° with each other⁽³³⁾.

Normal cornea is arranged with equally sized hexagonal cells. Any alteration in normal cornea would lead to alteration in the hexagonal shape of the cells.

Any damage to endothelial cell is compensated by the enlargement of nearby endothelial cells which result in alteration of hexagonal cells at that area.

A DE LE MOSTE DE	Number	258		9	03
	CD /mm2	3093	1		1
POSsolt C.S.	AVG um2	323			
	SD	96	1.0		
	CV	30	-	115	(Distance)
1.101-036-0101	Max um2	661			
Contraction of the second	Min um2	119			
A BOX PL	Corneal	Thicknes	s	5	06 um
A Charles	Area (Polym	egathism) 50 (00	Ape	x (P)	eamorphism)
	0-100 0	40 100	3	0	
- (COS) -	100-200 8		4	2	L
C C C C C C C C C C C C C C C C C C C	200-300 36		5	16	
0.0000000000000000000000000000000000000	400-500 17		7	18	
	500-600 3	-	8	2	<u> </u>
10.000	600-700 1		8	Ū	
	700-800 0		10-	0	
	800-900 0 900- 0		Cu	stor	nize

Figure 4: Corneal Endothelial Analysis In Specular

SECTION II: CRYSTALLINE LENS

The human crystalline lens is a asymmetric oblate spheroid, avascular structure, that lack nerves which is a transparent structure, which is biconvex in nature.

It lies anterior to the vitreous body and posterior to the iris and is suspended by the zonules of Zinn. The anterior surface is in contact with the aqueous humor and posterior surface in contact with vitreous. It lies in the vitreous in a saucer shaped depression called patella fossa. These are delicate fibrils that attach the lens to the ciliary body. The lens has no blood supply and it receives its nutrient only from the aqueous humor.

Figure 5: Anatomy Of Crystalline Lens

1. CRYSTALLINE LENS ANATOMY

The lens diameter is around 9-10 mm. the thickness of lens varies with age, It is around 3.5 mm at birth and to 5 mm at older age. As the thickness weight of the lens also varies 135mg upto adolescent and 255 mg from adolescence to old age.

The crystalline lens has an anterior and posterior surface. They are joined to each other by an imaginary line called optical axis. The anterior surface is less convex compared to the posterior surface. The refractive index of the lens 1.39, with total dioptre power of 15-16D.

Histologically, the crystalline lens components are

- 1. Lens capsule
- 2. Lens epithelium
- 3. Lens substance

a. Lens Capsule:

It is a acellular thin transparent hyaline membrane, made of type IV collagen surrounding the anterior and posterior surface of the lens. It is synthesized by the lens epithelium anteriorly and lens fibers posterior. The outer layer of lens capsule is zonular lamella and it helps in attaching lens strongly to the zonules which in turn attached to the ciliary body. Capsule is thick at the anterior surface compared to the posterior surface. Capsule is thickest at pre-equator regions (14 μ) andthinnest at the posterior pole (3 μ).

b. Anterior Epithelium:

It has a single layer of cuboidal cells lying immediately beneath the anterior capsule. Anterior epithelial layer is metabolically active including the biosynthesis of DNA, RNA, protein, and lipid; they also generate adenosine triphosphate to meet the energy demands of the lens. These cells undergo mitosis and that is how they become columnar layer become from cuboidal at the equatorial region, by active dividing and elongation. There is no posterior epithelium

c. Lens Fibres:

The epithelial layer of the lens, becomes columnar at the periphery. These columnar epithelial cells elongate even more to form the lens fibres. These fibres are formed throughout the life and they are compactly arranged. These fibres move towards the centre as the age increases thus forming the nucleus and cortex of the lens. The arrangement is as that the foetal nucleus surrounds the embryonic nucleus. They terminate into two Y shaped sutures. Anterior upright Y and posterior inverted Y. The lens fibres are laid down in a dendrite pattern throughout lifetime. They are laid down and the oldest fibres in the centre and the newer fibres surrounding it. It contains different zones depending on the period of development.

Nucleus is the innermost part of central embryonic nucleus. The outer layers of lens being foetal, infantile, adult respectively surrounding the embryonic part. Cortex is formed by the newest fibres and are in the peripheral most part of the lens

2. AGE RELATED LENTICULAR CHANGES

The main age related change of lens is cataractous change. As the ageing process, epithelial cells become flatter with flat nuclei, and the lens increases with density and thickness along thus decrease in accommodation. As aging process, there is increase in mass and dimension of lens compared to younger age. This is because of proliferation of lens epithelial cells.

The oldest lens fibres migrate and are found in the centre of the lens behind the anterior pole. The newer formed cells are formed around this central part, thus oldest fibres are in the centre and newer one at the periphery. As aging process epithelial cells become falter with flattened nuclei, increase in density

Lens fibres show loss in plasma membrane and cytoskeleton component with age. The biochemical properties such as total level of proteins, amino acids and potassium are altered along with increased concentration of sodium. The cholesterol-phospholipid ratios of the plasma membrane alter in plasma membrane throughout life causing decrease in membrane fluidity and increase in structural integrity. This causes coagulation of proteins causing opacification of cortex. This process increases with age, greater in nuclear, resulting in nuclear sclerosis

The nuclear sclerosis at middle age is yellowish and it usually does not cause any visual impairment. As aging progresses an excessive amount of scattering and yellowing is called nuclear cataract. In case of cortical cataract, it is caused due to local disruption of structure of mature lens fibre cells. Alteration in cytoskeletal component, increases the number of furrowed membranes and microvilli on fibre surface. This alteration results in formation of ruptures in the cortical fibres of the crystalline lens resulting in cortical cataract.

3. INDICATIONS FOR CRYSTALLINE LENS REMOVAL

Removal of crystalline lens is performed for many indications. They may be grouped under two heads. They are:

1. Optical

2. Medical

OPTICAL INDICATION

1. Lenticular opacification (cataract)

MEDICAL INDICATIONS

- 1. Lenticular malformation
 - a. Coloboma
 - b. Lenticonus
 - c. Lentiglobus
 - d. Spherophakia
- 2. Lenticular malposition
 - a. Subluxation
 - b. Dislocation
- 3. Lens-induced inflammation
 - a. Phacolytic glaucoma.
 - b. Phacomorphic glaucoma
 - c. Phacotoxic uveitis (phacoanaphylaxis)
- 4. Lenticular tumor
 - a. Epithelioma.
 - b. Epitheliocarcinoma
- 5. Facilitatory (surgical access)
 - a. Vitreous base
 - b. Ciliary body
 - c. Ora serrata

The most common indication for removal of crystalline lens is optical rehabilitation of cataract.

4. METHODS OF CATARACT SURGERY

There are various methods employed for cataract extraction. They range from the ancient technique of couching to the modern femtosecond laser cataract surgery. A short summary of the different techniques that are employed is as follows:

- 1. Lens repositioning ('couching')
- 2. Extracapsular
- 3. Intracapsular
- a. Physical (instrumental) zonulysis
- b. Pharmacological (enzymatic) zonulysis
- 4. Lens removal
 - Partial (extracapsular)
- a. Anterior capsulotomy / capsulectomy
 - i. Discontinuous
 - ii. Continuous (capsulorrhexis)
 - iii. Linear
- b. Nucleus removal
 - i. Assembled delivery (large incision)

- 1. Expression ('push')
- 2. Extraction ('pull')
- ii. Disassembled extraction
 - 1. Phacosection
 - 2. Phacoemulsification-aspiration
 - a. Ultrasound
 - i. linear
 - ii. torsional
 - b. Laser
 - c. Water jet
 - d. Impeller
- Total (intracapsular)
- a. Capsule forceps
- b. Suction erysiphake
- c. Cryoextraction
- 5. Cortex removal
 - i. Irrigation
 - ii. Aspiration⁽³⁴⁾

5. A BRIEF HISTORY OF CATARACT SURGERY:

Since ancient of times, cataract has been a dominant cause of vision loss. The removal of the crystalline lens has been standard care of treatment since the dawn of time. Cataract surgery has undergone hundreds of innovative technologies in the recent years. Techniques have be developed and abandoned over the years. The first surgical removal of lens is dated back around 2000 years, by an Indian scientist names Sushruta samhitha, couching a method implied in dislodging the crystalline lens with a needle⁽³⁵⁾. A needle was introduced into the anterior chamber and the capsule was disrupted, causing lens hydration and absorption of lens. Later stages as couching was considered dangerous and causing blindness at higher rate, newer methods were developed by European scientists. In 1895, Colonel Henry Smith, implicated a method in which he loosened the zonules of the lens by applying external pressure on the inferior cornea with muscle hook. He disclosed the lens by tumbling as the zonules were still attached at the superior quadrant⁽³⁶⁾

In 1902 a suction device for lifting of the lens out of the eye⁽³⁷⁾.Removal of cataract surgery by suction method , using vacuum pump with erysiphake handle for suction and removal of cataract and also a method for cataract extraction with chemical alpha chymotrpsin causing zonular dialysis was employed⁽³⁸⁾.

Another method was invention of a cryoextractor , with no pressure a small cold probe was applied to the surface of the lens forming ice ball ,causing union of all the lens components and extraction of lens⁽³⁹⁾.

In 1949 Harold Ridley performed the first artificial lens implantation using ICCE, but as there was no support for placement of lens in ICCE, so the modification to ECCE was started on from then

Demerits of ICCE, which made the shift of ECCE were

- Large incision, which led to complications such as delayed wound healing, iris, vitreous incarceration, suture abscess
- Cataractous lens extraction can touch the cornea and causes endothelial damage

On shifting to ECCE, Cornelius Binkhorst of Holland, refined ECCE, using toothed forceps to remove the anterior capsule, and aspiration of soft nucleus and expressed hard nucleus followed with irrigation and aspiration of cortex

By 1967,Kelman modified and established the ultrasound method for nucleus delivery followed by the aspiration irrigation of cortex technique . this led to the advent of phacoemulsification⁽⁴⁰⁾.

Manual small incision cataract surgery (MSICS) a very common and accepted eye surgery performed all over the world with low cost making it a not burdensome technique . MSICS is preferred by many surgeons over phacoemulsification in hard brown or black cataracts.

6. ANESTHESIA FOR CATARACT SURGERY

Different types of anesthesia have been employed in the cataract surgery. The retrobulbar and peribulbar anesthetic techniques can be supplemented with facial blocks as well.

- Retro bulbar anesthesia gives best ocular akinesis and ocular anesthesia. It is injection of local anesthetic agent in the intra conal space, the area behind the globe of the eye that is between the optic nerve and extra ocular muscle using Atkinson or retro bulbar needle (23- or 25-gauge and 1.5 inches (38 mm) in length)but retro bulbar injection has high level of complications include retrobulbar hemorrhage, globe perforation, optic nerve injury, extra ocular muscle toxicity
- Peribulbar on the other hand, has a slow and minimally effective compared to retro bulbar, but comes with fewer complications
- 3. Topical anesthesia is at present being widely employed for phacoemulsification with foldable IOL implantation. As this method

41

includes no lid spasm patient can leave the operation theatre with no bandage. But even this method comes with few complications like increased ocular motility while performing surgery, blephrospasm and pain discomfort⁽⁴¹⁾.

- 4. Intracameral lidocaine 1% or 2% can be used in addition with topical anesthesia for phacoemulsification with foldable IOL^{(42).}
- 5. Subconjunctival lignocaine can be used in as an addition with topical anesthesia, in patient who have pain even with intracameral and topical anesthesia

7. SURGICAL STEPS OF MANUAL SMALL INCISION CATARACT SURGERY (MSICS)

BRIDLE SUTURE

Bridle sutures are applied over any one or two of the extraocular muscle to obtain transportability and fixation of the globe during surgery. It is also used for applying counter force in nucleus delivery in MSICS along with tunneling. It is done to the muscle near the site of incision. It is done by rotation of globe with muscle hook, and catching the muscle with Dastoor Superior Rectus Forceps and with at the insertion of the suture below the muscle. This step includes scleral perforation as a complication.

CONJUNCTIVAL FLAP

In MSCIS, a fornix based conjunctival flap is raised. a small conjunctival button hole like incision is made radially to the cornea. The conjunctiva is separated from the underlying tenons capsule in both directions up to about 4mm from the limbus using a conjunctival scissors. The incision is extended now along the limbus circumferentially for about 8mm length. Thus, raising a conjunctival flap of 8*4mm

SCLEROCORNEAL TUNNEL

Paul ernest was the first to describe the sclerocorneal tunnel with internal corneal lip, to prevent the aqueous seeping from the anterior chamber. The three-step internal corneal lip incision consists of perpendicular incision through the sclera, a horizontal incision through the clear cornea and sclera and angelled beveled incision into the clear anterior chamber. Each of these steps acts as a plane, forming a three planar incision. Advantages of this incision is, in case of any emergency like interoperative collapse of chroidal hemorrhage the eye can be closed as such without any suturing. Surgery can be done once the emergency situation is dealt with. This incision also has a decrease incidence of iris prolapse, faster wound healing and no suture requirement as it being a self-sealing wound.

The ideal location for this incision is 2-3 mm from the limbus with one third thickness in the sclera which is obtained with a crescent or diamond blade. The sclera corneal tunnel is obtained by wriggling with bevel up crescent blade with tip raised an heal depressed along the incision length.

The internal corneal incision is done with a keratome of sharp 3.2mm. The heal of keratome is raised resulting in a dimple on corneal surface. The keratome is then advanced into the corneal plane causing entry into the anterior chamber

Side port:

It is performed before the internal corneal incision; it is made at 10'0 clock position perpendicular to the tunnel. The side port is used for viscoelastic injection to maintain eyeball. Sometimes it can also be used for cortex aspiration and reforming anterior chamber

CAPSULAR STAINING

It is employed when red reflex is absent and performing a Continuous curvilinear capsulorhexis is difficult. It is done using one of the following, trypan blue 0.1%,⁽⁴³⁾⁽⁴⁴⁾⁽⁴⁵⁾ indocyanine green 0.5% units or sodiumfluorescein 0.25% units. The dye can be injected either subcapsular, under the airbubble or under the viscoelastic.

44

CAPSULOTOMY

It is a procedure in which an incision is made on the capsule of the crystalline lens of the eye. The normal crystalline lens is 9 mm in equatorial region, with zonular adhesionsin 1.5mm on the anterior surface. Thus capsular opening is made in the zonular free area 5.5-6mm in the centre. Capsulotomy can be performed with various techniques

- a) Can opener capsulotomy
- b) Continuous curvilinear capsulorhexis (CCC)
- c) Envelop capsulotomy

Continuous curvilinear capsulorhexis most commonly performed and preferred capsulotomy procedure in both MSCICS and phacoemulsification .With the help of a good CCC the nucleus can easily prolapsed from the bag and IOL can be easily placed inside the bag with minimum damage to the capsule. This procedure can be done with either a bend 26G needle or with utarata or caporessi forceps. The steps involve first an incision over the capsule at the center and a capsular flap is raised. The flap is enrolled with the cystitome and capsulorhexis is created with either shearing or ripping force. The rhexis is completed outside in.

Can opener capsulotomy is performed where CCC cannot be or difficult to perform that is for mature cataracts with small pupils, grade III or grade IV nuclear sclerosis. This is done under viscoelastic cover, to prevent corneal damage. A bent 26 G needle is used, needle is bend a 70 degrees at hub and 90 degree at bevel. Multiple radial cuts or punctures made over the capsule. Nearly 60 cuts with 15 in each quadrant is made, these are made equatorially to avoid damage to zonules. This technique is prone for tears in anterior capsule which may get attached to the simcoe canula during aspiration.

Envelop ecapsulotomy is another technique that is ideal for morgagnian cataracts.

HYDROPROCEUDRES

It is removal of nucleus from the cortex, epinuclus and cortex without zonular loss. Two techniques are employed

- a) Hydrodissection
- b) Hydrodelineation

Hydrodissection is separation of cortex from lens capsule by using balanced salt solution (BSS)or ringer lactate(RL). It is done using 2 techniques cortical cleaving hydrodissection and conventional hydrodissection. Cortical cleaving hydrodissection is done by advancing the hydro cannula 1 mm under the anterior capsule and with steady flow of BSS into the lens results in separation of cortex and capsule. The dissection can be visualized by a wave. This fluid pass behind the

equator, posterior pole of the nucleus and cortex and reach the other end of equator thus separating the capsule and cortex in all zones.

Hydrodelineation debulking nucleus between epinucleus and nucleus using fluid the simcoe canulae is used to inject the BSS/RL into the cortex and the nucleus separating both.

PROPLAPSE OF THE NUCLEUS:

After a satisfying hydrodissection, nucleus lifts and tilts into the anterior chamber. the simcoe canula is moved under the rhexis and fluid is injected and thus resulting in prolapsed of the nucleus into the anterior chamber. If this fails to move out the whole nucleus, a sinskey hook is used to remove the nucleus out of the bag.

NUCLEUS DELIVERY:

There are various method employed in delivery of nucleus and over the years these step have evolved

In SICS, the nucleus is brought out of the capsular bag into the anterior chamber and extracted outside the eye using and one of the techniques

- a) Blumenthal's method
- b) Ruit technique
- c) Malik technique

- d) Phacosandwich orphacosection.
- e) Phacofracture technique
- f) Fish hook technique

a. Blumenthal Technique

The Blumenthal's 'Mininuc' technique states the removal of nucleus through the 5 to 7 mm scleral or limbal incision. Firstly the bridle suture is applied and conjunctival flap is created. A 5-7mm sclerocorneal tunnel created. Two small entries are made using a 19 or 20G microvitreoretinal (MVR) knife adjacent to the limbus in the cornea. The side port at 10 o'clock can be used for performing capsulotomy, hydrodissection, nuclear manipulation, aspiration of cortex and dialling of intraocular lens (IOL) in the bag. Another port is created for introducing the anterior chamber maintainer (ACM) into the anterior chamber connected to the balanced salt solution (BSS) bottle 50 to 60 cm above the eye for building up sufficient hydropressure. A CCC under viscoelastic or canopener under fluid cover is done. Hydrodissection and hydrodelination are done, thus separating the nucleus. The free nucleus is rotated and lifted out of the bag. The nucleus is mounted on lens guide and is between nucleus and iris. The ACM is on flow and applied over the lens guide. The nucleus moves and get engaged into the ACM, and with increase in height of the BSS bottle, the nucleus removal is fastened.

This continuous flow from ACM to anterior chamber keeps the eye under positive pressure physiological state besides clearing the chamber of cortex, blood and pigments offering excellent visualization⁽⁴⁶⁾.

b. Ruit Technique

After administration of peribulbar anesthesia, and prepped with iodine based antiseptic and drapes laden, superior rectus bridle suture is placed. A fornix based conjunctival flap is created 10-2'o clock position. Exposure of the bare sclera and diathermy used to blanch the vessels. A sclerocorneal tunnel is made and a tissue plane parallel to the incision is made extending upto and into the cornea. A triangular capsulotomy falp is made at 12'0 clock position with 26G Needle. In cases of immature cataract, irrigation fluid is injected into the lens to separate the nucleus from other lens components and the nucleus is prolapsed into the anterior chamber. In cases of mature cataract hydro dissection is not employed, just by tilting and rotating the nucleus is delivered into the anterior chamber. The nucleus can be delivered from the anterior chamber either with simcoe canula, creating hydrostatic pressure or with irrigation vectis creating the same. Air is injected into the anterior chamber. A polymethyl methacrylate intraocular lens is passed into the eye and placed in the bag. Using the Simcoe cannula anterior chamber air is removed and replaced with irrigation fluid. Subconjunctival injection of antibiotic and steroid is given just above the cut edge of conjunctiva.

c. Malik`s Technique

Under local peribulbar anesthesia, after painting and draped with povidoneiodine. Conjunctival flap raised and sclerocorneal tunnel is created, with the size depending on the nucleus stage and size. Two sided ports are then made with microvitreoretinal blade, with one at 10o clock and other at 5 o clock in case of right eye and 7o clock in case of left eye, for anterior chamber maintainer fixation. Capsulotomy is performed followed with hydrodissection with the prolapsed of nucleus into the anterior chamber. ACM is attached to the a syringe containing 2% hydroxy methylcellulose (HPMC) and is injected into the anterior chamber. As the pressure of the anterior chamber increases, the nucleus progresses towards the section. the internal opening is first enlarged using a keratome. With pressure given over the inner lip of the section the nucleus is delivered⁽⁴⁷⁾

d. Phacosandwich:

Luther L Fry first describe this technique in 1985. It can be performed in incision sizes I 5.5mm-6mm. In phacosandwich, a vectis is placed below the nucleus. The nucleus is sandwiched between the vectis and Sinskys hook and the nucleus is removed being sandwiched between the vectis and Sinskys hook

e. Phacofracture:

In phaco fracture the manual fracturing of nucleus. This technique is employed for soft and mild hard cataracts. It is done using various methods

- 1. Phacofracture with bisector
- 2. Nucleus trisector
- 3. Phacofracture at exit of tunnel
- 4. Phacofracture with wire loop
- 5. Phacosalute and fracture

Phacofracture with wire loop most commonly employed . Vectis is applied below the nucleus and Sinski is placed above the nucleus. Vectis and Sinskys hook are moved towards each other, fragmenting the nucleus, the separated parts are removed with forceps

f. Fish Hook Technique:

A 30 G disposable needle is bent in fish hook form and entered into the anterior chamber with side way stilt. Using this hook, nucleus is hooked and is slided out with mild pressure

REMOVAL OF EPINUCLEUS:

After removal of the nucleus in any of the above stated techniques. The retained epinucleus can be either aspirated with simcoe or removed with viscoelastic injection into the anterior chamber. They can also be removed by minimal pressure on the posterior scleral lip of wound

CORTICAL ASPIRATION:

Removal of cortex can either be by aspiration or by viscolestic. In case of intact epiucleus it is flipped out of the bag with irrigation cannula. The cannula is placed in the bag and irrigated lifting the epinucleus outside into the anterior chamber. This is expressed out by depressing the scleral lip.

This can also be done by viscoelastic, that is viscodisection. Viscoelastic is injected into or under the capsular rim, between capsular and cortex. Thus separating the epinuleus and prolapsing it into the anterior chamber. The prolapsed epinucleus can be extracted through the incision

IOL IMPLANTATION:

In 1949, Sir Harold Ridley implanted the first Intra ocular lens (IOL) at Saint Thomas' Hospital in London^{(48).}

Depending upon the size of the wound, IOL size is chosen 6mm/6.5mm rigid Polymethylmethacrylate (PMMA)is placed in the bag

The bag is filled with viscoelastic, IOL is held with Shepards or Kratz forceps and passed through the tunnel, IOL is tilted upward while entering the anterior chamber and made horizontal after entering anterior chamber. The leading haptic is now pushed under the rhexis, once leading haptic is inside the bag the forceps is released and lens is dialed into the bag in anticlockwise direction by Sinskis hook. After IOL placed, thorough was is given to remove the remaining viscoelastic.

WOUND CLOSURE:

A good sclerocorneal tunnel is self sealing. The side port sealed with stroma hydration. The conjunctiva is apposed back and cauterized.

A subconjunctival injection of dexamethasone 2mg (0.3ml) is given and eye is patched

8. STEPS OF PHACOEMULSIFICATION SURGERY

Phacoemulsification (phaco) an exemplary technique developed by Kelmer in 1967⁽⁴⁹⁾. It employs an ultrasonically driven tip to fragment the nucleus and emulsify them. This is achieved through a surgeon controlled automated aspiration system. Earlier there were problems with phacoemulsification needle as related to

the level of proximity of need with the cornea, later this problem was conquered with the invention of coaxial irrigation sleeve. Even though with the invention of co-axial sleeve, the incision created was large as to fit a rigid IOL. This was later overcome by Mazzocco who developed and placed foldable IOL made of silicone.⁽⁵⁰⁾

Foldable IOLs became a ground breaking development in field of cataract surgery causing shift from large to small incision. Similar to conventional surgery, pupil is pharmacologically dilated and mostly a topical anesthesia is applied. Initial steps are similar to MSICS. A bridle suture is placed and a conjunctival flap is raised.

CLEAR CORNEAL INCISION:

From this step phacoemulsification and MMSICS vary Globe fixation is obtained by using fixation rings or toothed forceps are used instead of bridle suture. clear corneal incision is mostly preferred for phacoemulsification. A small 2.5-2.8 mm clear corneal incision is made superior or temporal or at steepest corneal meridian. There are various methods of clear corneal

- 1. Multiplanar incision
- 2. Near clear incision

Multiplanar incision invented by Langermann, a diamond knife is used to create a vertical groove in the cornea, perpendicular to corneal surface. Another groove is

created tangentially to the corneal surface by creating a 1.5mm tunnel through the cornea into the anterior chamber.

Next method was introduced by Shimuzu and Fina beveled method. The blade is advanced tangentially to corneal surface, until its shoulders are buried fully into the stroma. Various blades can be used for this incision newer beveled, trapezoid diamond blade are employed in this.

Near clear incision is made in the vascular arcade.

CONTINOUS CURVILINEAR CAPSULORHEXIS(CCC):

After incision, opening of the capsule is the next step. CCC is the most preferred method of capsulotomy, as it provides wider range of opening with less radial tears for the phacoemulsification probe to operate. It also helps in stabilizing the nucleus in the bag which helps in easy fragmentation of the nucleus. This fragmentation in the capsule bag helps in decrease damage to cornea.

CCC is carried out by first making an incision on the anterior capsule withcystitome needle and tip is holded by either the cystitome or capsulorhexis forceps. The tip of the capsular is either pushed away or pulled in the direction of desired tear. This causes anterior capsule to fold onto itself. The folded end of the flap is captured and carried around in circular manner. the tear should neither be inward or outward. Inward fore causes small CCC resulting in capsular phimosis post-surgery. Whereas too large incision can result in extension and tear in posterior capsule and may allow IOL dislocation anteriorly into sulcus.

HYDRODISSECTION:

It is used to separate the cortex from the posterior lens capsule along with loosening of nucleus of the lens. A blunt tipped 25-30 gauge cannula is used, it is placed under the anterior capsule of the lens, balanced salt solution is injected in radial fashion. While injecting fluid a mild pressure is given on the nucleus to prevent posterior fluid collection and rupture of posterior capsule. Hydrodissection is to be continued until nucleus is rotatable inside the capsule

HYDRODELINEATION:

This is injection of BSS into the nucleus separating various layers of nucleus. In this the fluid wave can be seen as it separates the epinucleus and the endonucleus. This is known as a golden ring sign.

NUCLEUS ROTATION:

If hydrodissection successfully breaks the attachment between the posterior cortex and posterior capsule, we should be able to rotate the nucleus in the capsular bag. This rotation of nucleus favor's the fragmentation of nucleus in phacoemulsification.

NUCLEUS FRAGMENTATION:

This involves various steps sculpting, cracking, grasping and emulsifying.

Sculpting is a process that debulks the nucleus using the phaco tip. It is performed with low aspiration and high power and with a modest vacuum. As the phaco needle moves forward, it comes in contact with the lens material and lens material is removed in controlled aspiration. Through the aspiration port the nuclear particles are aspirated out. After sculping , nucleus fragments are grasped with the help of vacuum at the phaco tip. The nucleus fragments are pulled between the posterior capsule and endothelium. The vacuum allows the material to be held at the tip and the ultrasonic power at the tip emulsifies the material into the fragments. The whole process happens under a low flow rate as to maintain the anterior chamber. With low flow, emulsification and aspiration occur at a slow and controlled manner.

After removal of nucleus the epinucleus and cortical matter aspirated with phaco handpiece or irrigation aspiration cannula

Nucleus emulsification:

The nucleus emulsification can happen at various places

a. Anterior chamber

- b. Iris
- c. Posterior chamber
- d. Supracapsular

a. Anterior chamber:

This was the first described technique in phacoemulsification, in which emulsification of lens in the anterior chamber. This process involved less complication like posterior capsular rupture and also provided excellent visibility. But this method increases endothelial trauma and corneal edema.

b. Iris:

The next later developed method was performing phacoemulsification at iris plane. This is indicated in cases of small pupil, zonular weakness and compromised capsule. Here the superior pole of nucleus is prolapsed anteriorly and emulsification is done. In small pupil, nucleus is held midway between in the pupillary zone and emulsified which gives better visualization of the nucleus. This technique causes less damage to endothelium and gives less stress to zonules and posterior capsule.

c. Posterior chamber:

This is at present the most common preferred site. Removing of the nucleus after capsulorhexis, hydrodissection and nuclear rotation. The emulsification when

performed in the posterior chamber causes less damage to the endothelium. But emulsification at the posterior capsule involves damage to the posterior capsule by causing increased stress on the zonules and capsular bag. It is hard to be performed in a small pupil.

d. Supracapsular technique:

This technique involves prolapsing the nucleus from the capsular bag and positioning and placing the nucleus above the capsular bag and the emulsification is done. This is not widely employed as it causes increase tension on the capsular bag and high chances of damage to the iris while aspiration.

NUCLEUS DISSEMBLY:

Nucleus dissemble employs 2 instruments that subdivide the nucleus prior to emulsification.

There are various technique employed in nucleus disassembly

- a. Divide and conquer
- b. Chopping

Divide and conquer:

This method is employed for soft cataracts. Post hydrodissection and delineation, using a continuous ultrasound phaco probe, a deep sculpting is done and a linear
groove is made in the nucleus. The groove is then deepened, deep enough to allow cracking of the nucleus. A good groove is made out with brightening of the red reflex and smoothening of situations of the groove. After this nucleus is cracked into two parts and it each part is further cracked, forming four parts. The phaco tip and Sinskey hook is inserted inside each grove and is separated creating four separate pieces. The separated pieces are presented to the phaco tip at the center of the bag, and with adequate vacuum the parts are captured by the phaco tip and emulsified. Each separated quadrant of the nucleus is sequentially removed.

Chopping techniques:

This technique does not create a central groove. After aspiration of cortex the phaco tip is buried inside the nucleus. Then the phaco chopper is inserted and placed at the other end of the nucleus. These two instruments are moved in opposite directions and divide the nucleus. The fragmented nucleus is emulsified and aspirated.

There is a modified type of chopping identified by Koch and Katzen, This process involves of dividing the nucleus into two by sculpting and cracking and then the hemi nuclei are chopped. This is termed as the stop and chop technique. High levels of vacuum are needed for this process to maintain the fragmented nuclei.

There are two methods of chopping

- 1. Horizontal
- 2. Vertical

Horizontal methods of chopping, the phaco probe is placed below the anterior capsule and nucleus is engaged from the periphery. This provides better visualization.

Vertical method of chopping, the phaco tip is placed in the center of the nucleus, which tightly holds the nucleus and the chopper with sharp tip is placed below the phaco tip inside the nucleus. The phaco tip lifts and chopper depress the nuclei causing separation of nucleus.

IRRIGATION AND ASPIRATION:

The cortical material can be removed with phaconeedleforirrigation aspiration without ultrasound. Reduced vacuum can be used to aspirate the cortical matter from capsular fornix. The cortical material should be engaged to the probe dragged to the center and stripped by suction.in alteration, cortex is captured with mild suction to the cannula tip, stripped to the center and released by irrigation into anterior chamber.

Cortex resistance to aspiration can be separated with ocular viscoelastic devices(OVD), which allows easier access of the capsule to the tip of probe. This enhances removal of the cortical material.

IOL IMPLANTATION :

The posterior capsule bag is filled with OVD and with a lens inserter a foldable hydrophilic acrylic posterior chamber IOL is placed in the bag

After cortical aspiration and IOL implantation, OVD is be removed from the bag.

WOUND CLOSURE:

BSS is used for reforming the anterior chamber and the corneal incision is hydrated with BSS. Hydration of corneal incision causes temporary stromal swelling and increased wound apposition.

A subconjunctival injection of dexamethasone 2mg (0.3ml) is given and eye is patched

STUDIES:

Thakur et al evaluated the loss of endothelial cells after MSICS in 100 patients. A gradual decrease in endothelial cell count was evident, there was a 15.83% decrease in endothelial cell at 1 month postoperative period. ⁽⁵¹⁾

Walkow et al from Germany analysed the effect of preoperative and intraoperative parameters and location of corneo-scleral tunnel incision on total and localized endothelial loss in 50consecutive patients who underwent phacoemulsification. After a study period of 12 months they found no significant difference between superior and temporal surgical approaches in endothelial cell density intraoperative parameters like surgical time and relative intensity of phacoemulsification. The only risk factors found significant for higher endothelial cell loss were shorter axial length and longer phacoemulsification time.⁽⁵²⁾

Philipet al conducted a study in relationship between the change in endothelial cell density in the central corneal thickness before and after surgery in MSICS versus Phacoemulsification of total 120 patients amoung which 60 had undergone MSICS and 60 had undergone phacoemulsification cataract surgery. They found there was statistical difference endothelial cell MSICS no in loss in versus phacoemulsification patients after1 month of postoperative period. But the study had some limitations as there was no age and sex matched comparisons between

63

the groups, and other relative factors like diabetes pseudo exfoliation, nuclear sclerosis which would alter the postoperative outcome between the groups have not been included. ⁽⁵³⁾

Gogate et al compared the endothelial cell loss in cataract surgery by MSICS and phacoemulsification(stop and chop) in 200 patients by a randomized control trial. There was no statistically significant difference in endothelial cell loss in both groups. However the study was limited by the short follow up of 6 weeks.⁽⁵⁴⁾

Kohlhaa et al., conducted study on comparision of "Reversed Tip and Snip" technique compared with "Divide and Conquer"-technique. The corneal endothelial cell count was measured before surgery and was measured post operative at 4 weeks and 3 months . It stated that the endothelial cell count was reduced significantly about 10% in the "Reversed Tip and Snip" group and about 15% in "Divide and Conquer"-Technique, thus stating that The "Reversed Tip and Snip" phakoemulsification technique causes less endothelial cell loss than the "Divide and Conquer"-technique.⁽⁵⁵⁾

JUSTIFICATION OF STUDY:

Although cataract surgery by both MSICS and phacoemulsification are claimed to provide equally good results, there is concern that MSICS may be more harmful to the endothelium than phacoemulsification because more maneuvering is performed

manually in the anterior chamber in MSICS. In phacoemulsification maneuvering is performed mechanically in the capsular bag far from the endothelium. Few studies from India have compared the morphological and functional endothelial changes after MSICS versus phacoemulsification using the chop technique. The divide and conquer technique of nuclear disassembly in phacoemulsification is the technique recommended for beginners/ surgeons in transition phase from MSICS This technique has been said to consume a higher to phacoemulsification. effective phacoemulsification time because of more sculpting.⁽⁵⁶⁾. The heat production at tip of ultrasonic probe and ultrasound vibration can result in greater intraoperative mechanical damage to the endothelium. There is paucity of literature comparing the endothelial cell loss after cataract surgery by MSICS versus divide and conquer phacoemulsification. Hence this study aims to compare the endothelial cell loss after MSICS versus divide and conquer phacoemulsification technique. Only few studies have done long term follow up on postoperative endothelial cell density after cataract surgery, so we would like to justify our study by doing a long term follow up.

AIM AND OBJECTIVE

To study the corneal endothelial alteration in postoperative MSICS and phacoemulsification patients visiting PSG IMS&R

MATERIALS AND METHODS

STUDY DESIGN:

Longitudinal study.

STUDY POPULATION:

Patients willing for cataract surgery MSICS/phacoemulsification aged between 45-75 years in PSGIMSR, Coimbatore, during the time period of 2017-2019.

SAMPLE SIZE:

The sample size estimation was based on an 80% power to detect 20% difference in endothelial cell loss at a 5% level of significance and with a 20% loss of follow up. The sample size meeting this requirement was 100 for each surgical technique (MSICS and phacoemulsification)

MATERIALS AND METHODS

- This was a hospital-based study which included patients who were attending the Ophthalmology Department for cataract surgery in PSG Institute of Medical Sciences and Research, Coimbatore.
- The study was done spanning over a period of 18 months from January 2018 to June 2019.

3) A convenient sample of 200 patients cataractous lens change were selected

INCLUSION CRITERIA:

- 1) Study population between the age of 45 75 years
- 2) Patients diagnosed with age related cortical or nuclear cataract and scheduled for cataract surgery.

EXCLUSION CRITERIA:

- 1) Patients with traumatic/complicated cataract, pseudo exfoliation, glaucoma and retinal pathology.
- 2) Patients with past history of other ocular surgeries.
- Patients with intra-operative complications like posterior capsular rupture, vitreous loss during cataract surgery.
- 4) Patients with preoperative endothelial cell density of less than 2000/mm square.

METHODOLOGY:

After clearance from the Institutional Ethical Committee, Patients visiting Ophthalmology OPD for cataract surgery were selected and detailed history was obtained regarding the age, sex, occupation and presenting symptoms, duration, progression and about associated systemic and ocular conditions. Patients were then selected based on inclusion and exclusion criteria. Informed consent was obtained. Preopertaive and postoperative (first, third and seventh week) corneal endothelial parameters were noted. The final data was compared with each other. Statistical analysis was done and results are obtained.

RESULTS

I. AGE COMPARISON

The demographic data of the patients included in the study was analyzed. Out of the two hundred patients included in the study, hundred patients underwent MSICS and hundred patients underwent phacoemulsification. The mean age in MSICS group was 65.56 years \pm 8.61 and the mean age of phacoemulsification group was 63.64 years \pm 8.52 (Table 1 and Figure 6).

 Table 1: Comparison Of Age In Both MSICS And Phacoemulsification

Group	Ν	Mean	Std. Deviation	P value
SICS	100	65.5600	8.61092	0.114
Phaco	101	63.6436	8.52477	
group				

II. CCT AND ENDOTHELIAL PARAMERTES PREOPERATIVELY IN MSICS

	Ν	Mean	Std.Deviation
CCT -Pre OP	100	496.3100	32.46683
CD-Pre OP	100	2354.2400	276.15766
CV-Pre OP	100	42.9400	9.71183

Table 2: Preoperative CCT And Endothelial Parameters In MSICS

Figure 7: Preoperative CCT And Endothelial Parameters In MSICS

In MSICS group, the mean preoperative CCT was $496.31\pm 32.46 \ \mu m$ and CD $2354.24\pm 276.15 \ cells/m^2$ and CV being $42.94\pm 9.7 \ \%$.

III. CCT AND ENDOTHELIAL PARAMERTES PREOPERATIVELY IN PHACOEMULSIFICATION

In phacoemulsification the mean preoperative CCT being $508.79\pm39.10 \mu m$. The mean CD being and 2473.74 $\pm 173.13 \text{ cells/m}^2$. The mean CV being 43.48 $\pm 7.9 \%$

Table 3: Preoperative CCT And Endothelial Parameters In Phacoemulsification

	Ν	Mean	Std. Deviation
CCT -Pre OP	100	508.7900	39.10418
CD-Pre OP	100	2473.7426	173.13617
CV-Pre OP	100	43.4800	7.91174

Figure 8: Preoperative CCT And Endothelial Parameters In Phacoemulsification

IV. CCT COMPARISON BETWEEN THE TWO GROUPS

Central corneal thickness (CCT) was compared in MSICS and phacoemulsification groups (Table 4 and Figure 9). The mean postoperative CCT of patients who underwent MSICS in first, third and seventh visits were, 515.40 ± 32.45 µm, 518.04 ± 32.96 µm, 507.480 ± 37.93 µm respectively.

In phacoemulsification the mean value of CCT postoperatively in the first, third and seventh week showed $542.22\pm45.32 \ \mu\text{m}$, $525.62 \pm 41.19 \ \mu\text{m}$, $495.68\pm39.24 \ \mu\text{m}$ respectively. The comparison between MSICS and phacoemulsification groups postoperatively first, third and seventh week, showed statistically significant difference in CCT in first and seventh week (p value 0.00 and 0.032). The mean value of CCT in phacoemulsification reduced, stating there is a decrease in CCT in seventh week of postoperative period when compared to MSICS.

	Group	Ν	Mean	Std.	P value
				Deviation	
CCT-Post OP	SICS	100	515.4000	32.45759	0.000
1st week	Phaco	100	542.2200	45.32277	
	group				
CCT-Post OP	SICS	100	518.0400	32.96001	0.152
3rd week	Phaco	100	525.6200	41.19130	
	group				
CCT-Post OP	SICS	100	507.4800	37.93654	0.032
7th week	Phaco	100	495.6800	39.24383	
	group				

Table 4: Comparison Of CCT In MSICS And Phacoemulsification Groups

Figure 9: Comparison Of CCT In Both MSICS And Phacoemulsification

V. ENDOTHELIAL CELL DENSITY COMPARISON BETWEEN THE TWO GROUPS

In MSICS and phacoemulsification groups, the endothelial cell density was compared and results are shown in Table 5 and Figure 10.

The mean value of endothelial cell density (CD) in patients who underwent MSICS postoperatively in the first, third and seventh week showed, $1736.85 \pm 648.82 \text{ cells/m}^2$, $1653.72 \pm 546.27 \text{ cells/m}^2$, $1559.71 \pm 599.14 \text{ cells/m}^2$ respectively. The mean value of CD in patients who underwent phacoemulsification, postoperatively in the first, third and seventh week postoperatively showed $2161.66 \pm 405.59 \text{ cells/m}^2$, $1836.70 \pm 391.61 \text{ cells/m}^2$, $1759.47 \pm 377.69 \text{ cells/m}^2$ respectively.

The comparison between both groups first, third and seventh week postoperative, showed statistically significant alteration in cell density of endothelial cells in cornea in all three post operative weeks. (p value 0.00, 0.005, 0.007 respectively).

	Group	Ν	Mean	Mean Std.	
				Deviation	
CD /mm2 -Post OP	MSICS	100	1736.8500	648.82337	0.000
1st week	Phaco	100	2161.6634	405.59956	
CD /mm2 -Post OP	MSICS	100	1653.7200	546.27567	0.005
3rd week	Phaco	100	1836.7030	391.61942	
CD /mm2 -Post OP	MSICS	100	1559.7100	599.14905	0.007
7th week	Phaco	100	1759.4752	377.69068	

Table5: Comparison Of Cell Density In MSICS And Phacoemulsification

Figure 10: Comparison Of Cell Density In MSICS And Phacoemulsification

VI. COEFFICIENT OF VARIATION COMPARISON BETWEEN THE TWO GROUPS

The coefficient of variation (CV) of cells in the cornea was compared between groups at different time intervals. These details are given in Table 6 and Figure 11.

The mean value of CV in patients who underwent MSICS, postoperatively in the first, third and seventh week showed, 48.10 ± 11.45 cells/m², 55.50 ± 53.55 cells/m², 46.58 ± 8.98 cells/m² respectively. The mean value of CV in patients who underwent phacoemulsification, postoperatively in the first, third and seventh week showed 42.93 ± 7.87 cells/m², 42.48 ± 10.45 cells/m², 40.97 ± 8.05 cells/m² respectively.

The comparison of CV in both MSICS and phacoemulsification groups in the first, third and seventh week postoperatively, showed statistically significant alteration in CV in all three postoperative visit(p value 0.00, 0,018 and 0,00).

Table 6: Comparison Of Coefficient Of Variation In Cells In MSCIS And

	Group	Ν	Mean	Std.	P value
				Deviation	
CV % -Post OP	SICS	100	48.1000	11.45963	0.000
1st week	Phaco	100	42.9300	7.87305	
CV % -Post OP	SICS	100	55.5000	53.55456	0.018
3rd week	Phaco	100	42.4800	10.45672	
CV % -Post OP	SICS	100	46.5800	8.98391	0.000
7th week	Phaco	100	40.9700	8.05217	

Phacoemulsification

Figure 11: Comparison Of Coefficient Of Variation In Cells In MSCIS And

Phacoemulsification

VII. COMPARISON OF PARAMETERS WITHIN THE MSICS GROUP

Within the MSICS group, on comparing CCT preoperative with postoperative third week and seventh week, showed a increase of 21.73 (4.3%), and 11.17(2.25%) respectively. Stating that there is an increase in CCT in third week and seventh week post operatively compared to preoperative. There was statistically significant variation in CCT when preoperative was compared with the third and seventh week postoperative (p Value = 0.00)

On comparing CD preoperative with post operative third and seventh week, showed a decrease of 700.52 cells/mm²(29.75%) and 794.53 cells/mm²(33.74%) respectively. Thus stating there is a decrease of CD in postoperative third and seventh week. There was statistically significant variation in CD when preoperative was compared with the, third and seventh week postoperative (p Value = 0.00)

On comparing CV preoperative with post operative third week and seventh week, showed a increase of 12.56% (29.2%) and 3.64%(8.47%). Stating that there is an increase in CV post operatively. There was statistically significant variation in CV when preoperative is compared with, third and seventh week postoperative(p Value =0.021). These changes are described in Table 7 and Figure 12.

	Mean	Mean	Mean diff	Std.	Р
		diff	%	Deviation	value
CCT-Pre OP	496.31			32.46683	0.000
CCT-Post OP 3rd week	518.04	21.73	4.378312	32.96001	
CCT-Post OP 7th week	507.48	11.17	2.250609	37.93	
CD /mm2-Pre OP	2354.24			276.1577	0.000
CD /mm2 -Post OP 3rd	1653.72	-700.52	-29.7557	546.2757	
week					
CD /mm2 -Post OP 7th	1559.71	-794.53	-33.7489	599.1491	
week					
CV %-Pre OP	42.94			9.71183	
CV % -Post OP 3rd week	55.5	12.56	29.25012	53.55456	0.021
CV % -Post OP 7th week	46.58	3.64	8.476945	8.98391	
				0.00	

Table 7: Comparison Of Various Endothelial Cell Parameters In PreoperativeWith Third And Seventh Week Postoperative In MSICS group.

Figure 12: Comparison Of Various Endothelial Cell Parameters In Preoperative With Third And Seventh Week Postoperative In MSICS group.

VIII. COMPARISON OF PARAMETERS WITHIN THE PHACOEMULSIFICATION GROUP

In the phaco group, on comparing CCT preoperative with post operative, third week and seventh week, 16.79 (3.29%), and 13.25%(2.60%) respectively. Stating that there is an increase in CCT in third week and decrease in CCT in the seventh week post operatively, the reduction was below the baseline CCT. There was statistically significant variation in CCT preoperative, third and seventh week postoperative (p Value 0.00 and 0.00 for third and seventh week respectively)

On comparing CD preoperative with post operative third week and seventh week, showed a decrease of 637cells/mm²(25.75%) and 714.26 cells/mm² (28.87%) respectively. Thus stating there is a decrease in CD in postoperative third and seventh week. There was statistically significant variation in CD preoperative, third and seventh week postoperative (p Value 0.00 and 0.00 for third and seventh week respectively)

On comparing CV preoperative with post operative third week and seventh week, showed a decrease of 1.01%(2.34%) and 2.47%(5.6%). Stating that there is and decrease in CV in third and seventh week post operatively. They were statistically insignificant difference in CV in the third week with p Value being 0.184and statistically significant difference in the seventh week with p value 0.00.

These changes are described in Table 8 and Figure 13.

Table 8: Comparison Of Various Endothelial Cell Parameters In Preoperative

With Third And Seventh week Postoperative In Phacoemulsification.

		Mean		Std.	Р
	Mean	diff	Mean diff %	Deviation	value
CCT-Pre OP	509.2079			39.13421	
CCT-Post OP 3rd week	526	16.7921	3.29769	41.16236	0.000
CCT -Post OP 7th week	495.9505	-13.2574	-2.60353	39.141	0.000
CD /mm2-Pre OP	2473.743			173.1362	
CD /mm2 -Post OP 3rd					
week	1836.703	-637.04	-25.7521	391.6194	0.000
CD /mm2 -Post OP 7th					0.000
week	1759.475	-714.267	-28.874	377.6907	0.000
CV %-Pre OP	43.4257			7.89094	
CV % -Post OP 3rd week	42.4059	-1.0198	-2.34838	10.43089	0.184
CV % -Post OP 7th week	40.9505	-2.4752	-5.69985	8.01421	0.000

Figure 13: Comparison Of Various Endothelial Cell Parameters In Preoperative

With Third And Seventh week Postoperative In Phacoemulsification.

DISCUSSION

In our study conducted in a tertiary care hospital, a sample of 200 patients who were willing for cataract surgery were selected based on the inclusion and exclusion criteria. 2 groups of each 100 patients were selected based on patient's surgery preference as MSICS or phacoemulsification. All patients underwent specular microscopy before the surgery and postoperatively in the first, third and seventh week.

In our study, patients who underwent MSICS had increased CCT and CV and decreased CD values post operatively. Whereas there was an increase and consecutive fall in CCT, with decrease in both CD and CV noted in patients who underwent phacoemulsification.

The mean age of MSICS patients is 65.56 years \pm 8.61. The mean age of phacoemulsification patients being 63.64 years \pm 8.52.

In MSICS the mean preoperative CCT was 496.31 and third week and seventh week postoperative CCT being 518.04 and 507.48. The difference of CCT with preoperative with postoperative third week and seventh week , showed a increase of 21.73 , and 11.17 respectively.

In phacoemulsification the mean preoperative CCT was 509.20, third week and seventh week postoperative CCT being 526 and 495.95. The difference between

preoperative and postoperative CCT in the third week and seventh week was 16.79 and 13.25 respectively.

On comparing preoperative with postoperative CCT values of MSICS and phacoemulsification, there was increase in CCT in both groups in the third post operative week followed by decrease at seven weeks follow up.

This inference in our study is similar to study by Deshpande et al stating that there is increase in CCT in MSICS and phacoemulsification post operatively. They compared the CCT values in patients who underwent cataract surgery (50 MSICS and 50 phacoemulsification). There was significant increase in CCT in both 7th day and 30th day postoperatively. CCT in 7th and 30th postoperative day in MSICS patients were 528.96 and 514.15 respectively and in phacoemulsification being 533.78 and 524.9. this states that there is an increase in CCT in both MSICS and phacoemulsification postoperatively.

Micheali et al also conducted a study comparing CCT and endothelial change after, in 51 patients who underwent phacoemulsification with clear cornea and scleral tunnel incision and their central corneal thickness measured preoperatively and on post-op days 1, 7, 30 and 90. Their corneal thickness increased significantly in all measurements post-op, and returned to baseline by 3 months. As stated in the study the CCT may reach the baseline by the end of third month. But in our study we have not analyzed post operative CCT up to third month, thus we are unable to conclude the restoration of corneal thickness to the baseline value.⁽⁵⁸⁾

Kosrirukvongs et al compared study of CCT and endothelial cell loss in divide and conquer with chip and flip in 41 eyes, specular microscopy was done at one week, one and third month postoperatively. This study noted there was increase in corneal thickness and greater endothelial loss in chip and flip compared to divide and conquer⁽⁵⁹⁾

In MSICS the mean preoperative CD was 2354.24, the postoperative CD for third week and seventh week being 1653.72 and 1559.71. The difference in CD preoperative with post-operative third week and seventh week, showed a decrease of 700.52 cells/mm²(29.75%) and 794.53 cells/mm² (33.74%) respectively.

In phacoemulsification the mean preoperative CD was 2473.74 and third- and seventh-week postoperative values was 1836.73 and 1759.47 respectively. While comparing preoperative CD with post-operative CD for third week and seventh week, the CD showed a decrease of 637cells/mm²(25.75%)and 714.26 cells/mm²(28.8%)respectively.

On comparing MSICS and phacoemulsification the CD values decrease in both the groups. Cataract surgery has been known to be associated with decrease in endothelial cell density and alteration of cell morphology. The percentage of

90

endothelial cell loss was found to be significantly less with phacoemulsification compared to MSICS.

In correlation with our study, a study by Ganekal et al, where they compared the morphological and functional endothelial cell changes after MSICS versus phacoemulsification cataract surgery(chop technique) in around 200 patients using non-contact specular microscope. They found a statistically significant difference in endothelial cell density at 1 week and 6 weeks between the 2 groups. ⁽⁶⁰⁾

Storr-Paulsen et al compared endothelial cell damage after phacoemulsification using divide and conquer or phacoemulsification chop nuclear fracturing technique in 60 patients. Endothelial cell loss was measured postoperatively and at 3rd and 12th month. Both groups had a significant but equal decrease in cell density contradicting the popular hypothesis that phacoemulsification chop technique is less harmful to the corneal endothelium than divide and conquer.⁽⁶¹⁾

In MSICS the mean preoperative CV was 42.94 %, postoperative third week and seventh week were 55.5 % and 46.58 %. On comparing the CV preoperative with post-operative for the third week and seventh week, CV showed an increase of 12.56% and 3.64%. Thus, showing a significant increase in CV for third week postoperative when compared to the seventh week postoperative values.

91

In phacoemulsification the mean preoperative CV 43.42 and third and seventh week postoperative being 42.40 and 40.95. While comparing CV preoperative with post operative third week and seventh week, showed a decrease of 1.01% and 2.47%.

On comparing MSICS and phacoemulsification, there was an increase of CV in MSICS compared to phacoemulsification surgeries

Ganesan et al conducted a study to assess the corneal endothelium, CCT after phacoemulsification. On comparing preoperative, 1st week, 6th week and 3rd month postoperative endothelial cell density (ECD), coefficient of variation (CV), hexagonality and central corneal thickness (CCT). There was a significant increase in CV after phacoemulsification. In contrast we did not observe a similar increase in CV in phacoemulsification group.⁽⁶²⁾

CONCLUSION

Our longitudinal comparative study has shown that there is increase in CCT in MSICS compared to phacoemulsification surgeries.

The study also showed that there is a significant percentage of cell loss in MSICS compared to phacoemulsification.

Polymegethism was noted to be increased in MSICS group than phacoemulsification.

Our study demonstrates that phacoemulsification using divide and conquer technique was superior compared to MSICS in terms of postoperative corneal endothelial alterations.

LIMITATIONS

- Lack of sample size in each group
- Lack of consideration of effective phaco time and ultrasound time
- Comparison of single technique of phaco and MSICS, other techniques may give rise to various results.
- Surgery by trainee surgeons

REFERENCES

- Bourne RRA, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013 Dec;1(6):e339–49.
- Murthy GVS, Gupta SK, John N, Vashist P. Current status of cataract blindness and Vision 2020: The right to sight initiative in India. Indian J Ophthalmol. 2008;56(6):489–94.
- 3. Krachmer JH. Cornea-Fundamentals, Diagnosis and management.
- Ophthalmology AAO Basic and Clinical Course Complete Set 2012-2013 american academy of ophthalmology.
- Khurana AK, Khurana I. Anatomy and Physiology of the Eye. CBS Publishers & Distributors; 2008. 514 p.
- Bergmanson JPG, Horne J, Doughty MJ, Garcia M, Gondo M. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens. 2005 Nov;31(6):281–7.
- Morishige N, Takagi Y, Chikama T, Takahara A, Nishida T. Threedimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy. Invest Ophthalmol Vis Sci. 2011 Feb 16;52(2):911–5.
- Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015 Nov;49:1–16.
- McCarey BE. Noncontact Specular Microscopy: A Macrophotography Technique and Some Endothelial Cell Findings. Ophthalmology. 1979 Oct 1;86(10):1848–60.
- Hoffer KJ. Corneal decomposition after corneal endothelium cell count. Am J Ophthalmol. 1979 Feb;87(2):252–3.
- 11. Laing RA, Sanstrom MM, Berrospi AR, Leibowitz HM. Changes in the corneal endothelium as a function of age. Exp Eye Res. 1976 Jun;22(6):587–94.
- Binder PS, Akers P, Zavala EY. Endothelial cell density determined by specular microscopy and scanning electron microscopy. Ophthalmology. 1979 Oct;86(10):1831–47.

- Cheng H, Jacobs PM, McPherson K, Noble MJ. Precision of Cell Density Estimates and Endothelial Cell Loss With Age. Arch Ophthalmol. 1985 Oct 1;103(10):1478–81.
- Abib FC, Barreto Junior J. Behavior of corneal endothelial density over a lifetime. J Cataract Refract Surg. 2001 Oct;27(10):1574–8.
- Bonanno JA. "Molecular Mechanisms Underlying the Corneal Endothelial Pump." Exp Eye Res. 2012 Feb;95(1):2–7.
- 16. Oxygen-deficient metabolism and corneal edema. PubMed NCBI
 [Internet]. [cited 2019 Oct 10]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21820076
- 17. Wybar K. Wolff's Anatomy of the Eye and Orbit. Br J Ophthalmol. 1977 Apr;61(4):302.
- McCarey BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea. 2008 Jan;27(1): 1–16.
- Maurice DM. The location of the fluid pump in the cornea. J Physiol. 1972 Feb;221(1):43–54.

- 20. Geroski DH, Kies JC, Edelhauser HF. The effects of ouabain on endothelial function in human and rabbit corneas. Curr Eye Res. 1984 Feb;3(2):331–8.
- Diecke FP, Zhu Z, Kang F, Kuang K, Fischbarg J. Sodium, potassium, two chloride cotransport in corneal endothelium: characterization and possible role in volume regulation and fluid transport. Invest Ophthalmol Vis Sci. 1998 Jan;39(1):104–10.
- 22. Inaba M, Matsuda M, Shiozaki Y, Kosaki H. Regional specular microscopy of endothelial cell loss after intracapsular cataract extraction: a preliminary report. Acta Ophthalmol (Copenh). 1985 Apr;63(2):232–5.
- Schultz RO, Glasser DB, Matsuda M, Yee RW, Edelhauser HF. Response of the corneal endothelium to cataract surgery. Arch Ophthalmol Chic Ill 1960. 1986 Aug;104(8):1164–9.
- Bowling. Kanski's Clinical Ophthalmology
 A Systemic Approach. 8th ed
 2016.
- 25. Intraobserver and interobserver reproducibility in the evaluation of ultrasonic pachymetry measurements of central corneal thickness. PubMed
 NCBI [Internet]. [cited 2019 Oct 9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14736765

98

- 26. Olsen T, Ehlers N. The thickness of the human cornea as determined by a specular method. Acta Ophthalmol (Copenh). 1984 Dec;62(6):859–71.
- 27. Wirbelauer C, Scholz C, Hoerauf H, Pham DT, Laqua H, Birngruber R. Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography. Am J Ophthalmol. 2002 Apr 1;133(4):444–50.
- Maurice DM. Cellular membrane activity in the corneal endothelium of the intact eye. Experientia. 1968 Nov 15;24(11):1094–5.
- Laing RA, Sandstrom MM, Leibowitz HM. In vivo photomicrography of the corneal endothelium. Arch Ophthalmol Chic Ill 1960. 1975 Feb;93(2): 143–5.
- Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. I.
 Optical principles. Arch Ophthalmol Chic Ill 1960. 1979 Sep;97(9):1714–9.
- 31. Módis L, Langenbucher A, Seitz B. Scanning-slit and specular microscopic pachymetry in comparison with ultrasonic determination of corneal thickness. Cornea. 2001 Oct;20(7):711–4.
- Hoffer KJ, Kraff MC. Normal Endothelial Cell Count Range.
 Ophthalmology. 1980 Sep 1;87(9):861–6.

- Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. II. Qualitative evaluation of corneal endothelial photomicrographs. Arch Ophthalmol Chic Ill 1960. 1979 Sep;97(9):1720–5.
- 34. Yanoff M, Duker JS. Ophthalmology. Elsevier Health Sciences;2008.1551p.
- Tabin G, Chen M, Espandar L. Cataract surgery for the developing world. Curr Opin Ophthalmol. 2008 Jan;19(1):55–9.
- 36. Vijaya L, George R, Asokan R, Velumuri L, Ramesh SV. Prevalence and causes of low vision and blindness in an urban population: The Chennai Glaucoma Study. Indian J Ophthalmol. 2014 Apr 1;62(4):477.
- Gimbel HV, Neuhann T. Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990 Jan;16(1):31–7.
- 38. Van Dooren BTH, Beekhuis WH, Pels E. Biocompatibility of trypan blue with human corneal cells. Arch Ophthalmol Chic Ill 1960. 2004 May;122(5):736–42.
- 39. Ari S, Caça I, Unlü K, Nergiz Y, Aksit I. Effects of trypan blue on corneal endothelium and anterior lens capsule in albino wistar rats: An investigator-

masked, controlled, two-period, experimental study. Curr Ther Res Clin Exp. 2006 Nov;67(6):366–77.

- 40. Arnott EJ. Phacoemulsification and Aspiration: the Kelman Technique of Cataract Removal. Br J Ophthalmol. 1976 Aug;60(8):602.
- 41. Girard LJ, Rodriguez J, Mailman ML. Reducing Surgically Induced Astigmatism by Using a Scleral Tunnel. Am J Ophthalmol. 1984 Apr 1;97(4):450–6.
- 42. Cravy TV. Routine use of a lateral approach to cataract extraction to achieve rapid and sustained stabilization of postoperative astigmatism. J Cataract Refract Surg. 1991 Jul;17(4):415–23.
- 43. Chang Y-S, Tseng S-Y, Tseng S-H, Chen Y-T, Hsiao J-H. Comparison of dyes for cataract surgery. Part 1: cytotoxicity to corneal endothelial cells in a rabbit model. J Cataract Refract Surg. 2005 Apr;31(4):792–8.
- 44. Melles GR, de Waard PW, Pameyer JH, Houdijn Beekhuis W. Trypan blue capsule staining to visualize the capsulorhexis in cataract surgery. J Cataract Refract Surg. 1999 Jan;25(1):7–9.

- 45. Horiguchi M, Miyake K, Ohta I, Ito Y. Staining of the lens capsule for circular continuous capsulorrhexis in eyes with white cataract. Arch Ophthalmol Chic Ill 1960. 1998 Apr;116(4):535–7.
- 46. Malik KPS, Goel R. Nucleus management with Blumenthal technique: Anterior chamber maintainer. Indian J Ophthalmol. 2009;57(1):23–5.
- 47. Kps M, R G. Malik`s Technique of Continuous 2% Hydroxymethylcellulose (HPMC) Infusion Assisted Nuclear Delivery in Manual SICS. Off Sci J Delhi Ophthalmol Soc. 2015 Nov 30;26(3):190–1.
- 48. Edition OSNUS, June 1, Boyle 2007Erin L. Foldable IOLs ushered in new cataract and refractive paradigm [Internet]. [cited 2019 Sep 16]. Available from: https://www.healio.com/ophthalmology/cataract-surgery/news/print/ ocular-surgery-news/{98997a7f-36ca-4ad0-b64c-4d5389834bff}/foldable-iols-ushered-in-new-cataract-and-refractive-paradigm.
- 49. Pandey SK, Milverton EJ, Maloof AJ. A tribute to Charles David Kelman MD: ophthalmologist, inventor and pioneer of phacoemulsification surgery. Clin Experiment Ophthalmol. 2004 Oct;32(5):529–33.
- 50. Kohnen T. The variety of foldable intraocular lens materials. J Cataract Refract Surg. 1996 Jan 1;22:1255–8.

- 51. Thakur SK, Dan A, Singh M, Banerjee A, Ghosh A, Bhaduri G. Endothelial cell loss after small incision cataract surgery. Nepal J Ophthalmol Biannu Peer-Rev Acad J Nepal Ophthalmic Soc NEPJOPH. 2011 Dec;3(2):177–80.
- 52. Walkow T, Anders N, Klebe S. Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg. 2000 May;26(5):727–32.
- 53. Philip1 R, Kamalakshy2 J, Narayaniyamma3 V. Endothelial Cell Count, Central Corneal Thickness, Small Incision Cataract Surgery, Phacoemulsification. Chang Endothel CELL COUNT Cent CORNEAL Thick Man SMALL INCISION CATARACT Surg PHACOEMULSIFICATION CATARACT Surg [Internet]. 2016 May 28 [cited 2019 Oct 12];(11009). Available from: https://jemds.com/latestarticles.php?at_id=11009.
- 54. Gogate P, Ambardekar P, Kulkarni S, Deshpande R, Joshi S, Deshpande M. Comparison of endothelial cell loss after cataract surgery: phacoemulsification versus manual small-incision cataract surgery: six-week results of a randomized control trial. J Cataract Refract Surg. 2010 Feb;36(2):247–53.

- 55. Kohlhaas M, Klemm M, Kammann J, Richard G. [Endothelial cell loss after phacoemulsification with the "reversed tip and snip" technique compared with the "divide and conquer" technique]. Klin Monatsbl Augenheilkd. 1997 Feb;210(2):82–5.
- 56. Elnaby EA, El Zawahry OM, Abdelrahman AM, Ibrahim HE. Phaco Prechop versus Divide and Conquer Phacoemulsification: A Prospective Comparative Interventional Study. Middle East Afr J Ophthalmol. 2008;15(3):123–7.
- 57. Deshpande. Study of central corneal thickness (CCT) before and after small-incision cataract surgery (SICS) and phacoemulsification surgery [Internet].
 [cited 2019 Oct 12]. Available from: http://www.nigerianjournal ofophthalmology.com/article.asp?issn=0189-9171;year=2018; volume=26; issue=1;s page=35;epage=39;aulast=Deshpande.
- 58. Michaeli A, Rootman DS, Slomovic AR. [Corneal changes after phacoemulsification with a corneal versus a scleral tunnel incision]. Harefuah. 2006 Mar;145(3):191–3, 246.
- 59. Kosrirukvongs P, Slade SG, Berkeley RG. Corneal endothelial changes after divide and conquer versus chip and flip phacoemulsification. J Cataract Refract Surg. 1997 Sep;23(7):1006–12.

- 60. Ganekal S, Nagarajappa A. Comparison of morphological and functional endothelial cell changes after cataract surgery: phacoemulsification versus manual small-incision cataract surgery. Middle East Afr J Ophthalmol. 2014 Mar;21(1):56–60.
- 61. Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH. Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg. 2008 Jun;34(6):996–1000.
- 62. Ganesan N, Srinivasan R, Babu KR, Vallinayagam M. Risk factors for endothelial cell damage in diabetics after phacoemulsification. Oman J Ophthalmol. 2019 May 1;12(2):94.

CASE PROFOMA

NAME:

AGE:

SEX:

HOSPITAL NUMBER:

DIAGNOSIS :

RIGHT EYE:

LEFT EYE:

PREOPERATIVE SPECULAR MICROSCOPY:

S.NO	PREOPERTAIVE SPECULAR

TYPE OF SURGERY:

POSTOPERATIVE SPECULAR MICROSCOPY:

S.NO	1 ST POSTOPERTIVE	3rd POSTOPERATIVE	7 th POSTOPERATIVE
	WEEK	WEEK	WEEK

PSG Institute of Medical Science and Research, Coimbatore Institutional Human Ethics Committee INFORMED CONSENT FORMAT FOR RESEARCH PROJECTS

I, Dr. T.Sowmiya Kalaivani am carrying out a study on the topic: ENDOTHELIAL CELL DAMAGE AFTER CATARACT SURGERY: MANUAL SMALL INCISION CATARACT SURGERY VERSUS PHACOEMULSIFICATION, as part of my research project being carried out under the aegis of the Department of OPHTHALMOLOGY

My research guide is: Dr.K.Divya MBBS, MS, DNB, FICO

The justification for this study is:

Although cataract surgery by both MSICS and phacoemulsification are claimed to provide equally good results, there is concern that MSICS may be more harmful to the endothelium than phacoemulsification because more maneuvering is performed manually in the anterior chamber in MSICS. In phacoemulsification maneuvering is performed mechanically in the capsular bag far from the endothelium. Few studies from India have compared the morphological and functional endothelial changes after MSICS versus phacoemulsification using the chop technique. The divide and conquer technique of nuclear disassembly in phacoemulsification is the technique recommended for beginners/ surgeons in transition phase from MSICS to phacoemulsification. This technique has been said to consume a higher effective phacoemulsification time because of more sculpting.(9). The heat production at tip of ultrasonic probe and ultrasound vibration can result in greater intra operative mechanical damage to the endothelium. There is paucity of literature comparing the endothelial cell loss after cataract surgery by MSICS versus divide and conquer phacoemulsification. Hence this study aims to compare the endothelial cell loss after MSICS versus divide and conquer phacoemulsification technique. Only few studies have done long term follow up on postoperative endothelial cell density after cataract surgery, so we would like to justify our study by doing a long term follow up.

The objectives of this study are:

To study the comparison of endothelial cell loss in post manual small incision cataract surgery and phacoemulsification

Sample size: 200 subjects.

Study volunteers / participants are : Patients attending out patient department of Ophthalmology between age group of 45-75 years

Location: PSG IMS&R Hospital, Coimbatore.

We request you to kindly cooperate with us in this study. We propose collect background information and other relevant details related to this study. We will be carrying out:

Initial interview (specify approximate duration) : 10 minutes

Data collected will be stored for a period of 5 years. We will not use the data as part of another study.

Health education sessions: Number of sessions	: Not applicable.
Approximate duration of each session	: Not applicable

Clinical examination :

- 1. Preoperative corneal endothelial cell density measurement
- 2. Surgical procedure (SICS/ phacoemulsification)
- 3. Postoperative corneal endothelial cell density measurement at 1st ,6th and 3rd month

Blood sample collection:

Specify quantity of blood being drawn	: Not applicable.
No. of times it will be collected	: Not applicable.

Whether blood sample collection is part of routine procedure or for research (study) purpose: Not applicable

1. Routine procedure 2. Research purpose

Specify **purpose**, discomfort likely to be felt and side effects, if any Whether blood sample collected will be stored after study period: Yes / No, it will be destroyed

Whether blood sample collected will be sold: Yes / No

Whether blood sample collected will be shared with persons from another institution: Yes / No

Medication given, if any, duration, side effects, purpose, benefits : Not applicable

Whether medication given is part of routine procedure : Yes / No (If not, state reasons for giving this medication)

Whether alternatives are available for medication given: Yes / No (If not, state reasons for giving this particular medication)

Final interview

: Not applicable

If **photograph** is taken, purpose

: Not applicable

: For research purpose

Benefits from this study: Endothelial cell loss measured between the 2 procedures helps us to identify which technique is useful for the patient and helps us to prevent endothelial loss in the future patients by choosing the appropriate method.

Risks involved by participating in this study	: Nil

How the **results** will be used **only**

If you are uncomfortable in answering any of our questions during the course of the interview / biological sample collection, you have the right to withdraw from the interview / study at anytime. You have the freedom to withdraw from the study at any point of time. Kindly be assured that your refusal to participate or withdrawal at any stage, if you so decide, will not result in any form of compromise or discrimination in the services offered nor would it attract any penalty. You will continue to have access to the regular services offered to a patient. You will NOT be paid any remuneration for the time you spend with us for this interview / study. The information provided by you will be kept in strict confidence. Under no circumstances shall we reveal the identity of the respondent or their families to anyone. The information that we collect shall be used for approved research purposes only. You will be informed about any significant new findings - including adverse events, if any, – whether directly related to you or to other participants of this study, developed during the course of this research which may relate to your willingness to continue participation.

Consent: The above information regarding the study, has been read by me/ read to me, and has been explained to me by the investigator/s. Having understood the same, I hereby give my consent to them to interview me. I am affixing my signature / left thumb impression to indicate my consent and willingness to participate in this study (i.e., willingly abide by the project requirements).

Signature / Left thumb impression of the Study Volunteer / Legal Representative:

Signature of the Interviewer with date:

Witness:

Contact number of PI: Contact number of Ethics Committee Office: 0422 4345818

பூ சா கோ மருத்துவக் கல்லூரி மற்றும் ஆராய்ச்சி நிறுவனம், கோவை மனித நெறிமுறைக் குழு ஒப்புதல் படிவம்

டாக்டர் <u>த. சௌம்யா கலைவாண</u>ி ஆகிய நான். பூ சா கோ மருத்துவக் கல்லூரியின் / மருத்துவ மனையின் <u>கண் மருத்துவ</u> துறையின் கீழ்,

எண்டோதீலியல் செல் இழப்பீடு கண் புரை அறுவை சிகிச்சைக்குப் பின்னர் : சிறு கீறல் கண் புரை அறுவை சிகிக்சை எதிர் நிலையில் நுண் துளை அறுவை சிகிச்சை

என் ஆய்வு வழிகாட்டி : **டாக்டர் திவ்யா கா.**

ஆய்வு மேற்கொள்வதன் அடிப்படை:

கண்புரை அறுவை சிக்கிச்சையை கை முறை சிறு கீறல் முறையிலும், நுண் பலனை தரும். ஏனெனில் முறையில் செய்தாலும் நல்ல துளை ഥ്രപ്ര கைமுறையாக செய்யும் சிறு கீறல் சிகிக்சை கண் பரை அறுவை எண்டோதீலியத்தின் அருகில் செய்யப்படுவதால் எண்டோதீலியில் செல்லில் நிறைய சேதம் ஏற்பட்டு அதன் அடர்த்தியில் மாற்றம் ஏற்படலாம்.

சிகிச்சை முறையில் கேப்சுலார் பையில் ஆனால் நுண் துளை அறுவை குறைவாகவே செய்யப்படுகிறது. ஏற்படும் சேகம் சற்று இதில் இருக்கும். புரையிலுள்ள நியூக்ளியஸை சிறு சிறு துண்டுகளாக்கி வெளியேற்றும் முறை கையாளப்படுகிறது எண்டோதீலியத்தில் இருந்து சிறிது தொலைவில் இது ഖതക முறையிலும் செய்யப்படுகிறது. அறுவைச் சிகிக்சை இந்த இரு எண்டோதீலியம் செல்லின் உருவக்கிலும், செயல்பாடுகளிலும் ஏற்படும் மாற்றங்கள் குறித்து இந்தியாவில் சில ஆய்வுக் கட்டுரைகளே உள்ளன.புதிதாக அறுவை சிகிக்சை செய்ய ஆரம்பிப்போர் கை முறை நுண் துளை கண் புரை அறுவை சிகிக்சை முறையில் நியூக்ளியஸை சிறு சிறு துண்டுகளாக பிரித்து கைப்பற்றும் முறையைத்தான் உபயோகிக்கின்றனர். இம்முறையில் நிறைய நேரம் எடுப்பதோடு அல்ட்ரோசோனிக் ப்ரோப் வெப்பமடைகிறது இதனால் எண்டோதீலியம் செல்லில் நிறைய சேதம் ஏற்பட வாய்ப்புஉள்ளது.

இவ்விரு அறுவைச் சிகிக்சை முறையிலும் எண்டோதீலியம் செல்லில் ஏற்படும் பாதிப்புகளைக் குறித்து வெகு சில ஆய்வுகளே வந்துள்ளன. ஆகையால் நாங்கள் கைமுறை கண்புரை அறுவை சிகிச்சையும் நுண் துளை கண் புரை அறுவை சிகிச்சையில் நியூக்கிலியஸை சிறு சிறு துண்டுகளாய் பிரித்து கைப்பற்றும் முறையில் ஏற்படும் எண்டோதீலியல் மாற்றத்தை ஒப்பிடுகிறோம். மேலும் இதில் உள்ள ஆய்வுகள் அனைத்தும் குறுகிய காலக் கட்டத்திலேயே முடிக்கப்பட்டன. அதனால் நாங்கள் இந்த ஆய்வுகளை மேற்கொள்வதோடு நீண்டகால ஆய்வாகவும் இதனை செய்கிறோம்.

ஆய்வின் நோக்கம்:

எண்டோதீலியத்தின் அடர்த்தியை கை முறை சிறு கீறல் கண்புரை அறுவை சிகிச்சை மற்றும் நுண் துளை கண் புரை அறுவை சிகிச்சைக்குப் பின்னும் ஒப்பிடுதல்.

ஆய்வில் பங்கு பெறும் நபர்களின் எண்ணிக்கை : 200

ஆய்வில் பங்கு பெறுவோர் மற்றும் வயது : **கண் மருத்துவ துறைக்குவரும் 45-75 வயதிற்கு உட்பட்டோர்.**

ஆய்வு மேற்கொள்ளும் இடம்: **பூ சா கோ மருத்துவக் கல்லூரி**

இந்த ஆய்வில் எங்களுடன் ஒத்துழைக்குக்குமாறு கேட்டுக்கொள்கிறோம். நாங்கள் சில தகவல்களை இந்த ஆய்விற்காக சேகரிக்க உள்ளோம்.

ஆய்வு செய்யப்படும் முறை : நீளமான ஆய்வு

முதன்மை நேர்காணல் : 10 நிமிடங்கள்.

இந்த ஆய்வில் கிடைக்கும் தகவல்கள் **ஐந்து** வருடங்கள் பாதுகாக்கப்படும். இந்தத் தகவல்கள் வேறு ஆய்விற்குப் பயன்படுத்ததப்படமாட்டாது.

சுகாதாரக் கல்வி	: பொருந்தாது
ஒரு அமர்வுக்கான நேரம்	: பொருந்தாது

மருத்துவ பரிசோதனைகள்

இரத்த மாதிரி சேகரிப்பு - 🛛 🔅 பொருந்தாது

இரத்த மாதிரி எடுப்பது வழக்கமான சிகிக்சைக்காகவா அல்லது இந்த ஆய்விற்க்காகவா ?

 வழக்கமான சிகிக்சைக்காக 2.. குறிப்பிட்ட ஆய்விற்க்காக : பொருந்தாது இதனால் ஏற்படக்கூடிய அசௌகரியங்கள் / பக்கவிளைவுகள் பொருந்தாது

.

இரத்த மாதிரிகள் ஆய்விற்குப் பின் பாதுகாத்து வைக்கப்படுமா ? <u>பொருந்தாது</u>

சேகரிக்கப்பட்ட இரத்தம் விற்கப்படுமா ? : **பொருந்தாது**

சேகரிக்கப்பட்ட இரத்தம் வேறு நிறுவனத்துடன் பகிர்ந்து

கொள்ளப்படுமா? : <u>பொருந்தாது</u>

மருந்துகள் ஏதேனும் கொடுக்கப்படவிருந்தால் அவை பற்றிய விவரம் :

: பொருந்தாது

மருந்துகள் கொடுக்கப்படுவது வழக்கமான சிகிக்சை முறையா ? :

<u>:பொருந்தாது</u>

கொடுக்கப்படும் மருந்துகளுக்கு மாற்று உள்ளதா ? : **பொருந்தாது**

ஆய்வில் பங்கு பெறுவதால் ஏற்படும் பலன்கள் :

இவ்விரு முறைகளில் செய்யப்படும் கண்புரை அறுவை சிகிச்சையினால் எண்டோதீலியம் செல்லில் ஏற்படும் பாதிப்புகளை அளவிடுதல் மூலமாக பிற்காலத்தில் நோயாளிகளுக்கு எந்த முறையில் அறுவை சிகிக்சை செய்வது பலனளிக்கும் என்பதைக் கண்டறியலாம்.

ஆய்வில் பங்ககேற்பதால் ஏற்படும் அசௌகரியங்கள் / பக்க விளைவுகள்

<u>: பொருந்தாது</u>

ஆய்வின் முடிவுகள் எந்த முறையில் பயன்படுத்தப்படும் ?

இந்த தகவல்களை நாங்கள் எங்களுடைய ஆய்வுக்கு மட்டுமே பயன்படுத்துவோம் என உறுதி அளிக்கிறோம். இந்த ஆய்வின் கேள்விகளுக்கு பதிலளிப்பதிலோ , இரத்த மாதிரிகள் அல்லது திசு மாதிரிகள் அல்லது எடுப்பதிலோ உங்களுக்கு ஏதேனும் அசௌகரியங்கள் இருந்தால், எந்த நேரத்தில் வேண்டுமானாலும் ஆய்விலிருந்து விலகிக்கொள்ளும் உங்களுக்கு உள்ளது. எப்பொழுது உரிமை வேண்டுமானாலும் ஆய்விலிருந்து விலகிக்கொள்ளும் உரிமை உங்களுக்கு உள்ளது. ஆய்விலிருந்து விலகிக்கொள்வதால் உங்களுக்கு அளிக்கப்படும் சிகிச்சை முறையில் எந்த வித பாதிப்பும் இருக்காது என்று உங்களுக்கு உறுதியளிக்கிறோம். மருத்துவமனையில் நோயாளிகளுக்கு அளிக்கப்படும் சேவைகளை நீங்கள் தொடர்ந்து பெறலாம். இந்த ஆய்வில் பங்கேற்க ஒப்புக்கொள்ளுவதால் வேறு எந்த விதமான கூடுதலான பலனும் உங்களுக்கு கிடைக்காது. நீங்கள் அளிக்கும் தகவல்கள் இரகசியமாக வைக்கப்படும். ஆய்வில் பங்கேற்பவர்கள் பற்றியோ அவர்கள் குடும்பத்தைப் பற்றியோ எந்த தகவலும் எக்காரணம் கொண்டும் வெளியிடப்படாது என்று உறுதியளிக்கிறோம். நீங்கள் அளிக்கும் தகவல்கள் /இரத்த மாதிரிகள் /திசு மாதிரிகள் அங்கீகரிக்கப்பட்ட ஆய்விற்கு மட்டுமே பயன்படுத்தப் படும். இந்த ஆய்வு நடைபெறும் காலத்தில் குறிப்பிடத்தகுந்த புதிய கண்டுபிடுப்புகள் அல்லது பக்க விளைவுகள் ஏதும் ஏற்பட்டால் உங்களுக்கு தெரிவிக்கப்படும். இதனால் ஆய்வில் தொடர்ந்து பங்கு பெறுவது பற்றிய உங்கள் நிலைப்பாட்டை நீங்கள் தெரிவிக்க ஏதுவாகும்.

ஆய்வுக்குட்படுத்துபவரின் ஒப்புதல்: இந்த ஆய்வைப் பற்றிய மேற்கூறிய தகவல்களை நான் படித்து அறிந்து கொண்டேன் /ஆய்வாளர் படிக்கக் கேட்டுத் தெரிந்து கொண்டேன். ஆய்வினைப் பற்றி நன்றாகப் புரிந்து கொண்டு இந்த ஆய்வில் பங்கு பெற ஒப்புக்கொள்கிறேன். இந்த ஆய்வில் பங்கேற்பதற்கான எனது ஒப்புதலை கீழே கையொப்பமிட்டு /கை ரேகை பதித்து நான் தெரிவித்துக் கொள்கிறேன் .

பங்கேற்பாளரின் பெயர் ,முகவரி :

பங்கேற்பாளரின் கையொப்பம் /கை ரேகை / சட்டபூர்வ பிரதிநிதியின் கையொப்பம் :

தேதி :

ஆய்வாளரின் கையொப்பம் : தேதி :

ஆய்வாளரின் தொலைபேசி எண் :

மனித நெறிமுறைக் குழு அலுவலகத்தின் தொலைபேசி எண்: 0422 4345818

	S/No 0 Pro-Op SICS SICS 1 ST Week Post-OP SICS 3RD Week Post-OP SICS 7TH Weeks Post-OP																														
S.No	0			Pre-Op SICS							SICS 1 ST Week Post-OP						SICS 3RD Week Post-OP						SICS 7 TH Weeks Post-OP								
	op number	age	sex	CCT	CCT (US)	Number	CD /mm ²	AVG µm ²	SD µm ²	CV %	сст	CCT (US)	Number	CD /mm ²	AVG µm ²	SD µm²	CV %	CCT	CCT (US)	Number	CD /mm ²	AVG µm²	SD µm ²	CV %	ССТ	CCT (US)	Number	CD /mm ²	AVG µm²	55	CV %
1	01201433;	53	м	512	522	209	2313	446	151	36	532	554	180	2214	459	155	40	542	544	174	2314	467	159	45	532	537	169	2214	441	145	40
2	01804136	61 68	M F	508	521 481	291	2614	383	118	31	525	540	245	2478	390 478	142	35	545	527	263	2343 1987	410	149	29 45	542 500	552	257	2254	391 473	167	32
4	00705930	55	M	508	521	257	2621	390	140	35	524	551	245	2415	431	145	41	530	533	237	2314	441	151	44	524	532	231	2218	400	148	41
6	01805503: 018018430	57	F	500	513	253	2403	432 416	162	38 31	516	542	249	2014 2410	456	169	45 33	524	527	245	2111 2444	487	1/4 142	4/ 37	518	528	240	2310	410	1/0	45 35
7	01801316	61	M	498	519	245	2341	383	154	41	513	561	226	2141 2210	402	159	44	523	527	220	2243	412	164	45	517	527	216	2018	399 409	160	44
9	01804136;	67	M	487	574	280	2571	389	147	38	507	514	232	2235	475	498	111	517	528	241	2341	510	505	101	511	512	235	2145	390	500	99
10	01901263	69	F	489	512	241	2203	454	18U 152	40	508	497 492	234	2073 2014	486	268	48	516	531	230	2134 2136	458	165	59	510	524	225	1934 1987	412 412	265	42
12	018050070	64	F M	419	432	213	2267	441	203	46	441	492	200	2094	467	210	49	451	461	196	2176	490	215	52	445	465	189	1956	410	201	50
14	01804293	61	F	523	536	261	2468	405	154	38	543	540	241	2314	443	159	41	553	561	238	2375	451	164	57	546	572	231	2109	390	157	54
15	01902643	62	F	529	542 493	263	2626	381 372	136 140	36	549 497	560 510	249 260	2465 2566	413 389	140 154	42	558	561	245 256	2145 2413	428 414	146 160	45	498 539	522	237 250	2311 2390	377 364	140	46
17	01902643	59	F	520	533	273	2620	382	131	34	537	574	249	2476	409	135	43	547	531	241	2512	428	140	50	480	491	236	2156	374	132	51
19	01804054	55	M	515	548	192	2415	416	162	38	534	550	165	1864	419	175	41	544	564	159	1984	448	180	40	586	591	152	2189	401	176	42
20	018023012	53	F	560	573	242 193	2393 2356	418 419	161	38 31	582	600 601	231 200	2175 2176	427 429	170	45	591 560	611 576	227 196	2276 2265	435 456	175	47 45	586 552	592	221 190	2098 2012	411 403	165 166	45
22	01704775	57	F	512	525	277	2577	388	146	38	532	599	246	2143	399	151	41	542	531	240	2198	428	165	42	538	542	236	2009	400	142	42
25	01804295:	51	M	480	403	230	2481	403	132	39	472	509	251	2216	423	155	42	480	492	248	2375	463	157	42	500	589	243	2109	419	143	43
25	01706938: 01706939:	52 54	F	502	515 517	200 94	2167 1317	462 759	249 385	54 51	522 524	546 564	180 112	2091 1089	498 658	250 390	55 50	531 532	537 546	177 107	2165 1576	514 687	257 394	51 51	523 524	534 539	172 101	1998 1003	435 710	241 356	49 48
27	01705938	74	F	521	534	244	2537	394	163	41	539	542	220	2430	423	167	43	547	566	217	2490	436	172	46	539	542	211	2190	398	162	41
28	00809708	/8 79	F	483	496	20/ 236	2306	434 441	188	43	501	5/5 499	210	2187	476 456	150	45	501	511	194 205	2310 2165	499	155	48 41	495	493	187	2012	413 423	199	44 39
30 31	O0803245: O1805473!	75 76	F	454 462	467 475	242 252	2350 2418	426 414	148 143	35 34	474 479	477 501	221 158	2241 2368	426 487	151 152	39 37	474 479	584 596	212 218	2341 2453	436 509	157 158	44 41	467 470	472 482	208 212	2033 2087	412 405	147 162	38 39
32	018022331	71	F	575	585	87	1513	661	280	42	593	600	84	1304	761	286	46	593	602	80	1498	713	284	49	586	591	85	1013	566	254	37
34	01801104	73	F	488	520	261	2387	437	100	35	506	551	231	2008	435	151	40	506	531	227	2256	498	172	47	500	517	221	1989	429	132	39
35	O1800938; O1300032!	61	M F	547 521	560 534	163 257	2029 2496	493 401	197 133	40	567 542	590 560	154 231	1785 2294	601 441	201	41	567 542	598 545	150 226	1897 2341	612 449	157 221	49 48	558 537	562 546	146 223	1698 2109	428 418	137 210	39 44
37	01206153	62	M	515	528	302	2771	361	116	32	534	550	287	2476	401	124	43	534	521	282	2564	435	141	47	528	548	276	2123	343	131	43
38	01802853	65	F	432	445	235	2306	456	1/1 199	38 46	450	490	176	2074	476 447	203	43	450	470	170	2090	489	182 209	43 53	442	462	199	2190 1985	415 423	145	40
40	018048450	67	M	483	496	240	2517	397	138	35	500	540	224	2486	412	140	42	500	490	219	2543	432	147	44	491	497	211	2320	390	134	40
42	01804845	66	F	536	549	130	2001	500	385	77	554	575	110	1970	487	891	61	554	564	105	2078	501	700	66	548	562	102	2019	452	751	55
43	01804845	69 61	F	476	489	215	2292	436	178 201	41 49	494 515	501 574	207	2018 2138	467 431	182 207	49 50	494 515	501	201 170	2067 2254	498 476	188	51	587 506	591 513	196 167	1953 2091	423 345	200 195	49
45	01804845	60	M F	469	482	152	2021	495	224	45	495	530 540	143 210	1358	518 489	227	42	495	501	139	1578	532 512	231	49	487	593 512	131	1209 2994	478	210	42
47	01804846!	51	F	466	479	300	2706	370	118	32	486	520	271	524	401	121	42	486	499	268	672	423	128	48	474	493	259	413	398	110	49
48 49	01804846: 01804845i	52	F M	597	610 515	135 270	2048 2546	488 393	338 147	69 37	617 521	542 532	109 241	3307	512 401	342 152	66 38	617 521	600 527	104 237	3126 939	527 423	347 156	69 44	590 500	621 542	101 231	2190 613	485 403	310	57 41
50	01804633	57	F	462	475	238	2303	434	178	41	481	499	208	946	449	182	40	481	501	205	935	465	197	49	470	491	199	891	453	130	48
52	01805006!	81	F	448	461	185	2074	482	191	40	467	513	157	1167	423	207	45	467	478	151	1295	451	214	47	440	491	147	998	472	201	42
53 54	00304440(006054094	73	M	512 493	525 506	216	2109	474 449	212 240	45 54	532	555	201 219	1176 2384	490 467	218 245	49 55	532 513	545 526	199 215	1350 2468	501 478	221 254	52 59	441 501	482 523	191 210	961 1320	465 432	212 214	50
55	01800936	76	E E	508	518	245	2451	324	240	51	522	521	231	2314	379	249	54	522	534	228	2365	401	251	59	511	519	225	1390	345	243	54
57	01803341:	78	F	499	511	247	2165	418	273	71	517	531	227	1384	387	281	72	517	529	224	1542	416	284	67	510	516	219	1204	400	275	61
58	01203430	79	F	439	463 501	240	2945	416 441	165	41 37	469 457	482	231 241	1002	428	185	44 39	469 457	485	226	1123	439	198	49	459	438	220	893	406	1/5	42
60	01805602	72	M	456	469	223	2094	478	179	43	473	491	217	1175	503	181	45	473	512	213	1220	523	197	41	461	482	208	1004	423	185	37
62	01804220	61	F	510	534	193	1988	513	185	42	531	541	184	942	540	191	51	531	542	178	963	574	201	577	524	531	172	1012	520	194	49
64	01805752	63 64	nfl F	447	460	249 250	2495	401	1/2	43	465 482	505	241	1084	447	183	55	465 482	48b 512	222	11.54	498 456	194	51	454 473	461 492	216	989 1034	420	1/5	41 42
65	01805697	68	F	520	541	241	2004	502	165	39	538	556	238	542	523	171	41	538	542	235	673	546	182	43	512	474	229	521	498	181	58
67	01800715	54	F	478	491	245	2536	394	140	35	498	509	219	617	419	145	37	498	475	211	734	467	164	54	471	461	207	542	410	154	59
68 69	01807358; 018028534	59 61	M F	447 479	450 492	261 258	2467	405 427	105 145	37 34	468 500	456 512	224 236	945 751	446 476	112 154	42 80	468	485 512	236 230	1009 843	490 502	134 164	47 71	424 570	441 560	230 224	967 712	411 417	127 156	51 65
70	O1807358 O1800874	64 67	F F	512 488	525 511	300 245	2755 2507	363 399	138 192	38 48	532 507	542 531	32 216	793 1524	410 414	139 210	45 51	532 507	517 523	269 210	923 1653	438 442	141 214	49 48	507 494	499 481	261 206	734 1078	390 400	134 201	44 45
72	00902464	68	F	511	545	244	2345	367	176	42	529	554	229	1365	398	185	44	529	531	224	1432	401	191	46	512	500	220	1238	376	182	41
75	00606563	69 77	M	492 482	511	231	2154 2481	413 461	211	4b 51	501	463 521	92 127	2185	433 487	219	59	511	522	209	1430	482 501	1/4 326	/U 42	493 476	491 462	205	1105	41/ 454	164 314	45
75	03009801 01800874	78 79	M F	468	502 512	245	2450 2549	419 446	264 251	39 71	490	520 470	227 256	761 681	467 453	274	43	490	497	223 250	821 834	471 463	231 249	40 60	481 443	492	217 242	734 778	426 435	201 221	51 55
77	01901068	74	F	512	539	123	2468	419	241	46	531	541	109	722	473	250	54	531	542	106	884	501	254	51	524	471	101	623	420	231	59
78 79	015025550	75 76	M	532	548	154 245	2458	481 433	219	45	525	552	232	841 1762	497	223	51 67	525	532	118 227	923 1893	554 507	231	48	541	528	223	/45 1523	4/8	221	42 60
80	01900610	51	F	516	599 507	239	2438 2654	410 500	213	52	526 508	531 463	216	2485 2347	428	219	59 37	526 508	537	210 226	2549 2490	454 498	224	50 46	501 498	513 527	204	2156	423 488	214	57 44
82	01901309;	55	F	532	499	145	1488	672	257	38	552	484	203	2671	597	241	35	552	542	119	2983	604	251	41	523	562	115	2476	523	234	40
83 84	01804295:	57 58	é M	539 575	552 588	251 249	2375 2570	421 389	148 159	35 41	560 595	542 601	263 235	911 854	498 412	153 161	33 42	560 595	546 612	225	1009 972	510 453	167 174	47 41	546 561	543 541	219 224	894 746	451 399	160 176	42 40
85 86	01900996; 01304964	51 59	F M	563 536	576 549	178 203	2420	413 507	178 219	43 43	582	575 531	159 197	1084 1685	436 512	174 228	39 51	582	599 546	154 181	1120 1530	478	182 234	37 53	567 524	561 529	150	972 1035	417 511	164 210	41 48
87	01901574	71	F	512	525	243	2345	426	161	38	533	549	228	1027	456	261	45	533	555	224	1190	499	275	48	503	509	215	934	435	241	37
89	01903324	61	M	534 526	555	278	2165	514	134 146	40	550	543	269	1584 2049	489	154	41 80	544	551	251 263	2140	547	15/	42	5/1 489	502	247	1432	433	141 143	51 61
90 91	01805075	75 78	F	529 473	542 501	295 299	2482	504 672	176 215	49 46	550 491	574 503	279	1345 1642	512 625	181 225	51 53	550 491	561 499	275	1435 1745	523 635	191 214	58 51	492 488	511 502	271	1204	514 623	184 210	42
92	01805893	64	м	481	512	265	2415	426	198	63	500	510	245	1534	478	210	68	500	510	239	1612	489	216	67	485	500	232	1254	462	200	51
93 94	U18054781 01805806!	67 69	M F	491 466	523	245 263	2570 2540	398 451	251 261	55	512 485	522 500	232 249	2016 1765	441 423	256 268	57 61	512 485	511 498	225	2111 1982	451 434	261 272	59 66	500 475	509 517	221 236	1984 1534	378 412	246 246	51 61
95	01009892	61	F	487	512 541	245	2481	507 426	241	36	505	521	219	1349	513 476	249	38	505	501	215	1333	523	251	39 41	501	512	210	1295	495 417	218	42
97	01602090	71	F	457	499	167	2488	436	213	40	475	489	145	1354	435	217	49	475	581	138	1432	467	228	51	432	462	132	1542	433	217	48
98 99	U04052614 012076604	76	M	468	527 517	184 267	2685 2483	419 413	216	41 42	489	501 511	255	1654 1385	456	221 228	49 44	489	590 517	167 250	1745 1430	412 465	229 231	53 57	475 500	487 511	163 246	1547 1287	427 423	104 210	49
100	01303698;	80		457	523	769	2415	422	162	49	477	531	257	1754	461	160	E 1	477	408	252	1893	453	175	51	426	427	249	1624	425	167	45