A STUDY ON PREVALENCE OF ADRENAL INSUFFICIENCY IN PATIENTS WITH CHRONIC LIVER DISEASE

DISSERTATION SUBMITTED FOR

DM MEDICAL GASTROENTEROLOGY

BRANCH - IV

AUGUST 2014

THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI, TAMIL NADU

CERTIFICATE

This is to certify that the dissertation titled "A Study on Prevalence of Adrenal Insufficiency in patients with chronic liver disease" submitted by Dr.A.Santhi Selvi to the faculty of Medical Gastroenterology, The Tamilnadu Dr.MGR Medical University, Guindy, Chennai-600 032 in partial fulfillment of the requirement for the award of DM Degree, Branch IV (Medical Gastroenterology) is a bonafide work carried out by her under my direct supervision and guidance.

Dr.P.Ganesh M.D.,D.M. Guide, Professor and HOD, Department of Medical Gastroenterology, (DDHD@GPH, Annanagar), Kilpauk Medical College Chennai **Dr. P. Ramakrishnan, M.D., D.L.O** Dean, Kilpauk Medical College, Chennai

DECLARATION

I Dr. A.Santhi Selvi, declare that I carried out this work on "A STUDY ON PREVALENCE OF ADRENAL INSUFFICIENCY IN PATIENTS WITH CHRONIC LIVER DISEASE" at the Department of Medical Gastroenterology, Govt. Peripheral Hospital and Kilpauk Medical College. I also declare that this bonafide work or a part of this work was not submitted by me or any other for any award, degree, diploma to any university, board either in India or abroad.

This is submitted to the Tamilnadu Dr. M.G.R. Medical University, Chennai in partial fulfillment of the rules and regulation for the D.M. Degree examination in Medical Gastroenterology.

Dr. A.Santhi Selvi

Government Kilpauk Medical College Chennai

ACKNOWLEDGEMENT

My sincere thanks to the Dean **Dr.P.Ramakrishnan**, M.D., D.L.O., Kilpauk Medical College for granting me permission to do this dissertation in Kilpauk Medical College and Govt. Peripheral Hospital, Chennai.

I will ever remain in gratitude to my Chief and guide of this study **Dr.P.Ganesh**, M.D., D.M., Professor of Medical Gastroenterology, Department of Digestive Health and Diseases, Kilpauk Medical College not only for guiding me throughout this study, but also for being my mentor and source of inspiration during my postgraduate training.

My heartfelt thanks to my beloved teachers Dr.S.Jeevan Kumar, M.D., D.M., Dr. Rajkumar Solmon M.D., D.M., I owe them a lot.

My sincere thanks to my Assistant Professors Dr.R.Balamurali, M.D., D.M., Dr.G.Ramkumar, M.D., D.M., and Dr.K.Muthukumaran, M.D., D.M., who have guided me not only through this study but also through the resident training.

I am thankful to my colleagues Dr.Anand, Dr.Babu Vinish, Dr.Mukundan, Dr.Thirumal, Dr.Tarakeshwari, Dr.Vishnu Abishekh, Dr.Balaji, Dr.Vaishnavi, Dr.Sajeeth Manikanda Pabhu, Dr.Sukumar, Dr.Jayapaul, Dr.Thennarasu, Dr.Shankar, Dr.Sudhan, Dr.Manikandan and Dr.Anand.

4

CONTENTS

Sl.No.	TITLE	Page No.
1.	INTRODUCTION	01
2.	AIM OF THE STUDY	03
3.	REVIEW OF LITERATURE	04
4.	MATERIALS AND METHODOLOGY	27
5.	STATISTICAL ANALYSIS	32
6.	RESULTS	33
7.	DISCUSSION	54
8.	CONCLUSION	62
BIBLIOGRAPHY		
ANNEXURES		
* ABBREVIATIONS		
* PROFORMA		
* MASTER CHART		
* ETHICAL COMMITTEE APPROVAL ORDER		
* TURNITIN-PLAGIARISM SCREEN SHOT		
♦ DIGITAL RECEIPT		

INTRODUCTION

Liver diseases are prevalent worldwide and also in India. The prevalence of liver disease is on the rise due to various reasons. The liver is one of the most vital organ sub serving several important functions such as synthesis, storage and metabolism, etc. Metabolism of hormones is one of the important functions. Thus, various endocrine disturbances have been reported in several liver diseases. Studies done in animals and humans with cirrhosis demonstrated elevated levels of endotoxin and inflammatory cytokines, thus contributes not only to hemodynamic impairment¹ but also adrenal dysfunction 2 . Since the liver is not only the site for metabolism of adrenal steroid hormones but also the site for cholesterol synthesis, the principal precursor of steroid², preexisting hepatic disease can impair hypothalamo-pituitary-adrenal axis activation in the presence of severe sepsis and septic shock. Adrenal dysfunction has been reported in the whole spectrum of disease ranging from acute liver failure, chronic liver disease, compensated and decompensated cirrhosis. Adrenal Insufficiency is also reported in the post liver transplant patients during immediate or late post transplant period.

Presence of adrenal insufficiency in liver disease increases the risk of cardiocirculatory compromise, infections and decompensation in such patients but has to be confirmed yet. But diagnosing adrenal insufficiency

6

in liver diseases is difficult because symptoms are subtle and overlap with those of cirrhosis^{1,3}. In addition, laboratory testing and reference standards were not clearly defined. Evidence shows that critically ill patients with cirrhosis has a worsened outcome when compared with similar patients without adrenal insufficiency. Several studies have reported correlations of adrenal insufficiency with progression of stages of cirrhosis.

All the above findings had lead to the coining of new term called "Hepatoadrenal Syndrome" which indicates presence of adrenal dysfunction in critically ill liver disease patients.

This present study is undertaken to determine the prevalence of adrenal insufficiency in patients with chronic liver disease, its associations with various stages and complications and progression of liver disease.

AIM OF THE STUDY

- To assess the prevalence of adrenal insufficiency in patients with chronic liver disease.
- To evaluate the correlation between adrenal insufficiency and the disease severity scores and the complications of chronic liver disease.

REVIEW OF LITERATURE

Cirrhosis of liver is defined as the histological development of regenerative nodules surrounded by fibrosis bands in response to any chronic liver insult, resulting in the development of portal hypertension and end stage liver disease. Chronic liver disease is a clinical diagnosis whereas cirrhosis is a histological diagnosis.

Epidemiology

Prevalence of cirrhosis is about 0.15% in USA, accounting for more than 25000 deaths. Similar rate of prevalence is seen in European countries whereas the prevalence is much higher in Asian and African countries.

Etiology of chronic liver disease:

- ✤ Alcohol
- ✤ Hepatitis B
- ✤ Hepatitis C
- Non alcoholic steatohepatitis
- Wilsons disease
- Primary biliary cirrhosis
- ✤ Autoimmune hepatitis
- Primary sclerosing cholangitis
- ✤ Hemochromatosis
- Inherited metabolic liver diseases

Clinical features

Cirrhosis of liver is often silent, asymptomatic until development of complications. Asymptomatic patients are frequently diagnosed incidentally when biochemical or radiological tests indicate liver disease with confirmation by liver biopsy.

Clinical signs

Compensatory cirrhosis usually presents with jaundice, spider angioma, splenomegaly, white nails, palmar erythemia, duputyrens contracture, and gynaecomastia. Decompensated cirrhosis presents with fetor hepaticus, ascites, gastrointestinal bleed and asterixis.

Complications

Portal hypertension, variceal bleed, ascites, renal failure, coagulopathy, hepatic encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome, portopulmonary syndrome, hepatopulmonary syndrome and primary malignancy of the liver are the most common complications of cirrhosis.

Adrenal Insufficiency (AI) or adrenal dysfunction in cirrhosis is a recently recognized entity. Hepato adrenal syndrome is the newly coined term for adrenal insufficiency in cirrhosis. Adrenal dysfunction is estimated to be reported in 30% of decompensated and 10% of compensated cirrhotics. This may lead to increased risk of cardiovascular dysfunction, circulatory compromise, infections and decompensation in such patients.

The symptoms in such patients are usually subtle and overlap with those due to cirrhosis, thus causing difficulties in the diagnosis of adrenal insufficiency in liver disease.

Furthermore, laboratory testing and reference standards were not defined clearly. Evidence suggests that critically ill cirrhotics with associated adrenal insufficiency show a poor outcome when compared with similar patients who do not have adrenal insufficiency. However, there is no clear guidelines or consensus on diagnosis or treatment especially regarding the role of steroid replacement therapy.

Historical perspective

In 1855, Thomas Addison quoted: "I believe that adrenal insufficiency is no means of very rare occurrence and we better acquainted with its symptoms and progress and we should probably succeed to detect many cases".

The role of glucocorticoids in the pathophysiology of critical illness has been established during early part of 20th century after having demonstrated that cortisol is necessary to survive critical illness ⁵.

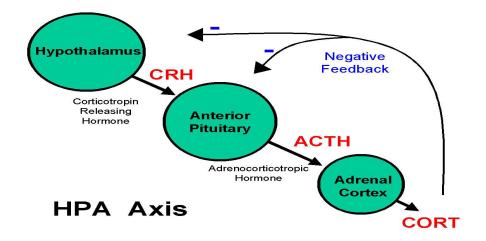
In 1980s, studies on steroids in patients with critical illness showed no mortality benefit.

11

In 1990s smaller doses of corticosteroid therapy for longer duration in septic shock was found to decrease duration of shock and less vasopressor requirement to maintain blood pressure 6 .

Further, several authors had showed that in patients with severe sepsis , burns, head trauma and HIV infection, associated abnormalities in liver function coexists. And corticosteroid replacement in such patients improve hemodynamics, faster reversal of shock and survival benefits in a sub group of septic shock patients with adrenal failure.

Definitions


Relative adrenal insufficiency (RAI)

Relative adrenal insufficiency (RAI) is described as a subnormal response to corticotrophin in severe illness, in which cortisol levels even though high in terms of absolute value are inadequate to control the inflammatory process 3 .

It is also known as critical illness related corticosteroid insufficiency (CIRCI).

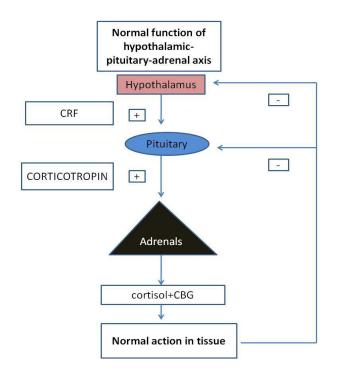
Regulation of Cortisol secretion

Normally, adrenal glands secrete cortisol, regulated by the feedback mechanism of adreno-corticotrophic hormone (ACTH). Pituitary gland releases ACTH which is stimulated by corticotrophin releasing hormone (CRH). CRH is secreted from the hypothalamus. Under conditions of stress, levels of ACTH and CRH increase leading to stimulation of cortisol synthesis and release in to the circulation⁷.

Cortisol has an inhibitory effects on inflammatory mediators namely neutrophil recruitment and release of cytokines⁸. Moreover, they accelerate vascular tone and also cardiac output.

All the above actions are helpful in critical illness particularly in situations like septic shock were stimulation of inflammatory cascade is dangerous. Moreover, survival after such illness depends on adequate levels of cortisol.

Several factors influence cortisol synthesis and production such as diurnal rhythm of ACTH secretion, negative feedback mechanism etc., Stress is another important factor influencing the production of cortisol.


During severe illness and stress, cytokines and other factors stimulates the hypothalamic pituitary adrenal (HPA) axis, causing increased

13

CRH secretion. This in turn, stimulates ACTH production, ultimately leading to increased cortisol into the circulatory system⁷.

About 90% of cortisol which is in circulation is bound to CBG and also albumin. Less than 10% occurs as the biologically active free form⁹. Among the bound form, more than 80% of circulating cortisol binds to CBG. Albumin binds only smaller amounts of circulating cortisol.

Liver converts cortisol into its inactive metabolite cortisone by the enzyme 11β -hydroxysteroid dehydrogenase. It binds to glucocorticoid receptor after diffusion across the cell membrane. Later it translocates into the nucleus of the cell and exerts its functions¹⁰.

Functions of cortisol

Adequate Cortisol is necessary for:

- 1. Function of normal immune system
- 2. Vascular tone maintenance
- 3. Normal function of Cells

Prevalence of Adrenal Insufficiency

Several studies have reported the increasing prevalence of adrenal insufficiency in liver disease. But significant discrepancies exist about the prevalence in various studies. This is mainly because of the different tests used for diagnosing adrenal dysfunctions. Thus, the existence of adrenal dysfunction differs in decompensated cirrhotics and in stable cirrhotic patients. The prevalence is also different in patients who had received liver transplant.

Prevalence of adrenal dysfunction in critically ill liver cirrhotics

Most studies that were done to show the prevalence of adrenal dysfunction in critically ill liver cirrhotics used SD-SST. Whereas only a few studies used LD-SST to diagnose adrenal dysfunction.

Reported prevalence of adrenal dysfunction in such patients using SD-SST was between $10\%^{11}$ and $87\%^{12}$, whereas using the LD-SST, the prevalence of adrenal dysfunction was reported between $33\%^{13}$ and $60\%^{14}$.

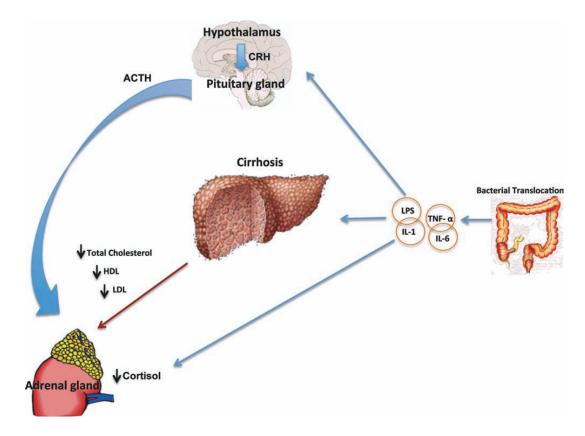
Prevalence of adrenal dysfunction in non-critically ill patients along with liver cirrhosis

Prevalence of adrenal dysfunction in stable cirrhotic patients varies from $9\%^{15}$ to $64\%^{16}$ in various studies.

Prevalence of Adrenal insufficiency after liver transplantation

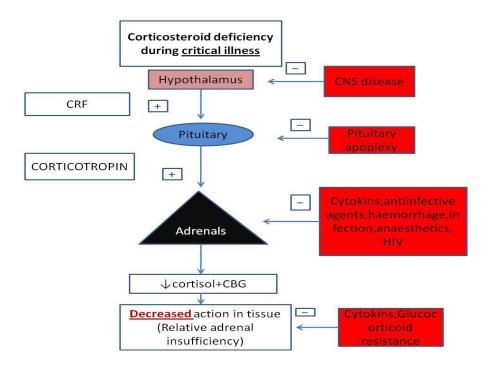
Studies have reported the prevalence of adrenal dysfunction in both early as well as late post liver transplant period. The prevalence has been reported to about 92%¹³ in patients who underwent liver transplantation.

Pathogenesis


The pathogenetic mechanism of adrenal insufficiency is not completely understood.

Some proposed mechanisms include endotoxemia, decreased levels of apolipoprotein A-1, HDL cholesterol and LDL cholesterol, increased levels of pro-inflammatory mediators, bacterial translocation of enteric organisms, structural damage of the adrenals caused by infarction or hemorrhage, glucocorticoid resistance with exhaustion of the adrenal gland¹⁸.

As already mentioned, cholesterol is the main source of substrate for the synthesis of steroids in the adrenal gland¹⁹. Nearly 80% of circulating cortisol is synthesized both at rest and during stress from plasma cholesterol (especially HDL cholesterol).


Liver diseases cause reduced synthesis of HDL, increased levels of circulating endotoxins (LPS) and TNF- α which inhibit cortisol systemesis. 16

In addition, TNF- α , IL-1 and IL-6 reduce hepatocyte synthesis of apolipoprotein A-1, the major component of HDL cholesterol²⁰. The lack of substrate for steroidogenesis eventually leads to the adrenal exhaustion syndrome²¹, thus contributing to adrenal insufficiency in cirrhotic patients.

Pathogenesis of Hepatoadrenal syndrome

Besides the above factors, coagulopathy which is common in liver cirrhosis can also cause adrenal hemorrhage and infarctions, causing structural damage to adrenal gland, which contributes to adrenal insufficiency²². Bacterial translocation of enteric organisms have also been implicated in the pathogenesis in adrenal insufficiency in cirrhosis of liver²³.

Hemodynamics of Hepato-adrenal syndrome

Cirrhosis, and liver failure have several similar hemodynamic characters in patients presenting with sepsis and septic shock like:

- 1. Raised cardiac output
- 2. Reduced peripheral vascular resistance
- 3. Reduced mean arterial pressure
- 4. Hypo responsiveness to vasopressors.

Additional unfavourable factors in critical liver disease

- 1. Endotoxemia
- 2. Increased levels of proinflammatory mediators(interleukin-6,TNF factor)
- 3. Decreased levels of Apo protein-A/HDL

- 4. Coagulopathy leading to adrenal hemorrhage
- 5. Decreased monocyte function and immonoparalysis

Predictors of Adrenal insufficiency in cirrhosis

Several studies have assessed the predictors of adrenal insufficiency

in liver diseases¹³.

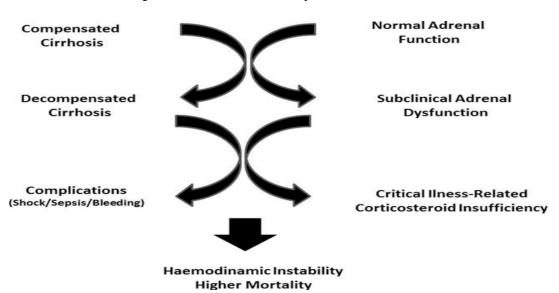
- 1. Low HDL-C
- 2. High CTP and MELD score
- 3. High INR
- 4. High bilirubin
- 5. Renal dysfunction
- 6. Hypoalbuminemia

Outcome of Adrenal dysfunction in liver diseases under various clinical situations

Critically III patients along with liver disease

Studies report increased risk of hemodynamic instability with ventilator dependence, increased risk of mortality and increased need for liver transplantations in patients with adrenal insufficiency and hepatic diseases who are critically ill²⁴.

Another study by Tsai et al showed that response of cortisol to SST had inverse correlation with disease severity scores such as MELD score, SOFA, APACHE III. Studies also show that adrenal insufficiency in critically ill cirrhotic patient was associated with lower mean arterial pressures, more requirement of vasopressors and increased hospital mortality rate²⁵. Adrenal insufficiency also correlated with the progression of liver disease as reported in several studies showing higher prevalence in patients with CTP C^{26} .


Non critically ill Patients with liver cirrhosis

Studies report that patients with higher CTP and MELD score, ascites, INR, and lower levels of HDL - cholesterol were found to be important independent risk factors for adrenal insufficiency, irrespective of the etiology²⁷.

Another study by Tan et al reported that adrenal insufficiency in cirrhotic patients had higher MELD scores and higher mortality rate than in cirrhotic patients without adrenal insufficiency²⁸.

Most studies report more severe circulatory dysfunction, increased risk of infection, lower serum sodium levels and septic shock at the time of hospitalization with higher inhospital death rate in patients associated with adrenal insufficiency²⁹. Adrenal dysfunction was associated with higher rate of failure to control variceal bleed and a lower survival in patients presenting with variceal bleed, than in non bleeders³⁰.

Patients with decompensated and compensated liver cirrhosis develop adrenal dysfunction both due to sepsis, and also from complications of portal hypertension like ascites and bleeding. This indicates that adrenal insufficiency itself may be a feature of hepatic disorders per se rather than related to critical illness.

Clinical importance of adrenal dysfunction in liver disease

Outcome of Adrenal insufficiency in Liver Transplant Recipients

Adrenal insufficiency is documented in liver transplant recipients administered with steroid free immune suppression³¹ or after suspension of steroids³².

Steroids used in most of the immunosuppressive regimes following LT, prevent development of early RAI. But prolonged use of steroids leads to HPA axis suppression causing functional adrenal gland atrophy (FAGA)³³. FAGA correlates well with the duration and also the cumulative steroid dosage. This also correlates well with total cholesterol levels and Adreno CorticoTrophic Hormone concentration.

Adrenal insufficiency can be subclinical in liver disease. Several determinants associated after liver transplant such as hypotension, infection and massive hemorrhage can cause acute adrenal dysfunction on the immediate posttransplant period. Longterm administration of steroid cause immunosuppression causing functional adrenal gland atrophy.

Intra operative administration of 1g of methylprednisolone have significantly reduced requirements for fluids, vasopressors, invasive ventilation, renal supportive therapy and Intensive Care Unit stay, in comparison to those who did not received steroids³⁴.

Clinical Features

Symptoms depend on the rapidity of onset, but chronic adrenal insufficiency may be asymptomatic or oligosymptomatic with fatigue, weight loss, and lassitude. Liver disease patients with adrenal insufficiency typically lack addisonian features²². Diagnosis of adrenal insufficiency should be made only on clinical grounds. Adrenal insufficiency in critically ill cirrhotic patients presents with hypotension refractory to vasopressors and fluid resuscitation³⁵. Whereas adrenal dysfunction in stable cirrhotics is usually subclinical but can only be diagnosed by laboratory investigation.

Diagnosis of Adrenal Insufficiency

Assessment of Basal plasma cortisol levels

A basal plasma cortisol level <138 nmol/L (5µg/dl) when measured between 8.00 a.m and 9.00 a.m. highly suggests presence of adrenal insufficiency. Adrenal insufficiency is unlikely when basal plasma cortisol levels are >415 nmol/L (15 µg/dl)³⁶.

Assessment of Basal plasma ACTH levels

Basal plasma ACTH levels which when measured between 8.00 a.m. and 9.00 a.m., exceed 100 pg/ml (22 pmol/L) indicates primary adrenal insufficiency³⁷.

Insulin induced hypoglycemia test (IIHT)

Insulin-induced hypoglycemia test (IIHT) has been considered to be the gold standard to evaluate the HPA axis. The test uses injection of 0.15 IU/kg regular insulin that can achieve blood glucose level less than 40 mg/dL or until hypoglycemic symptoms develop. Blood samples are collected before and after 15, 30, 45, 60, 90 min post-stimulation. Peak cortisol cut points between 500 and 550 nmol/L (18-20 μ g/dL) are used for the diagnosis of adrenal sufficiency. Contraindications to IIHT includes patients diagnosed to have cardiac diseases, central nervous system diseases including convulsive disorders³⁶. In addition, the IIHT is unpleasant for the patients and therefore it has been replaced by alternative tests (LS-SST, SD-SST) for evaluating the HPA axis.

Short synacthen test (SST)

Short Synacthen Test is the first line investigation to diagnose adrenal insufficiency. This test can be done irrespective of fasting at any time. The baseline sample is collected, followed by collection at thirty minutes and one hour after administering IV or IM 250 μ g of ACTH (Synacten). The post stimulation levels of cortisol exceeding 550 nmol/L (20 μ g/dl) rules out presence of primary adrenal insufficiency³⁶.

Currently, there are two corticotropic analogues, namely tetracosactrin (synacthen) and cosyntropin (Cortrosyn). SD-SST is not a "physiological test" since it uses supraphysiological dose of 250µg of corticotropin (which results in approximately 100 times more than normal maximal stress levels of adrenocorticotrophic hormone).

In conditions with critical illness, AI was defined by the International Task Force as a delta cortisol of <250nmol/L (<9 μ g/dL) after SD-SST or a random serum total cortisol of <276 nmol/L (<10 μ g/dL). No consensus or guidelines is formulated on the diagnostic criteria of AI in cirrhotic patients, although a delta cortisol under 250 nmol/L has been used by most studies to define AI in such patients.

Low dose short synacthen test

LD-SST is done by giving 1µg of synthetic ACTH (synacthen) intravenously followed by measuring cortisol level at baseline and 20 minutes and 30 minutes later. Plasma cortisol \geq 500 nmol/L (18 µg/dl) denotes normal response. LD-SST is more sensitive than SST in patients not in critical illness. But LD-SST is not validated in acute hypothalamic pituitary disorders or in critically ill patients³⁸.

In a meta-analysis comprising the diagnostic value of SDSST and LD-SST for diagnosing AI, LD-SST was found to be superior, whereas another meta-analysis which reported similar operative characteristics for both tests. LD-SST seems to be a more physiological and sensitive test than SD-SST for the diagnosis of AI, and appropriate in non-critically ill cirrhotics.

Corticotrophin – releasing hormone test (CRH)

Corticotrophin-releasing hormone test (CRHT) evaluates the entirety of the HPA axis. The CRH test is used to differentiate primary adrenal dysfunction from secondary adrenal dysfunction. Baseline blood samples were collected for the measurement of ACTH and cortisol levels followed by collection at fifteen minutes, thirty minutes, forty five minutes and sixty minutes after administering IV 1µg/Kg of CRH. Primary adrenal insufficiency, is suggested when high basal ACTH levels increase following CRH injection.

In secondary adrenal insufficiency, lower levels of ACTH have no response for CRH. Lower levels ACTH in association with a prolonged rise following CRH indicates hypothalamus disorders³⁶. Although CRHT is free of serious side effects, it is both difficult and costly and therefore it has been used in few studies in liver disease.

Salivary Cortisol

Salivary cortisol, regardless of serum binding protein levels, correlates well with free cortisol levels 39 . Basal value of salivary cortisol levels <1.8 ng/mL or a concentration after SD-SST <12.7ng/mL, an increment <3 ng/mL are suggestive of AI.

But there are significant variations in normal salivary cortisol values reported by different studies. Other limitations of salivary cortisol are represented by oral candidiasis, low salivary flow, and contaminated salivary samples from gingival bleeding, common in cirrhotic patients.

Thus in the absence of a gold standard test, SD-SST remains the most used test to assess the adrenal dysfunction in critically ill cirrhotics, while LD-SST is more appropriate in patients with stable cirrhosis. At present, serum free cortisol levels and salivary cortisol levels are most accurate in

26

diagnosis of AI in cirrhotic patients, but cannot be used in routine clinical practice. The use of salivary cortisol needs to be validated.

Adrenal insufficiency in critical illness

An international task force definition of adrenal insufficiency in critically ill patients is as follows. Delta cortisol (which is the difference between basal and post stimulation cortisol) of 250 nmol/L (9 μ g/dl) after SST or a random total plasma cortisol level of 276 nmol/L (10 μ g/dl)⁴⁰.

Limitations in diagnosing adrenal dysfunction in hepatic disease patients

No clear recommendations or guidelines exists for diagnosing adrenal insufficiency in hepatic diseases. Commercially available cortisol assays measure total hormone which are not biologically active, free cortisol concentration⁴¹. They also suffer poor reproducibility in critically ill patients. Sensitivity and specificity of assays that are commercially available are never uniform.

Serum Cortisol

Diagnosing adrenal dysfunction based on serum total cortisol levels in cirrhosis will be inaccurate due to lower serum concentrations of albumin and Corticosteroid Binding Globulin, since the liver is the site of synthesis of both⁴². This has been already proven that low levels of CBG and albumin lead to overestimation of the diagnosis of adrenal dysfunction⁴³. As already known, more than 90% of serum cortisol which are in circulation binds to CBG and albumin, and lesser than 10% is in the free biologically active form⁴⁴. Standard laboratory assays of serum total cortisol measure the bound plus free fractions. This means that a decrease in the binding protein levels, as it often happens in cirrhosis, will reduce serum total cortisol, affecting the interpretation of SD-SST/ LD-SST⁴⁵, and this may lead to the overestimation of AI in cirrhotic patients¹⁵. However, most of the studies evaluating adrenal dysfunction in critically ill cirrhotics still rely on serum total cortisol levels, both at baseline and after stimulation.

Serum free cortisol assays are considered the most reliable method to assess adrenal dysfunction in critically ill patients⁴⁶. There are several methods used to measure serum free cortisol (gel filtration, ultrafiltration, equilibrium dialysis)⁴⁶, all are expensive and inconvenient for routine clinical practice. In cirrhotics, serum free cortisol level is not altered by a reduced concentration of CBG and albumin⁴⁷ and therefore it is a better appropriate indicator for assessing adrenal dysfunction in such patients⁴⁸. Some studies reported significant differences in diagnosis of AI using serum total cortisol level and free cortisol criteria in cirrhotics with septic shock⁴⁹ or in those with stable cirrhosis²⁷, while others found that assessing serumfree cortisol had limited additive diagnostic value over serum total cortisol⁵⁰.

28

Serum free cortisol levels under 50 nmol/L at baseline or less than 86 nmol/L after synacthen stimulation are suggestive for the diagnosis of AI (in critically ill patients⁴⁵), although the reference range for baseline values in healthy subjects varies from 8-25 nmol/L⁴⁶ to 12-70 nmol/L⁴⁸.

ACTH stimulation Tests

SST is first line test to diagnose adrenal insufficiency⁵¹. There are drawbacks in interpreting SST like variability of defining normal ranges⁵², etc., In addition, there are no clear protocols on how to perform the test.

The doses of ACTH used to assess adrenal insufficiency too can influence the assessment of adrenal insufficiency in hepatic failure. This leads to variability in assessing prevalence of Adrenal Insufficiency in several studies.

Role for steroid replacement in liver disease

Few datas have been available on the role of steroid supplementation in liver disease patients.

One study compared the efficacy of 300 mg hydrocortisone per day in patients with acute liver failure or acute or chronic liver failure who are vasopressor dependent with those patients who are not on steroids and showed that steroid supplementation resulted in decrease in the requirement of vasopressor doses⁵³. Meanwhile steroids did not offer any survival benefit and also there were reports of infections in such patients with resistant organisms.

Marik et al reported that hydrocortisone therapy in patients with acute liver disease or chronic liver disease with vasopressor dependence were associated with decrease in the requirement of noradrenaline doses by 24 hours in patients with adrenal dysfunction with a reduction in the mortality rate than in patients who are not treated with hydrocortisone¹³.

Another study by Fernandez et al showed that hydrocortisone therapy in cirrhotics presenting in sepsis resulted in lower mortality rate, resolution of septic shock and a better ICU and hospital survival²⁶.

The first RCT which evaluated the beneficial effect of lower dose of hydrocortisone in cirrhotics along with sepsis demonstrated significant decrease in the requirement of vasopressor agents and in addition increased reversal rate of shock. But there is no reduction in the 28- day mortality with more incidence of shock relapse and gastrointestinal bleeding⁵⁴.

In post liver transplant patients ,intraoperative therapy of 1g methyl prednisolone resulted in decrease in the fluid requirements, vasopressors, invasive ventilation, renal supportive therapy and intensive care unit stay than in patients who were not administered with intraoperative corticosteroids⁵⁵.

30

Hence preliminary studies indicates beneficial effects of supplemental steroid treatment in cirrhotics presenting with sepsis, but demands further multicenter ,randomized ,controlled trials .

Conclusion

Adrenal Insufficiency is an important part of the spectrum of both acute as well as chronic liver disease. Worsening of synthetic function of hepatic diseases predicts the presence of associated adrenal insufficiency. Such patients should be assessed periodically for adrenal insufficiency. Adrenal functions deteriorates along with the progression of liver disease. Steroid replacement in such patients may be beneficial.

In addition, presence of adrenal insufficiency may predict survival of CLD patients. This necessitates the need for largescale prospective studies to establish the role of steroid supplementation to improve the survival in patients with liver disease. Also general consensus or guidelines on the diagnostic criteria for adrenal insufficiency and the dosage and duration of steroid therapy should be established.

MATERIALS AND METHODOLOGY

The study population included consecutive patients with chronic liver diseases who were admitted in our institution, Department of Digestive Health and Diseases, Government Peripheral Hospital, Anna Nagar, Chennai-600 102.

The study was conducted from January 2013 to January 2014. Patients were included to this study after offering their willingness to undergo necessary investigations. Informed written consent was obtained from the study participants before enrollment.

Ethical Committee approval was obtained for performing the study.

Inclusion Criteria

- 1. Stable cirrhosis
- 2. Cirrhosis patients with GI bleed
- 3. Cirrhosis patients with hepatic encephalopathy
- 4. Cirrhosis patients with spontaneous bacterial peritonitis
- 5. Cirrhosis patients with hepato renal syndrome

Exclusion criteria

- Patients on steroids or with history of steroids intake during last 6 months.
- 2. Patients with hepatocellular carcinoma
- 3. Patients with portal venous thrombosis

Methodology

All the patients satisfying the exclusion and inclusion criteria were enrolled in to the study. Age, sex and etiology of liver disease were documented.

All the participants were subjected to history taking, clinical evaluation, blood investigations, ascitic fluid analysis, ultrasonogram and UGI scopy.

Chronic liver disease was diagnosed on the basis of evidence of deranged liver function of more than 6 months duration with evidence of portal hypertension and cirrhosis in ultrasonography and upper gastrointestinal endoscopy.

Ascites was graded as Grade 1, Grade 2 and Grade 3 by USG. Hepatic encephalopathy was graded according to West Haven criteria from grade I to IV.

Clinical evaluation

Detailed history regarding present and past history of jaundice, ascites, gastrointestinal bleeding, pedal edema, hepatic encephalopathy, blood transfusion, tattooing, surgeries, extra marital sexual exposure, alcohol intake, and associated co-morbidities, were entered. Clinical examination done to check presence of evidence of chronic liver disease such as jaundice, spider angioma, duputyrens contracture, palmar erythema, gynaecomastia, ascites, splenomegaly, caputmedusae and asterixis.

Ascites is graded according to International Ascites Club 2010.

Grade 1 : Only detected on ultrasound examination

Grade 2 : Manifested by symmetric distention of the abdomen

Grade 3 : Gross ascites with marked distension of abdomen

Laboratory investigations

Blood investigations like hemoglobin, WBC count, platelet count, prothrombin time, INR, S.bilirubin, T.protein, albumin, alanine aminotransferase, aspartate aminotransferases, HBSAg, Anti HCV, urea, creatinine, total cholesterol, HDL cholesterol, LDL cholesterol and Fasting serum cortisol were done for all patients. Child pugh score was calculated using the various parameters.

A basal plasma cortisol level <138 nmol/L (5 μ g/dl) is taken as a cut off value to define adrenal insufficiency.

Ascites

Presence of ascites is assessed by clinical examination and confirmed by ultrasound examination. Ascitic fluid analysis is done to calculate serum ascites albumin gradient, cell count, polymorphs, ascitic fluid culture. Spontaneous bacterial peritonitis is diagnosed when the ascitic fluid Polymorphonuclear count is more than 250 cells / cumm with positive culture of the ascitic fluid.

Upper Gastrointestinal Endoscopy

All the patients underwent oesophagogastro duodenoscopy. Oesophageal varices were graded using Pacquet's grading system from grades I to IV. Gastric varices if present were graded according to Sarin's classification. Presence of portal hypertensive gastropathy or duodenopathy were also noted. Endotherapy (Endoscopic variceal legation or endoscopic sclerotherapy) were done if required.

Hepatic Encephalopathy

Hepatic Encephalopathy was graded using West Haven's criteria from Grade I to IV, based on the level of consciousness, intellectual functions, behavior and neuromuscular functions.

Hepatorenal Syndrome

Hepatorenal syndrome was diagnosed using the International Ascites club diagnostic criteria.

Serum Cortisol

Serum Cortisol was done in all patients after a overnight fasting. Blood sample for measuring serum cortisol was collected between 8.00 a.m. and 9.00 a.m. Serum cortisol level $<5 \ \mu g/dl$ is highly suggestive of adrenal insufficiency.

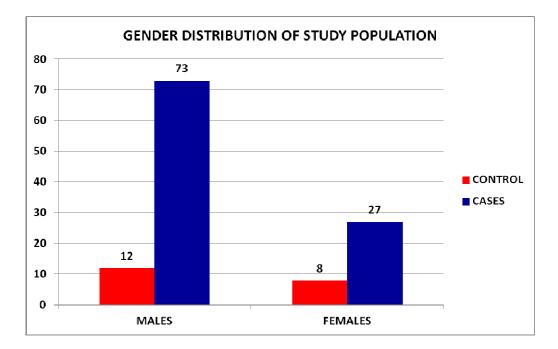
For comparison, 20 healthy age matched control subjects were included and their health status was validated by clinical examination and routine laboratory investigations. Informed consent was obtained from all participants.

STATISTICAL ANALYSIS

Statistical analysis was done using the statistical software package SPSS for window version for analyzing the data. The statistical methods used are Chi Square tests.

- ◆ p.value 0.000 to 0.010 is highly significant.
- p.value 0.000 should be considered as <0.001 (statistically highly significant).</p>
- ✤ p.value 0.011 to 0.050 is significant.
- ✤ p.value 0.051 to 1.000 is not significant.

RESULTS

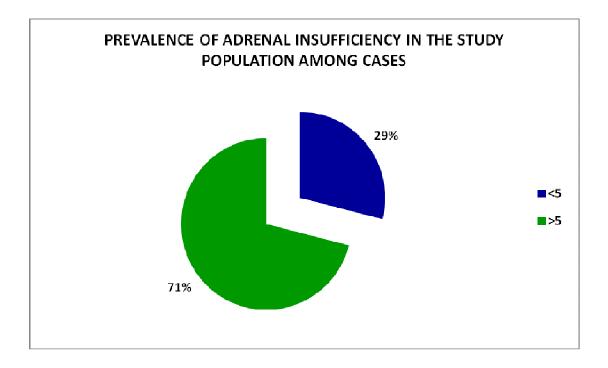

Patient characteristics

A total of 100 patients were included in the study. Among the 100 patients, 73(73%) were males and 27(27%) were females. 20 healthy control subjects were included in this study for comparison. Among the 20 controls, 12(60%) were males and 8(40%) were females.

GENDER	GRO	UP	TOTAL
GENDEK	CONTROL	CASES	IUIAL
MALES	12 (60%)	73 (73%)	85
FEMALES	8 (40%)	27 (27%)	35
TOTAL	20	100	120

Table 1 : GENDER DISTRIBUTION OF STUDY POPULATION

The preponderance of males in this study may be attributed to the etiology of the liver diseases, the most common being ethanol induced chronic liver disease.


Prevalence of Adrenal Insufficiency in the study population

On comparing serum cortisol level between cases and controls, 29(29%) cases had serum cortisol level $<5 \ \mu$ g/dl and 71(71%) cases had serum cortisol level $>5 \ \mu$ g/dl.

Table 2 : PREVALENCE OF ADRENAL INSUFFICIENCY IN THESTUDY POPULATION AMONG CASES

S.Cortisol	Frequency	Percent	Valid percent	Cumulative percent
<5	29	29%	29%	29%
>5	71	71%	71%	71%
Total	100	100%	100%	100%

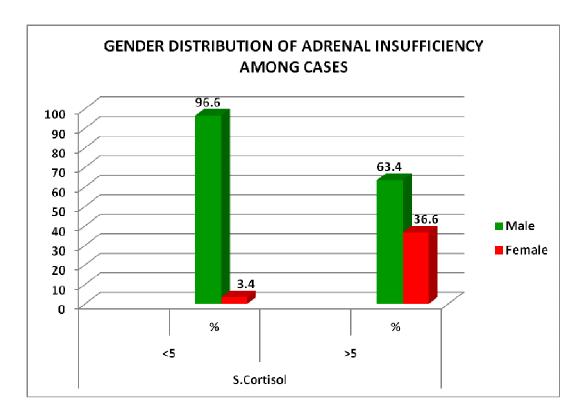

In our study, out of 100 cases, 29 patients (29%) demonstrated adrenal insufficiency with a highly significant p.value (<0.001)

Table 3 : GENDER DISTRIBUTION OF ADRENALINSUFFICIENCY AMONG CASES

		S.Co	rtisol			
Gender	<5		nder <5 >5		Total	p.value
	Frequency	%	Frequency	%		
Male	28	96.6	45	63.4	73	
Female	01	3.4	26	36.6	27	0.001
Total	29		71		100	

Among the 29 patients with adrenal insufficiency, 28 cases (96.6%) were males and 01 (3.4%) case was female.

Table 4 : AGE DISTRIBUTION OF PATIENTS WITH ADRENALINSUFFICIENCY AMONG CASES

		S.Co				
Age	Age <5 Frequency		>5		Total	p.value
			Frequency %			
<40	03	10.3	25	35.2	28	
40 - 50	20	69	27	38	47	0.011
>50	06	20.7	19	26.8	25	- 0.011
Total	29		71		100	

Among cases who were less than 40 years, only 3(10.3%) had adrenal insufficiency. 20 (69%) cases in the age group between 40 - 50 years were found to have adrenal insufficiency. In cases >50 years, only 6(20.7%) were found to have adrenal insufficiency.

Table 5 : CORRELATION BETWEEN ADRENAL INSUFFICIENCYAND ETIOLOGY OF THE LIVER DISEASE AMONG CASES

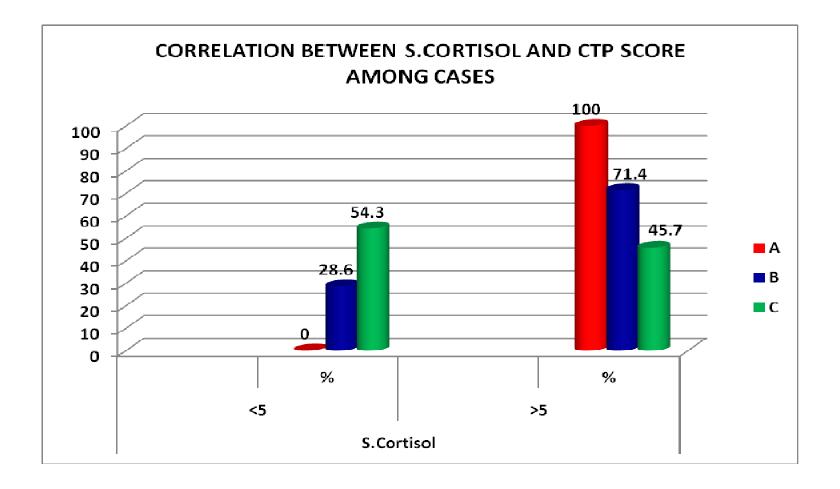
		S.Cor	•tisol			
Etiology	<5	<5		>5		p.value
	Frequency	%	Frequency	%		
Ethanol	21	72.5	31	43.7	52	
HBV	3	10.3	28	39.4	31	
Metabolic	3	10.3	10	14.1	13	0.019
HCV	2	6.9	2	2.8	4	
Total	29		71		100	

21 cases (72.5%) with Ethanol related chronic liver disease had adrenal insufficiency. Only 3 cases (10.3%) with HBV related chronic liver disease and 2 (6.9%) with HCV related chronic liver disease had adrenal insufficiency. 3 patients (10.3%) with chronic liver disease due to metabolic cause showed adrenal insufficiency.

.Table 6 : CORRELATION BETWEEN S.CORTISOL AND S.BILIRUBIN AMONG CASES

		S.Co	rtisol				
	<5 >5		Total	p.value			
	Frequency	%	Frequency	%	-		
<1.5	0	0	17	23.9	17		
>1.5	29	34.9	54	65.1	83	0.004	
Total	29		71		100		

In our study, out of total 100 cases 17(17%) cases had serum bilirubin <1.5mg/dl and 83 (83%) cases had serum bilirubin >1.5mg/dl. Among the 83 patients with hyperbilirubinemia, 29(34.9%) patients had adrenal insufficiency with high statistical significance (p.value 0.004).


Table 7: CORRELATION BETWEEN S.CORTISOL AND CTP SCORE AMONG CASES

	<5		>5		Total	p.value
	Frequency	%	Frequency	%	-	
Α	0	0	30	100.0	30	
В	10	28.6	25	71.4	35	<0.001
С	19	54.3	16	45.7	35	<0.001
Total	29		71		100	

Among 100 study patients, 30 patients belong to CTP-A, 35 in CTP-B and 35 patients in CTP-C. Among the 30 patients in CTP-A, none of the patients had adrenal insufficiency. Out of 35 patients in CTP-B (28.6%), 10 patients had adrenal insufficiency. Among 35 patients with CTP-C, 19 (54.3%) patients had adrenal insufficiency.

Among 29 patients with adrenal insufficiency, 10 patients (34.5%) belonged to CTP-B and 19 patients (65.5%) belonged to CTP-C.

Our study shows highly significant statistical correlation (p.value <0.001) between serum cortisol and CTP score.

	S.AI	LBUMIN	N AMONG CA	ASES		
		S.Co	rtisol			
	<5		>5		Total	p.value
	Frequency	%	Frequency	%		
<2.0	11	84.6	02	15.4	13	

16

21

32

71

51.6

95.5

94.1

31

22

34

100

< 0.001

48.4

4.5

5.9

2.0 - 2.5

2.5 - 3.0

>3.0

Total

15

01

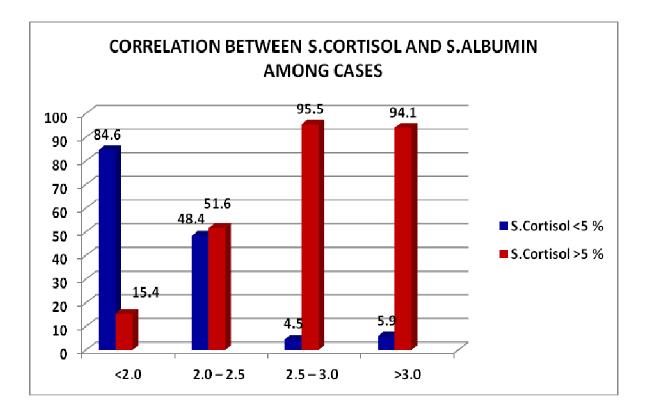
02

29

Table 8 : CORRELATION BETWEEN S.CORTISOL AND

Out of 100 study cases, 13 patients (13%) had serum albumin <2.0g/dl, 31 patients (31%) had serum albumin between 2.0 - 2.5 g/dl, 22 patients (22%) had serum albumin between 2.5 - 3.0 g/dl and 34 patients (34%) had serum albumin >3.0 g/dl.

Among 13 patients with S.Albumin <2.0 g/dl, 11 patients (84.6%) had adrenal insufficiency.


Among 31 patients with S.Albumin <2.0 - 2.5 g/dl, 15 patients (48.4%) had adrenal insufficiency.

Among 22 patients with S.Albumin $\leq 2.5 - 3.0$ g/dl, 1 patient (4.5%) had adrenal insufficiency.

Among 34 patients with S.Albumin >3.0 g/dl, 2 patients (5.9%) had adrenal insufficiency.

Among 29 patients with adrenal insufficiency, 11(37.93%) patients had S.Albumin <2.0 g/dl, 15(51.72%) patients had S.Albumin <2.0 – 2.5 g/dl ,1(3.44%) patient had S.Albumin <2.5 – 3.0 g/dl and 2(6.89%) patients had S.Albumin >3.0 g/dl.

The correlation between adrenal insufficiency and hypoalbuminemia was found to be high statistical significance (p < 0.001).

Table 9 : CORRELATION BETWEEN ADRENAL INSUFFICIENCY AND UGI BLEED AMONG CASES

		S.Co	rtisol				
	<5 >5		Total	p.value			
	Frequency	%	Frequency	%			
Present	14	45.2	17	54.8	31		
Absent	15	21.7	54	78.3	69	0.017	
Total	29		71		100		

Out of 100 study cases, 31(31%) patients had UGI bleed. Among these 31 patients, 14 patients (45.2%) had adrenal insufficiency.

Among 29 patients with adrenal insufficiency 14 (48.27%) patients had UGI bleed.

The correlation between adrenal insufficiency and UGI bleed was found to be statistically significant (p. 0.017).

Table 10

CORRELATION BETWEEN ADRENAL INSU	FFICIENCY AND
HEPATIC ENCEPHALOPATHY AMO	NG CASES

		S.Co	rtisol			
	<5	<5 >5				p.value
	Frequency	%	Frequency	%		
Present	15	38.5	24	61.5	39	
Absent	14	23.0	47	77.0	61	0.095
Total	29		71		100	

Out of 100 study patients, 39(39%) patients had hepatic encephalopathy. Among 39 patients with hepatic encephalopathy, 15 patients (38.5%) had adrenal insufficiency.

The correlation between adrenal insufficiency and hepatic encephalopathy is not statistically significant (p. 0.095).

Table 11: CORRELATION BETWEEN ADRENAL INSUFFICIENCYAND SPONTANEOUS BACTERIAL PERITONITIS AMONG CASES

		S.Co	ortisol			
	<5 >5		Total	p.value		
	Frequency	%	Frequency	%		
Present	09	42.9	12	57.1	21	
Absent	20	25.3	59	74.7	79	0.115
Total	29		71		100	

In our study, 21(21%) patient had spontaneous bacterial peritonitis. Among 21 patients with SBP, 9 (42.9%) patients had adrenal insufficiency. Among 29 patients with adrenal insufficiency, 9(31.03%) patients had SBP.

But the correlation was not statistically significant (p. 0.115).

Table 12: CORRELATION BETWEEN ADRENAL INSUFFICIENCYAND HEPATORENAL SYNDROME AMONG CASES

	<5		>5		Total	p.value
	Frequency	%	Frequency	%		
Present	16	55.2	13	18.3	29	
Absent	13	44.8	58	81.7	71	<0.001
Total	29		71		100	

Totally 29 (29%) patients had hepatorenal syndrome in our study. Among the 29 patients with HRS, 16(55.2%) reported adrenal insufficiency.

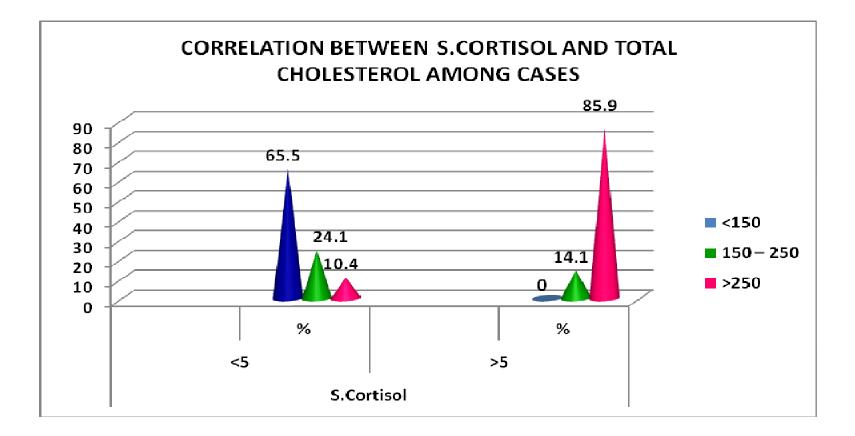
Among the 29 patients with adrenal insufficiency, 16(55.2%) patients had hepatorenal syndrome.

The above correlation between adrenal insufficiency and hepato renal syndrome is statistically highly significant (p.<0.001).

	S.Cortisol					
	<5		>5		Total	p.value
	Frequency	%	Frequency	%		
<150	19	65.5	0	0	19	
150 - 250	7	24.1	10	14.1	17	<0.001
>250	3	10.4	61	85.9	64	~0.001
Total	29		71		100	

Table 13 : CORRELATION BETWEEN S.CORTISOL AND TOTAL CHOLESTEROL AMONG CASES

In our study, 19 patients (19%) had total cholesterol <150 mg/dl, 17 patients (17%) had total cholesterol between 150 - 250 mg/dl and 64 patients (64%) had total cholesterol >250 mg/dl.


Among the 29 patients with adrenal insufficiency, 19 patients (65.5%) had total cholesterol <150 mg/dl, 7 patients (24.1%) had serum cholesterol between 150 - 250 mg/dl and 3 patients (10.4%) had total cholesterol >250 mg/dl

Among 19 cases with total cholesterol <150 mg/dl, all 19 patients (100.0%) had adrenal insufficiency.

Out of 17 patients with total cholesterol between 150 – 200 mg/dl, 7 patients (41.2%) had adrenal insufficiency.

Among the 64 patients with total cholesterol >250 mg/dl, only 3 patients (4.7%) had adrenal insufficiency.

The correlation between adrenal insufficiency and total cholesterol was highly significant (p.<0.001).

	<5		>5		Total	p.value
	Frequency	%	Frequency	%		
30 - 40	26	89.7	3	4.2	29	
40 - 50	3	10.3	57	80.3	60	<0.001
>50	0	0	11	15.5	11	~0.001
Total	29		71		100	

Table 14 : CORRELATION BETWEEN S.CORTISOL AND HDL AMONG CASES

Among the 100 cases, 29 patients (29%) had HDL between 30 – 40 mg/dl. 60 patients (60%) had HDL between 40 – 50 mg/dl. 11 patients (11%) had HDL >50 mg/dl. Among controls, 18(90%) patients had HDL level 40-50 mg/dl, and 2(10%) patients had HDL levels >50 mg/dl.


Among the 29 patients with HDL between 30 - 40 mg/dl, 26 (89.7%) patients had adrenal insufficiency.

Out of 60 patients with HDL between 40 - 50 mg/dl, 3 patients (10.3%) patients had adrenal insufficiency.

Among the 11 patients with HDL >50 mg/dl, none of the patients had adrenal insufficiency.

Among the 29 patients with adrenal insufficiency, 26 patients (89.7%) had HDL between 30 - 40 mg/dl, and 3 patients (5.0%) had HDL between 40-50mg/dl.

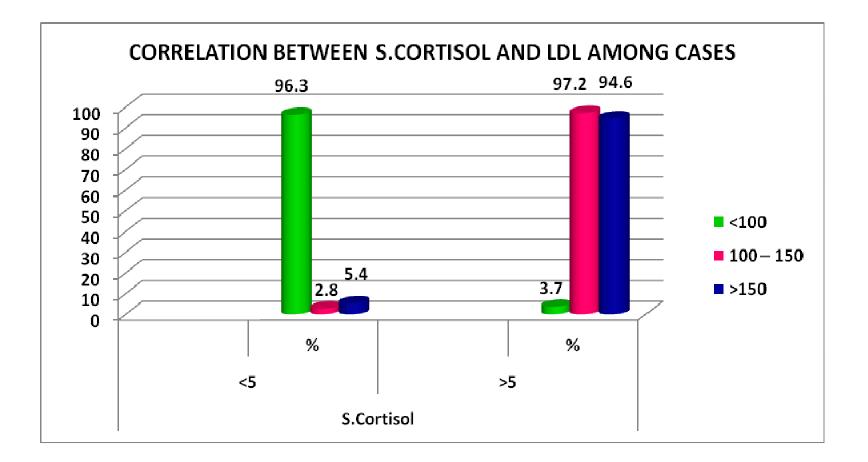
The above correlation between adrenal insufficiency and HDL levels was found to be highly significant (p.<0.001).

	S.Cortisol					
	<5		>5		Total	p.value
	Frequency	%	Frequency	%		
<100	26	96.3	01	3.7	27	
100 - 150	01	2.8	35	97.2	36	<0.001
>150	02	5.4	35	94.6	37	
Total	29		71		100	

Table 15 : CORRELATION BETWEEN S.CORTISOL AND LDL AMONG CASES

In our study population, 27 patients (27%) had LDL <100 mg/dl, 36 patients (36%) had with LDL between 100 – 150 mg/dl and 37 patients (37%) had LDL >150 mg/dl.

Among controls, 12(60%) patients had LDL level <100 mg/dl, and 8 (40%) patients had LDL levels between 100- 150mg/dl.


Among 27 patients with LDL <100 mg/dl, 26 patients (96.3%) patients had adrenal insufficiency.

Out of 36 patients with LDL between 100 - 150 mg/dl, 1 patient (2.8%) had adrenal insufficiency.

Among 37 patients with LDL >150 mg/dl, 2 patients (5.4%) had adrenal insufficiency.

Among 29 patients with adrenal insufficiency, 26 patients (89.7%) had LDL <100 mg/dl, 1 patient (3.4%) had with LDL between 100 - 150 mg/dl and 2 patients (6.9%) had LDL >150 mg/dl.

The above correlation between adrenal insufficiency and LDL levels was found to be highly significant (p.<0.001).

DISCUSSION

Adrenal dysfunction or insufficiency (AI) is surging as one of vital cause of increasing morbidity and mortality in seriously ill patients³. Activation of the hypothalamic pituitary adrenal axis leading to the release of cortisol is an important component of adaptation to stress and illness thus contributing to the maintenance of cellular and organ homeostasis⁵⁶.

Since liver failure and sepsis are both associated with increased levels of circulating endotoxin and pro-inflammatory mediators, along with reduced levels of apolipoprotein II and HDL, adrenal failure was proposed to prevail in patients with hepatic diseases also⁵⁷. Increasing occurrence of adrenal dysfunction in critically ill patients with liver disease has lead to a new term Hepatoadrenal syndrome¹³.

This is a prospective study done to evaluate the prevalence of adrenal insufficiency in patients with chronic liver disease, both compensatory cirrhosis and decompensated cirrhosis and to assess the correlation between adrenal dysfunction and the complications of cirrhosis.

The prevalence of Adrenal Insufficiency varies widely, depending on the population of patients studied and the diagnostic criteria used. Fede et al studied the prevalence of adrenal insufficiency in stable cirrhotics and demonstrated that the overall prevalence of adrenal dysfunction was 38% with a higher prevalence in patients with advanced liver disease⁵⁹. Various studies have shown that prevalence of adrenal dysfunction varies in different stages of liver disease, with about $(34.6\%)^{62}$ in acute liver disease, 10-87 $\%^{13}$ in compensated cirrhosis, 7-83 $\%^{60}$ in decompensated cirrhosis and 61-92 $\%^{13}$ in post liver transplant patients.

Our study reflects similar results in various studies with a prevalence of 29% (p value highly significant <0.001).

The prevalence of Adrenal Insufficiency is more common in males than the females (96.6% Vs 3.4%), the reasons being alcoholic liver disease which is the commonest etiology of chronic liver disease in India, and is also commoner in males than females.

Ziets et al have reported that there was no significant correlation between adrenal dysfunction and the etiology of the liver disease⁶¹. But our study showed that adrenal dysfunction is more common in ethanol related chronic liver disease (72.4%), for the simple reason that ethanol being the commonest etiology of liver disease in our part of the country as already mentioned.

Adrenal Insufficiency and severity scores

Mohamed et al showed statistically significant relationship between serum cortisol and the CTP score¹². Tsai et al had shown that the severity of adrenal insufficiency correlates with the disease severity scores such as MELD and APACHE scores and a negative correlation with CTP score²⁵. Fernandez et al also reported that adrenal dysfunction was more prevalent in patients with advanced liver disease. (CTP C 76% Vs CTP B 25%)²⁶.

Our study also demonstrates similar results with adrenal dysfunction being reported in 10(28.6%) of patients with CTP B and 19(54.3%) of patients with CTP C and none of the patients in CTP A.

Adrenal Insufficiency and Hyperbiliruminemia

Previous studies have shown the correlation between adrenal dysfunction and serum bilirubin. Tsai et al reported a significant correlation between adrenal dysfunction and serum bilirubin and also had demonstrated that serum bilirubin was an independent predictor of AI in citically ill patients with cirrhosis and severe sepsis²⁵. Our study also shows highly significant statistical correlation between serum cortisol and serum bilirubin (p.0.004).

Adrenal Insufficiency and Hypoalbuminemia

On evaluating the correlation of serum albumin to that of serum cortisol, our study showed that serum albumin levels are lower in patient with adrenal dysfunction. 11(37.9%) patients with serum albumin <2.0 g/dl and 15(51.7\%) patients with serum albumin 2.0 – 2.5 g/dl had adrenal dysfunction. Only one patient (3.4%) with serum albumin 2.5 – 3.0 g/dl and two patients with serum albumin >3 g/dl had adrenal insufficiency. Thus,

our study shows a highly significant statistical correlation between serum cortisol and serum albumin (p. <0.001).

Kharbe et al showed that serum albumin was one of the predictor of adrenal insufficiency in CLD^{62} whereas Marik et al found no correlation between serum albumin and serum cortisol¹³.

Adrenal Insufficiency & Upper Gastro intestinal bleed

Our study evaluated the correlation between adrenal insufficiency and variceal bleeding and found that adrenal dysfunction was significantly higher in bleeders than in non bleeders. Among the total bleeders (31), 14 patients (45.2%) had been found to have adrenal insufficiency with a statistically significant p value (p. 0.017).

Similar results were also shown by Triantos et al who reported higher prevalence of Adrenal Insufficiency in bleeders (60%) than in non bleeders¹⁴. Hamrahian et al had reported that coagulopathy, which is commoner with liver disease patients, can result in adrenal infarction due to adrenal hemorrhage and AI⁴⁵. Graupera et al reports high chances of failure to control bleed in patients with AI³⁰.

Adrenal Insufficiency & Hepatorenal syndrome

In this present study, we analyzed the correlation between Adrenal Insufficiency and hepatorenal syndrome. Overall 29(29%) patients had HRS in the study population among which 16 patients (55.2%) had adrenal insufficiency with a high statistical significance [p value (p.<0.001)]. This result is similar to previous studies by Acevedo et al who reported a high prevalence of (16% Vs 3%) of AI in patients with type I hepatorenal syndrome²⁹. In addition, he showed that patients with AI have greater impairment of circulatory and renal function, increased rate of severe sepsis and Type I HRS and higher short term mortality than in patients with normal adrenal function.

Hepatic Encephalopathy and Adrenal Insufficiency

We evaluated the correlation between Adrenal Insufficiency and hepatic encephalopathy. Totally 39(39%) patients had hepatic encephalopathy among the study population. Among the 39 patients with hepatic encephalopathy, 15(38.5%) patients had associated adrenal insufficiency, which is not statistically significant (p.0.095).

But previous studies shows significant correlation between hepatic encephalopathy and adrenal insufficiency. Arafa et al had reported that serum cortisol concentration in cirrhotic patients with hepatic encephalopathy were significantly decreased compared to those in patients without hepatic encephalopathy⁴⁶. The same study also showed that serum cortisol concentration decreased with progression of hepatic encephalopathy from Grade I to IV.

63

AI & spontaneous bacterial peritonitis

In our study, 21 patients (21%), out of 100 study patients, had spontaneous bacterial peritonitis. Among the 21 patients, 9 patients (42.9%) had AI, but this was not statistically significant (p value 0.115). Tsai et al in his study had reported a significant prevalence of AI in patients with spontaneous bacterial peritonitis $(8.91\%)^{25}$.

AI & Serum cholesterol

In our study, we analysed the correlation between serum cortisol and total cholesterol, HDL & LDL, which showed that lower levels of total cholesterol, HDL and LDL were found to be associated with AI in chronic liver disease patients. Among 29 cases with AI, 19 (65.5%) patients had hypocholesterolemia with high statistical significance (p < 0.001).

Similarly, out of 29 patients with AI, 26(89.7%) patients had lower HDL levels with high statistical significance (p <0.001). As already mentioned, out of 29 patients with AI, 26(89.7%) had lower LDL levels with high statistical significance (p <0.001).

Similar results were reported in most of the previous studies. Marik et al found that reduced levels of total cholesterol, HDL and LDL were associated with AI¹⁷. Kharb et al also reflects similar results and found that low LDL and HDL were one of the predictors of AI⁶². This can be explained by direct decrease in substrate supply since cortisol synthesis requires cholesterol as a substrate. Cicognani et al demonstrated a marked decrease in the level of serum HDL in cirrhotic patients which was associated with the severity of liver disease (child class)⁶³.

Habib et al showed that HDL cholesterol less than 30 mg/dl in cirrhotic patients were found to have 3 - 4 fold increase in the rate of death due to cirrhosis or transplantation at 6 or 12 months⁶⁴.

Predictions of Adrenal Insufficiency

Our study analysed the various predictors in chronic liver disease patients presenting with adrenal dysfunction. Among several parameters, most important predictors of AI in chronic liver disease are:

- 1. Serum bilirubin
- 2. CTP score
- 3. Variceal bleed
- 4. Serum albumin
- 5. Hepato renal syndrome
- 6. Low total cholesterol, HDL and LDL.

Several studies have reported the predictors of AI in chronic liver disease. Elfaramawy reports that the presence of ascites, high temperature, high CRP, neutrophilia, high AST, ALT, high total bilirubin, prolonged INR and liver albumin were all factors associated with AI⁶⁶.

Tsai et al reported that serum bilrubin was an independent factor in predicting AI in critically ill patients with cirrhosis and sepsis. Fede et al reported that advanced liver disease (CTPC), high MELD score, ascites and basal cortisol were independently associated with adrenal insufficiency²⁵.

Kharb et al reports that AI was predicted by higher total biliruin INR, CTP scores and lower basal total cortisol, albumin, total cholesterol and LDL and HDL⁶². Marik et al study found that the HDL level was the only predictor of AI (p < 0.001)³.

CONCLUSION

- 1. Adrenal Insufficiency occurs frequently in patients with liver cirrhosis both during critical illness and in stable disease.
- 2. Adrenal insufficiency occurs more frequently in patients with more advanced liver disease and correlated with disease severity scores.
- Adrenal function worsens with progression of liver disease and such patients should be periodically assessed for adrenal insufficiency.
- Significant correlation was found between serum cortisol and serum bilirubin, variceal bleeding, CTP score and hepatorenal syndrome.
- Significant predictors of adrenal insufficiency in patients with chronic liver disease were found to be serum bilirubin, serum albumin, total cholesterol, HDL and LDL.

BIBILIOGRAPHY

- Albillos A, de la Hera A, Gonzalez M, Moya JL, Calleja JL, Monserrat J, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. *HEPATOLOGY* 2003;37: 208-217.
- Peterson RE. Metabolism of adrenal cortical steroid. In: Christy NP. *The Human Adrenal Cortex*. New York: Harper & Row, 1971:81-189.
- Marik PE, Zaloga GP. Adrenal insufficiency during septic shock. *Crit Care Med* 2003; 31: 141-145.
- 4. Addition T : London Samuel Highly ;1985.
- Scott WJ : The influence of the adrenal glands on resistance II: the toxic effect of killed bacteria in adrenalactemized rats. *J Exp Med* : 1924; 39 :457.
- Mark S et al : Corticosteroid insufficiency in acutely ill patients. *N Engl J M* : 2003 :348 : 727-34.
- Arlt W, Stewart PM. Adrenal corticosteroid biosynthesis, metabolism, and action. *Endocrinol Metab Clin North Am* 2005;34:293–313, viii.
- Snijdewint FG, Kapsenberg ML, Wauben-Penris PJ, Bos JD. Corticosteroids class-dependently inhibit in vitro Th1- and Th2-type cytokine production. *Immunopharmacology* 1995;29:93–101.
- Widmer IE, Puder JJ, Konig C, Pargger H, Zerkowski HR, Girard J, et al. Cortisol response in relation to the severity of stress and illness. *J Clin Endocrinol Metab* 2005;90:4579–458.
- 10. Yildiz O, Doganay M, Aygen B, Guven M, Kelestimur F, Tutuu Physiological-dose steroid therapy in sepsis. *Crit Care* 2002;6:251–259.

- 11. Thevenot T, Borot S, Remy-Martin A, Sapin R, Cervoni JP, Richou C, Vanlemmens C, Cleau D, Muel E, Minello A, Tirziu S, Penfornis A, Di Martino V, Monnet E. Assessment of adrenal function in cirrhotic patients using concentration of serum-free and salivary cortisol. *Liver Int* 2011; 31: 425-433.
- 12. Mohamed MB, Hamed G Heikal A, Darwish H. Prevalence of adenocortical insufficiency in patients with liver cirrhosis, liver cirrhosis with septic shock and in patients with hepatorenal syndrome. J Am Sci 2011; 7: 391-400.
- Marik PE, Gayowski T, Starzl TE, Hepatic Cortisol Research and Adrenal Pathophysiology Study Group. The hepatoadrenal syndrome: a common yet unrecognized clinical condition. *Crit Care Med* 2005; 33: 1254-1259.
- 14. Triantos CK, Marzigie M, Fede G, Michalaki M, Giannakopoulou D, Thomopoulos K, Garcovich M, Kalafateli M, Chronis A, Kyriazopoulou V, Jelastopoulou E, NikolopoulouV, O'Beirne J, Burroughs AK. Critical illness-related corticosteroid insufficiency in patients with cirrhosis and variceal bleeding. *Clin Gastroenterol Hepatol* 2011; 9: 595-601.
- 15. Galbois A, Rudler M, Massard J, Fulla Y, Bennani A, Bonnefont-Rousselot D, Thibault V, Reignier S, Bourrier A, Poynard T, Thabut D. Assessment of adrenal function in cirrhotic patients: salivary cortisol should be preferred. *J Hepatol* 2010; 52: 839-845.
- 16. Acevedo J, Fernandez J, Castro M, Roca D, Gines P, Arroyo V. Prognostic value of relative adrenal insufficiency in decompensated cirrhosis. J Hepatol 2010; 52 Suppl 1: S65.
- 17. Marik PE, Gayowski T, Starzl TE, Hepatic Cortisol Research and Adrenal Pathophysiology Study Group. The hepatoadrenal syndrome: a common yet unrecognized clinical condition. *Crit Care Med* 2005; 33: 1254-1259.

- Cirera M, Vila J, Grande L, Taurá P, Fuster J, García-Valdecasas JC, Lacy A, Suárez MJ, Rimola A, Rodés J. Bacterial translocation of enteric organisms in patients with cirrhosis. *J Hepatol* 2001; 34: 32-37.
- Yaguchi H, Tsutsumi K, Shimono K, Omura M, Sasano H, Nishikawa T. Involvement of high density lipoprotein as substrate cholesterol for steroidogenesis by bovine adrenalfasciculo-reticularis cells. *Life Sci* 1998; 62: 1387-1395.
- 20. Ettinger WH, Varma VK, Sorci-Thomas M, Parks JS, Sigmon RC, Smith TK, Verdery RB. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. *Arterioscler Thromb* 1994; 14: 8-13.
- 21. Marik PE. Adrenal-exhaustion syndrome in patients with liver disease. *Intensive Care Med* 2006; 32: 275-280.
- 22. Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. *N Engl J Med* 2003; 348: 727-734.
- 23. Zapater P, Francés R, González-Navajas JM, de la Hoz MA, Moreu R, Pascual S, Monfort D, Montoliu S, Vila C, Escudero A, Torras X, Cirera I, Llanos L, Guarner-Argente C, Palazón JM, Carnicer F, Bellot P, Guarner C, Planas R, Solá R, Serra MA, Muñoz C, Pérez-Mateo M, Such J. Serum and ascetic fluid bacterial DNA: a new independent prognostic factor in noninfected patients with cirrhosis. *Hepatology* 2008; 48: 1924-19311.
- Harry R, Auzinger G, Wendon J. The clinical importance of adrenal insufficiency in acute hepatic dysfunction. *HEPATOLOGY* 2002;36:395-402.
- 25. Tsai MH, Peng YS, Chen YC, Liu NJ, Ho YP, Fang JT, et al. Adrenal insufficiency in patients with cirrhosis, severe sepsis, and septic shock. *HEPATOLOGY* 2006;43:673-681.

- 26. Fern_andez J, Escorsell A, Zabalza M, Felipe V, Navasa M, Mas A, et al. Adrenal insufficiency in patients with cirrhosis and septic shock: Effect of treatment with hydrocortisone on survival. *HEPATOLOGY* 2006;44: 1288-1295.
- 27. Tan T, Chang L, Woodward A, McWhinney B, Galligan J, Macdonald GA, et al. Characterising adrenal function using directly measured plasma free cortisol in stable severe liver disease. *J Hepatol* 2010;53: 841-848.
- 28. Fede G, Spadaro L, Tomaselli T, Privitera G, Piro S, Rabuazzo AM, et al. Assessment of adrenocortical reserve in stable patients with cirrhosis. *J Hepatol* 2011;54:243-250.
- 29. Acevedo J, Fern_andez J, Castro M, Roca D, Gine's P, Arroyo V. Impact of relative adrenal insufficiency on circulatory function and mortality in advanced cirrhosis. *J Hepatol* 2011;54:S61.
- 30. Graupera I, Hernandez-Gea V, Rodriguez J, Colomo A, Poca M, Llao J, et al. Incidence and prognostic significance of relative adrenal insufficiency in cirrhotic patients with severe variceal bleeding [Abstract]. *HEPATOLOGY* 2010;52:267A.
- 31. Iwasaki T, Tominaga M, Fukumoto T, Kusonoki N, Sugimoto T, Kido M, et al. Relative adrenal insufficiency manifested with multiple organ dysfunction in a liver transplant patient. *Liver Transpl* 2006;12: 1896-1899.
- 32. Singh N, Gayowski T, Marino IR, Schlichtig R. Acute adrenal insufficiency in critically ill liver transplant recipients. Implications for diagnosis. *Transplantation* 1995;59:1744-1745.
- 33. Toniutto P, Fabris C, Fumolo E, Bitetto D, Fornasiere E, Falleti E, et al. Prevalence and risk factors for delayed adrenal insufficiency after liver transplantation. *Liver Transpl* 2008;14:1014-1019.

- 34. Patel S, Broomhead R, Burroughs AK, Mallett SV, O'Beirne J. Effect of intra-operative methylprednisolone on post liver transplant (LT) inensive care unit (ITU) course—further evidence for the existence of hepatoadrenal syndrome? *J Hepatol* 2010;52(Suppl 1):S197.
- 35. Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. *Chest* 2002; 122: 1784-1796.
- 36. Parker KL, Kovacs WJ. Addison's disease (adrenal insufficiency). In: Wass JAH, Shalet SM, eds. Oxford Textbook of Endocrinology and Diabetes, 1st ed. Oxford, UK: Oxford University Press; 2002:837-844.
- 37. Oelkers W. Adrenal insufficiency. N Engl J Med 1996;335:1206-1212.
- 38. Kazlauskaite R, Evans AT, Villabona CV, Abdu TAM, Ambrosi B, Brew Atkinson A, et al. Corticotropin tests for hypothalamic-pituitaryadrenal insufficiency: a metaanalysis. *J Clin Endocrinol Metab* 2008.
- 39. Arafah BM, Nishiyama FJ, Tlaygeh H, Hejal R. Measurement of salivary cortisol concentration in the assessment of adrenal function in critically ill subjects: a surrogate marker of the circulating free cortisol. J Clin Endocrinol Metab 2007; 92: 2965-2971.
- 40. Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. *Crit Care Med* 2008;36:1937-1949.
- 41. Coolens JL, Van Baelen H, Heyns W. Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid-binding globulin. *J Steroid Biochem* 1987; 26: 197-202.
- 42. McDonald JA, Handelsman DJ, Dilworth P, Conway AJ, McCaughan GW. Hypothalamic-pituitary adrenal function in end-stage non-alcoholic liver disease. *J Gastroenterol Hepatol* 1993; 8: 247-253.

- 43. Thevenot T, Dorin R, Monnet E, Qualls CR, Sapin R, Grandclement E, Borot S, Sheppard F, Weil D, Degand T, Di Martino V, Kazlauskaite R. High serum levels of free cortisol indicate severity of cirrhosis in hemodynamically stable patients. *J Gastroenterol Hepatol* 2012; 27: 1596-1601.
- 44. Stewart PM. The adrenal cortex. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology. 11th ed. Philadelphia: Saunders, 2008: 445-503.
- 45. Hamrahian AH, Oseni TS, Arafah BM. Measurements of serum free cortisol in critically ill patients. *N Engl J Med* 2004; 350: 1629-1638 [PMID: 15084695 DOI: 10.1056/NEJMoa020266].
- 46. Arafah BM. Hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods. *J Clin Endocrinol Metab* 2006; 91: 3725-3745.
- 47. Vogeser M, Groetzner J, Küpper C, Briegel J. Free serum cortisol during the postoperative acute phase response determined by equilibrium dialysis liquid chromatographytandem mass spectrometry. *Clin Chem Lab Med* 2003; 41:146-151.
- 48. Thevenot T, Borot S, Remy-Martin A, Sapin R, Penfornis A, Di Martino V, Monnet E. Assessing adrenal function in cirrhotic patients: is there a reliable test? *Gastroenterol Clin Biol* 2009; 33: 584-588.
- 49. Cohen J, Smith ML, Deans RV, Pretorius CJ, Ungerer JP, Tan T, Jones M, Venkatesh B. Serial changes in plasma total cortisol, plasma free cortisol, and tissue cortisol activity in patients with septic shock: an observational study. *Shock* 2012; 37: 28-33.

- 50. Molenaar N, Johan Groeneveld AB, Dijstelbloem HM, de Jong MF, Girbes AR, Heijboer AC, Beishuizen A. Assessing adrenal insufficiency of corticosteroid secretion using free versus total cortisol levels in critical illness. *Intensive Care Med* 2011; 37: 1986-1993.
- 51. Agha A, Tomlinson JW, Clark PM, Holder G, Stewart PM. The longterm predictive accuracy of the short synacthen (corticotropin) stimulation test for assessment of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab 2006;91:43-47.
- 52. Chatha KK, Middle JG, Kilpatrick ES. National UK audit of the short synacthen test. *Ann Clin Biochem* 2010;47:158-164.
- 53. Harry R, Auzinger G, Wendon J. The effects of supraphysiological doses of corticosteroids in hypotensive liver failure. *Liver Int* 2003;23: 71-77.
- 54. Arabi YM, Aljumah A, Dabbagh O, Tamim HM, Rishu AH, Al-Abdulkareem A, et al. Low-dose hydrocortisone in patients with cirrhosis and septic shock: a randomized controlled trial. *CMAJ* 2010;182: 1971-1977.
- 55. Patel SBR, Butt T, O'Beirne J, Mallett S. Steroid administration during liver transplantation reduces the need for physiological support post operatively - More evidence for RAI in liver disease *Eur J Anaesthesiol* 2010; 27: 176.
- 56. Dimopoulou I, Tsagarakis S, Kouyialia AT, Roussou P, Assithianakis G, Christoforaki M, et al. Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: incidence, pathophysiology and relationship to vasopressor dependence and peripheral interleukin-6 levels. *Crit Care Med* 2004;32:404–8.
- 57. Wasmuth HE, Kunz D, Yagmur E, Timmer-Stranghoner A, Vidacek D, Siewert E, et al. Patients with acute on chronic liver failure display "sepsis-like" immune paralysis. *J Hepatol* 2005;42:195–201.

- 58. Vasu TS, Stewart J, Cavallazzi RS, Hirani A, Marik PE. Hepatoadrenal syndrome: prevalence and factors predicting adrenal insufficiency in critically ill patients with liver disease. *Am J Respir Crit Care Med* 2009;179:A1588.
- 59. O Brian, Fede, Burroughs Adrenal insufficiency in cirrhosis *EMJ Hepatol* 2013;1:32-37.
- 60. Jang JY, Cho WY, Jeong SW, Kim SG, Cheon YK, Kim YS, Cho YD, Kim H, Lee JS, Shim CS, Kim BS. Relative adrenal insufficiency in patients with chronic liver disease. *Hepatology* 2008; 48: 1088A.
- 61. Zietz B, Lock G, Plach B, Drobnik W, Grossmann J, Scholmerich J, et al. Dysfunction of the hypothalamic-pituitary-glandular axes and relation to Child-Pugh classification in male patients with alcoholic and virus-related cirrhosis. *European journal of gastroenterology & hepatology*. 2003;15(5):495-501.
- 62. Risso A, Alessandria C, Elia C, Mezzabotta L, Andrealli A, Spandre M, Morgando A, Marzano A, Rizzetto M. Adrenaldysfunction in nonseptic cirrhotic patients with ascites: Impact on survival. *Dig Liv Dis* 2011; 43 Suppl 2: S74-75.
- 63. Kharb ,Garg,Puri,Nandi,Brar,Pandit . Assessment of adrenal function in liver diseases. *Indian journal of Endocrinology and Metabolism* May-June 2013/ vol17/ Issue 3.
- 64. Cicognani C, Malavolti M, Morselli-Labate AM, Zamboni L, Sama C, Barbara L. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. *Arch Intern Med* 1997; 157: 792-796.
- 65. Habib A, Mihas AA, Abou-Assi SG, *et al.* High-density lipoprotein cholesterol as an indicator of liver function and prognosis in noncholestalic cirrhotics. *Clin Gastroenterol Hepatol* 2005; 3: 286-91.

66. Elfaramawy et al. Hepatoadrenal syndrome in Egyptian children with liver cirrhosis with and without sepsis. *The Egyptian Journal of Medical Human Genetics* (2012) 13, 337-342.

ABBREVIATIONS

1. AI	:	Adrenal Insufficiency
2. CTP	:	Child-Turcotte-Pugh score
3. ALT	:	Alanine Aminotransferase
4. AST	:	Aspartate Aminotransferase
5. HRS	:	Hepato-renal Syndrome
6. SBP	:	Spontaneous Bacterial Peritonitis
7. HPA axis	:	Hypothalamo-Pituitary-Adrenal axis
8. HE	:	Hepatic Encephalopathy
9. ACTH	:	Adreno Corticotrophic Hormone
10.CRH	:	Corticotrophin releasing hormone
11.HDL – C	:	High Density Lipoprotein – cholesterol
12.LDL – C	:	Low Density Lipoprotein – cholesterol

PROFORMA

NAME :

AGE/SEX :

DDHD No:

HISTORY:

Haemetemesis:Malena:Haematochezia:Abdominalpain:Abdominal distension:Vomiting:Altered sleep pattern:Jaundice:

PAST HISTORY

GI Bleed:	Jaundice:	Ascites:	Blood transfusions:
DM:	SHT:	TB:	IHD :
	Drug	g/ NSAID intake:	

PERSONAL HISTORY:

Smoking:	Alcohol :	Premarital / extramarital sexual
exposure :	Inraveno	us drug abuse :

FAMILY HISTORY:

GENERAL EXAMINATION:

CONSCIOUS/ORIEN	NTED:	PALLO	R:	ICTERUS:	CYANOSIS:
CLUBBING:		EDEMA			
OTHER SIGNS:					
VITALS:	HT:		I	WT:	BMI:
PULSE:	BP:		r	ГЕМР:	URINE
	DI.		-	1 121011 .	ORINE
OUTPUT:					
SYSTEMIC EXAM	INATION:				
ORAL CAVITY:	P/A:	P/R:	R.S:	CVS:	CNS:

INVESTIGATIONS:

Hb :	ESR:	TC :	DC: P	L	Е	М
BT:	CT:	PLATELE	ET COUNT:			
PT/INR:						
RBS:	UREA:		CREATININ	NE:		
LFT: TOTAL	BILIRUBIN:				DI	RECT:
INDIRECT:						
SGOT :		TOTAL	PROTEIN:			
SGPT :		ALBUM	1IN:			
HBsAg:		Anti-HC	CV:			
CTP SCORE:		MELD	SCORE:			
FASTING LIPI	D PROFILE : TOTA	AL CHOLES	TEROL			
	LDL CH	OLESTERO	L			
	HDL CH	OLESTERO	L			
BASAL SERUN	M CORTISOL:					
USG ABDOME	EN:					
ASCITIC FLUI	ID ANALYSIS :	CELL CO	UNT:	DIFFI	ERE	NTIAL
COUNT:						
PROTEIN:		S	AAG:			
ALBUMIN:		C	ULTURE:			
OGD REPORT:	:					
ECG:						
CHEST X RAY	·:					

MASTER CHART - CASES

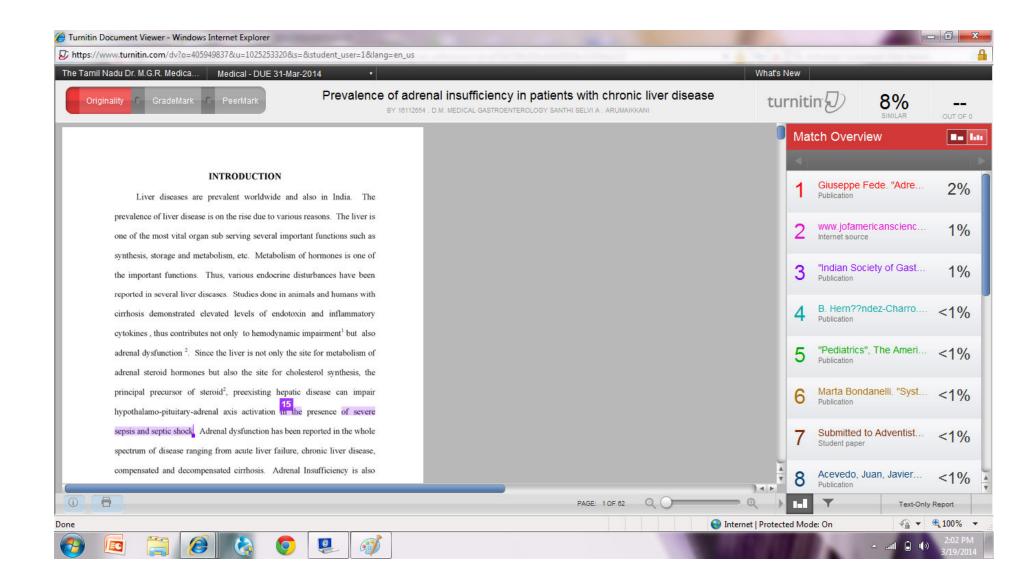
				-		1			1									-	1	1	1			1 1	
S.No	Age/Sex	Hb	Platelets	S.Bilirubin	TJA/TSA	T.Protein	S.Albumin	PT/INR	B.Urea	S.Creatinine	S.Cortisol	T.Cholesterol	HDL	TDL	SAAG	A.F.PMN	A.F.Culture	UGIB	Ascites	HE	SBP	HRS	050	CTP	Etiology
1	45/M	11.4	2,20,000	2.2	48/57	5.9	2.4	14/1.68	22	0.9	22.1	298	51	164	1.8	320	Р	-	Р	-	Р	-	No o.v.	B	Ethanol
2	38/M	12.8	1,88,000	1.1	23/34	7.2	3.9	17/1.3	19	1	20.4	286	49	171	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
3	44/F	9.8	98,000	4.1	97/114	5.7	2.3	20/1.8	59	2.9	19.84	314	52	181	1.4	-	-	Р	Р	Р	-	Р	Gr11/red signs	С	Metabolic
4	51/F	8.9	76,000	6.8	112/134	6.1	2.4	16/1.7	68	3.1	16.72	288	49	172	1.6	-	-	Р	Р	Р	-	Р	Gr11/red signs	С	Ethanol
5	54/M	9.1	80,000	3.4	84/68	6.3	1.9	17/1.58	17	1	4.1	292	50	174	-	-	-	-	-	-	-	-	No o.v.	В	Metabolic
6	49/F	8.9	88,000	8.4	98/74	5.8	3.9	17/1.3	82	3.8	4.9	138	36	71	2.1	350	Р	Р	Р	Р	-	Р	Gr111/red signs	С	Ethanol
7	55/M	12	2,40,000	1.2	31/42	6.9	2.1	11/1.3	20	0.9	17.84	282	44	162	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
8	36/M	7.4	54,000	3.2	64/41	6.7	2.3	16/1.7	74	4.2	3.8	239	32	72	1.8	330	Р	Р	Р	-	Р	Р	Gr111/red signs	С	Ethanol
9	42/M	9.8	98,000	1.8	64/72	6.3	3.6	20/1.8	19	0.8	19.13	279	49	164	1.4	280	Р	-	Р	-	Р	-	No o.v.	В	Ethanol
10	55/M	8.8	74,000	2.3	32/46	6.4	3.9	16/1.7	23	0.9	21.14	312	51	172	1.3	300	Р	Р	Р	-	Р	I	Gr11/red signs	В	Metabolic
11	25/F	12.2	2,10,000	1.4	28/38	6.9	2.2	17/1.52	18	1	20.36	272	48	162	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
12	22/F	10.2	1,86,000	4.6	56/66	6.1	2.6	17/1.3	61	3.2	18.46	278	49	159	1.6	-	-	-	Р	Р	-	Р	Gr1 o.v.	С	Ethanol
13	50/F	11.4	1,72,000	2.3	37/49	5.8	3.6	16/1.7	17	0.7	19.32	311	51	172	1.4	280	Р	-	Р	-	Р	I	No o.v.	В	Metabolic
14	38/M	12.6	1,24,000	1.8	18/24	6.6	3.9	20/1.8	16	0.8	21.44	276	47	156	1	-	-	-	I	-	-	1	No o.v.	Α	HBV
15	44/M	7.6	76,000	5.2	71/59	6.2	2.2	17/1.4	79	4.6	4.6	139	32	70	2.2	320	Р	Р	Р	-	-	Р	Gr111/red signs	С	Ethanol
16	51/M	9.8	2,40,000	1.3	18/29	6.4	3.6	21/1.68	21	1	22.36	282	49	162	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
17	48/M	9.6	1,80,000	2.3	39/47	5.8	2.4	14/1.6	23	0.9	3.7	138	31	81	-	-	-	-	-	-	-	-	No o.v.	В	HBV
18	26/M	11.6	1,98,000	1.2	24/32	6.3	3.5	12/1.9	18	0.8	21.48	282	47	152	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
19	38/M	7.4	66,000	2.2	35/48	5.9	2.9	17/1.3	17	0.7	19.38	266	44	138	1.6	300	Р	Р	Р	-	Р	-	Gr11/red signs	B	HCV
20	49/M	8.1	72,000	5.9	62/74	6.2	2.1	15/1.4	72	4.2	4.2	139	33	71	1.8	330	Р	Р	Р	Р	-	Р	Gr11/red signs	С	Ethanol
21	51/M	10.1	2,50,000	0.9	24/34	6.8	3.9	11/1.8	17	0.9	16.84	283	47	141	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
22	39/M	9.8	3,25,000	2.1	49/58	5.9	3.1	12/1.9	21	1	14.32	314	49	154	1.4	-	-	-	Р	Р	-	-	No o.v.	В	Metabolic
23	48/M	11.4	1,85,000	6.4	98/112	5.8	1.9	16/1.68	71	3.2	4.2	145	31	71	2.2	320	Р	-	Р	Р	Р	Р	Gr1 o.v.	С	HCV
24	56/M	12.3	1,91,000	8.2	114/132	6.1	2.9	21/1.68	62	2.9	18.46	298	46	141	1.2	350	Р	-	Р	Р	Р	Р	Gr11 o.v.	С	Ethanol
25	52/M	11.8	1,60,000	2.4	62/84	6.8	2.4	17/1.3	23	0.9	3.2	144	31	80	1.4	-	-	-	Р	Р	-	-	No o.v.	В	Ethanol
26	50/M	7.2	86,000	5.9	96/72	6.3	2.3	20/1.8	68	4.5	2.9	139	31	73	2.1	300	Р	Р	Р	Р	Р	Р	Gr111/red signs	С	Ethanol
27	42/F	12.8	1,12,000	0.8	32/41	7.6	3.9	16/1.7	16	0.8	17.32	284	49	141	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
28	49/M	10.9	1,84,000	1.9	66/74	6.4	2.1	10/1.2	21	0.7	2.6	149	32	76	1.9	-	-	-	Р	-	-	-	Gr1 o.v.	B	Ethanol

S.No	Age/Sex	ЧH	Platelets	S.Bilirubi n	AST/ALT	T.Protein	S.Albumi n	PT/INR	B.Urea	S.Creatini ne	S.Cortisol	T.Cholest erol	HDL	TDL	SAAG	A.F.PMN	A.F.Cultu re	UGIB	Ascites	HE	SBP	HRS	050	CTP	Etiology
29	46/F	11.1	1,38,000	0.9	19/21	6.7	3.4	21/1.72	19	1	22.84	309	54	169	-	-	-	-	-	-	-	-	No o.v.	Α	Metabolic
30	57/M	12.2	2,26,000	2.1	34/48	6.2	2.1	17/1.3	16	0.9	4.6	139	32	79	1.4	-	-	-	Р	-	-	-	Gr11 o.v.	B	Ethanol
31	39/F	8.4	98,000	4.8	72/58	6.4	2.9	11/1.3	54	2.7	19.32	320	53	176	1.6	-	-	Р	Р	Р	-	Р	Gr11/red signs	С	Metabolic
32	48/F	10.2	2,40,000	4.9	38/49	5.9	2.3	22/2.0	15	1	20.82	298	49	162	-	-	-	-	-	-	-	-	No o.v.	B	HBV
33	49/M	7.8	82,000	6.8	54/68	5.6	1.8	20/1.8	83	3.9	3.9	131	30	71	2.1	350	Р	Р	Р	Р	-	Р	Gr11/red signs	С	Ethanol
34	34/F	10.4	1,94,000	0.8	32/42	6.8	3.9	16/1.7	22	0.8	16.54	289	49	154	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
35	48/M	11.4	2,10,000	8.4	54/66	5.3	1.7	17/1.52	76	4.1	4.1	128	32	76	1.9	300	Р	-	Р	-	-	Р	Gr11/red signs	С	Ethanol
36	39/M	12.2	2,66,000	0.7	21/32	7.2	3.9	17/1.3	17	0.7	22.32	276	46	162	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
37	51/M	7.2	88,000	2.2	43/54	6.7	2.9	16/1.7	58	2.8	19.46	282	47	166	1.8	-	-	Р	Р	Р	-	Р	Gr11 o.v.	B	Ethanol
38	44/M	10.1	1,60,000	1.3	36/48	6.9	1.9	15/1.4	79	0.6	18.32	278	46	159	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
39	39/M	8.1	94,000	4.8	63/58	6.1	2.4	18/1.68	19	3.7	3.8	146	34	81	2.2	320	Р	Р	Р	-	Р	Р	Gr111/red signs	С	Ethanol
40	42/M	7.4	76,000	2.1	52/68	6.3	2.6	19/2.0	21	0.8	17.46	316	52	76	1.6	-	-	Р	Р	Р	-	-	Gr11 o.v.	В	Metabolic
41	33/F	12	1,40,000	5.3	50/67	6.1	2.6	17/1.4	16	1.1	19.68	284	48	142	-	-	-	-	1	1	-	-	No o.v.	Α	HBV
42	48/M	11.4	2,36,000	4.2	56/62	5.4	2.4	11/1.4	22	0.9	4.61	324	49	168	1.4	80	-	-	Р	-	-	1	Gr1 o.v.	В	Ethanol
43	29/M	10.8	1,90,000	4.1	60/38	6	2.7	10/1.2	19	1	21.34	296	44	154	-	-	-	-	I	-	-	1	No o.v.	В	Ethanol
44	41/F	8.1	86,000	17	158/87	6.2	3.5	29/2.76	21	0.8	19.24	264	46	132	1.6	350	Р	Р	Р	Р	Р	-	Gr11/red signs	С	Ethanol
45	39/M	7.6	68,000	2.7	86/34	6.4	1.8	11/1.4	82	3.8	3.81	161	32	74	2.1	-	-	Р	Р	Р	I	Р	Gr111/red signs	С	Ethanol
46	57/M	9.4	1,52,000	7.4	185/75	5.2	1.6	11/1.3	79	4.2	2.91	156	33	71	1.8	400	Р	_	Р	Р	Р	Р	Gr11 o.v.	С	Ethanol
47	44/F	11.5	2,13,000	3.6	32/45	5.2	2.2	11/1.3	56	2.8	18.69	256	48	116	1.6	-	-	-	Р	Р		Р	Gr1 o.v.	B	Ethanol
48	56/M	10.6	1,96,000	1.9	50/24	7.6	3	18/1.68	23	0.9	17.34	273	49	132	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
49	46/F	7.2	94,000	5.2	126/110	6.1	2.9	16/1.7	19	1.1	19.82	269	45	134	1.8	-	-	Р	Р	Р	-	-	Gr11/red signs	В	Ethanol
50	49/M	6.9	76,000	7.2	236/142	6.2	1.9	21/2.03	69	3.9	4.11	164	36	78	2.1	-	-	Р	Р	Р	-	Р	Gr111/red signs	С	HBV
51	51/M	9.8	1,30,000	0.9	28/22	7	3.6	10/1.2	17	0.9	18.64	259	42	141	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
52	38/F	11.2	2,30,000	1.9	50/24	7.6	3	18/1.68	20	1.1	15.42	286	51	148	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
53	52/M	10.8	3,82,000	6.5	24/30	6.1	3.2	11/1.4	22	0.7	4.39	141	34	84	1.4	-	-	-	Р	-	-	-	Gr1 o.v.	B	Ethanol
54	39/M	10.1	2,40,000	2.3	42/54	6.4	3.2	18/1.68	61	3.2	19.32	288	44	136	1.8	-	-	-	Р	Р	-	Р	Gr1 o.v.	B	Ethanol
55	46/M	9.3	1,98,000	7.1	66/84	5.9	1.7	16/1.7	20	0.8	3.93	296	46	148	2.2	300	Р	-	Р	Р	Р	-	Gr11 o.v.	C	Metabolic
56	49/M	8.2	1,12,000	6.2	56/72	5.1	2.2	17/1.3	72	4.6	4.14	138	33	79	1.6	-	-	Р	Р	-	-	Р	Gr11/red signs	С	Ethanol

64 46/F 11 1,90,000 6.8 114/88 6.4 3 18/1.68 74 2.9 15.18 256 49 141 2.1 150 - P P P P C III C IIII 2,0,000 1.9 40/24 7.6 3 15/1.4 35 0.8 19.23 284 41 136 - No.v. B Ethanol 67 51/M 10.1 1,50,000 16 64/20 3 1.3 1.8 429 141 1.3 1.8 400 P P P - No.v. B HBV 69 48/M	S.No	Age/Sex	Hb	Platelets	S.Bilirubin	AST/ALT	T.Protein	S.Albumin	PT/INR	B.Urea	S.Creatinine	S.Cortisol	T.Cholesterol	HDL	LDL	SAAG	A.F.PMN	A.F.Culture	UGIB	Ascites	HE	SBP	HRS	060	CTP	Etiology
59 46/M 10.3 1,56,000 6.5 132/121 5.9 1.8 14/1.7 21 0.7 4.72 162 36 79 2.1 380 P - P P - Gr11 o.v. C HCV 60 51/F 7.4 84,000 2.4 3971 6.1 3.6 11/1.4 18 0.8 18.46 278 42 156 1.2 - - P P P - Gr11 o.v. C HTV 61 39/M 10 16.5000 2.3 50/67 6.1 3.1 171.18 20 0.8 12.39 212 44 141 - - - - - - No.v. B Ethanol 63 3/M 10 9,000 8.4 88/64 5.7 2.3 3/3.1.8 5.8 3.8 3.8 3.8 3.8 151 32 89 19 100 - P P - P Cr111/red signs C Mtabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	57	43/M	8.8	98,000	0.8	24/29	6.8	3.9	20/1.8	17	1.1	20.34	274	41	156	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
60 51/F 7.4 84,000 2.4 39/51 6.1 3.6 11/1.4 18 0.8 18.46 278 42 156 1.2 - - P P P - No.v. B Ethanol 63 48/1 10 10,000 8.4 14/88 6.4 3 18/1.68 74 2.9 15.18 26 49 141 2.1 15.0 P P P P O 0.711/red signs C Hethaol 65 51/M 10.1 15,000 16 68/42 6.3 2.3 16/1.7 <td>58</td> <td>39/M</td> <td>9.4</td> <td>1,10,000</td> <td>1.1</td> <td>32/44</td> <td>6.6</td> <td>3.8</td> <td>21/1.9</td> <td>19</td> <td>0.9</td> <td>22.12</td> <td>283</td> <td>45</td> <td>132</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>No o.v.</td> <td>Α</td> <td>HBV</td>	58	39/M	9.4	1,10,000	1.1	32/44	6.6	3.8	21/1.9	19	0.9	22.12	283	45	132	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
61 39/M 10 1.65.000 5.3 50/67 6.1 3.1 17/1.58 20 0.8 12.39 212 44 108 - - - - - - - - - - - - - No.v. A Ethanol 63 48/M 10 91,000 8.4 88/64 5.7 2.3 34/3.1 85 3.8 3.89 151 32 89 1.9 100 - P P P P Gr11/red signs C Metabolic 64 46/f 11 1.20,000 6.8 14/148 6.4 3 18/1.68 74 2.9 15.18 256 49 141 2.1 1.0 P P P P Gr11/red signs C Metabolic 65 51/M 10.1 1.20,000 1.6 68/42 6.3 2.3 16/1.7 79 4.1 18.14 259 44 131 1.8 400 P P P C Gr1 o.v. <	59	46/M	10.3	1,56,000	6.5	132/121	5.9	1.8	14/1.7	21	0.7	4.72	162	36	79	2.1	380	Р	-	Р	Р	Р	-	Gr11 o.v.	С	HCV
62 37/M 12 1,10,000 4.2 56/42 5.4 2.5 11/1.4 24 0.6 23.14 208 41 141 - No o.v. B Ethanol Ethanol 63 3	60	51/F	7.4	84,000	2.4	39/51	6.1	3.6	11/1.4	18	0.8	18.46	278	42	156	1.2	-	-	Р	Р	Р	-	-	Gr11 /red signs	В	HBV
63 48/M 10 91,000 8.4 88/64 5.7 2.3 34/3.1 85 3.8 3.89 151 32 89 1.9 100 - P <td>61</td> <td>39/M</td> <td>10</td> <td>1.65.000</td> <td>5.3</td> <td>50/67</td> <td>6.1</td> <td>3.1</td> <td>17/1.58</td> <td>20</td> <td>0.8</td> <td>12.39</td> <td>212</td> <td>44</td> <td>108</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>No o.v.</td> <td>Α</td> <td>Ethanol</td>	61	39/M	10	1.65.000	5.3	50/67	6.1	3.1	17/1.58	20	0.8	12.39	212	44	108	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
64 46/F 11 190,000 6.8 114/88 6.4 3 18/1.68 74 2.9 15.18 256 49 141 2.1 150 - P P P C P Gr11/red signs C HBV 65 51/M 11 2,20,000 1.9 40/24 7.6 3 15/1.4 35 0.8 19,23 284 41 136 - - - - - - - No.v. A Ethanol 66 39/F 9.8 1,20,000 3.6 3045 5.2 2.2 11/1.3 19 0.9 1.8 259 44 131 1.8 400 P P P P O No.v. B HBV 68 59/M 11.1 2,40,000 7.6 112/74 5.2 2.8 11/1.3 19 0.9 2.32 144 31 78 - - - - No.v. B HBV 69 48/M 12 3,10,00	62	37/M	12	1,10,000	4.2	56/42	5.4	2.5	11/1.4	24	0.6	23.14	208	41	141	-	-	-	-	-	-	-	-	No o.v.	В	Ethanol
65 51/M 11 2,20,000 1.9 40/24 7.6 3 15/1.4 35 0.8 19.23 284 41 136 - - - - - - - - - - - - - - - No o.v. B Ethanol 66 39/F 9.8 1,20,000 3.6 30/45 5.2 2.2 11/1.3 21 0.9 16.84 239 42 114 - No.v. B Ethanol 68 59/M 11.1 2,4/30 6.1 2,4 2,14 2,2 14 3	63	48/M	10	91,000	8.4	88/64	5.7	2.3	34/3.1	85	3.8	3.89	151	32	89	1.9	100	-	Р	Р	Р	-	Р	Gr111/red signs	С	Metabolic
66 39/F 9.8 1,20,000 3.6 30/45 5.2 2.2 11/1.3 21 0.9 16.84 239 42 114 - - - - - - - - - - - - - - No o.v. B Ethanol 67 51/M 10.1 1,50,000 16 68/42 6.3 2.3 16/1.7 79 4.1 18.14 259 44 131 1.8 400 P - P P P	64	46/F	11	1,90,000	6.8	114/88	6.4	3	18/1.68	74	2.9	15.18	256	49	141	2.1	150	-	Р	Р	Р	-	Р	Gr11/red signs	С	HBV
67 51/M 10.1 1,50,000 16 68/42 6.3 2.3 16/1.7 79 4.1 18.14 259 44 131 1.8 400 P - P P - Gr1 o.v. C Ethanol 68 59/M 11.1 2,40,000 7.6 112/74 5.2 2.8 11/1.3 19 0.9 21.32 219 41 124 - No o.v. B HBV 70 38/F 10.8 2,36,000 5.2 64/30 6.1 3.4 20/1.8 61 2.8 22.41 22.6 43 112 2.1 40 - P P - - O Ortil/red signs B Ethanol 70 38/F 10.8 10,000 0.3 <td>65</td> <td>51/M</td> <td>11</td> <td>2,20,000</td> <td>1.9</td> <td>40/24</td> <td>7.6</td> <td>3</td> <td>15/1.4</td> <td>35</td> <td>0.8</td> <td>19.23</td> <td>284</td> <td>41</td> <td>136</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>No o.v.</td> <td>Α</td> <td>Ethanol</td>	65	51/M	11	2,20,000	1.9	40/24	7.6	3	15/1.4	35	0.8	19.23	284	41	136	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
68 59/M 11.1 2,40,000 7.6 112/74 5.2 2.8 11/1.3 19 0.9 21.32 219 41 124 - No o.v. B HBV 70 38/F 10.8 2,36,000 5.2 64/30 6.1 2.4 20/1.8 61 2.8 2.1 12.7 40 135 2.4 - - P P - - No o.v. A HBV HBV 136 136 </td <td>66</td> <td>39/F</td> <td>9.8</td> <td>1,20,000</td> <td>3.6</td> <td>30/45</td> <td>5.2</td> <td>2.2</td> <td>11/1.3</td> <td>21</td> <td>0.9</td> <td>16.84</td> <td>239</td> <td>42</td> <td>114</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>No o.v.</td> <td>В</td> <td>Ethanol</td>	66	39/F	9.8	1,20,000	3.6	30/45	5.2	2.2	11/1.3	21	0.9	16.84	239	42	114	-	-	-	-	-	-	-	-	No o.v.	В	Ethanol
69 48/M 12 3,12,000 12 24/30 6.1 2.4 10/1.2 27 0.9 4.25 144 31 78 - No.v. B HBV 70 38/F 108 2,36,000 5.2 64/30 6.1 3.4 20/1.8 61 2.8 2.4 126 43 112 2.1 40 - P P - - - Gr11/red signs C Ethanol 72 41/M 11.2 2,1000 4.3 82/12 7 3.6 10/1.2 28 1.1 17.34 272 44 141 - - - - - -<	67	51/M	10.1	1,50,000	16	68/42	6.3	2.3	16/1.7	79	4.1	18.14	259	44	131	1.8	400	Р	-	Р	Р	Р	_	Gr1 o.v.	С	Ethanol
70 38/F 10.8 2,36,000 5.2 64/30 6.1 3.4 20/1.8 61 2.8 22.41 226 43 112 2.1 40 - P <th< td=""><td>68</td><td>59/M</td><td>11.1</td><td>2,40,000</td><td>7.6</td><td>112/74</td><td>5.2</td><td>2.8</td><td>11/1.3</td><td>19</td><td>0.9</td><td>21.32</td><td>219</td><td>41</td><td>124</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>No o.v.</td><td>В</td><td>HBV</td></th<>	68	59/M	11.1	2,40,000	7.6	112/74	5.2	2.8	11/1.3	19	0.9	21.32	219	41	124	-	-	-	-	-	-	-	-	No o.v.	В	HBV
71 44/M 10.8 1.90,000 4.3 82/114 6.8 2.7 19/1.59 31 0.8 19.65 283 40 135 2.4 - - P P - - Gr11/red signs B Ethanol 72 41/M 11.2 2,10,000 0.9 28/22 7 3.6 10/1.2 28 1.1 17.34 272 44 141 - <td>69</td> <td>48/M</td> <td>12</td> <td>3,12,000</td> <td>12</td> <td>24/30</td> <td>6.1</td> <td>2.4</td> <td>10/1.2</td> <td>27</td> <td>0.9</td> <td>4.25</td> <td>144</td> <td>31</td> <td>78</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>No o.v.</td> <td>В</td> <td>HBV</td>	69	48/M	12	3,12,000	12	24/30	6.1	2.4	10/1.2	27	0.9	4.25	144	31	78	-	-	-	-	-	-	-	-	No o.v.	В	HBV
72 41/M 11.2 2,10,000 0.9 28/22 7 3.6 10/1.2 28 1.1 17.34 272 44 141 - - - - - - - - - - - - - - - No o.v. A HBV 73 48/M 9.8 1,84,000 11.2 84/98 5.7 2.4 34/3.1 89 3.6 13.45 269 43 136 1.9 60 P - P P P Gr11 o.v. C Metabolic 74 36/F 9.6 2,14,000 4.3 28/22 6.8 2.7 19/1.59 19 0.9 18.42 273 40 136 1.7 90 - - P P P P Gr11 o.v. C Metabolic 75 49/M 10.1 1,86,000 5.3 50/67 6.1 2.9 17/1.58 17 0.7 19.19 268 42 131 - - - - <t< td=""><td>70</td><td>38/F</td><td>10.8</td><td>2,36,000</td><td>5.2</td><td>64/30</td><td>6.1</td><td>3.4</td><td>20/1.8</td><td>61</td><td>2.8</td><td>22.41</td><td>226</td><td>43</td><td>112</td><td>2.1</td><td>40</td><td>-</td><td>Р</td><td>Р</td><td>Р</td><td>-</td><td>Р</td><td>Gr11/red signs</td><td>С</td><td>Ethanol</td></t<>	70	38/F	10.8	2,36,000	5.2	64/30	6.1	3.4	20/1.8	61	2.8	22.41	226	43	112	2.1	40	-	Р	Р	Р	-	Р	Gr11/red signs	С	Ethanol
73 48/M 9.8 1,84,000 11.2 84/98 5.7 2.4 34/3.1 89 3.6 13.45 269 43 136 1.9 60 P - P P P	71	44/M	10.8	1,90,000	4.3	82/114	6.8	2.7	19/1.59	31	0.8	19.65	283	40	135	2.4	-	-	Р	Р	-	-	-	Gr11/red signs	В	Ethanol
74 36/F 9.6 2,14,000 4.3 28/22 6.8 2.7 19/1.59 19 0.9 18.42 273 40 136 1.7 90 - - P - - C Gr1 o.v. B Ethanol 75 49/M 11.1 2,36,000 1.9 40/24 7.6 3 15/1.4 23 0.8 17.36 279 41 135 - - - - - - No o.v. A HBV 76 51/M 10.1 1,86,000 5.3 50/67 6.1 2.9 17/1.58 17 0.7 19.19 268 42 131 - - - - - No o.v. A HBV 77 48/M 10.6 2,12,000 17 148/77 6.8 2.1 24/2.76 98 4.2 2.81 149 33 81 2.4 400 P P P P Gr1 o.v. B Ethanol 78 37/F 9.8 3,10,000 <td< td=""><td>72</td><td>41/M</td><td>11.2</td><td>2,10,000</td><td>0.9</td><td>28/22</td><td>7</td><td>3.6</td><td>10/1.2</td><td>28</td><td>1.1</td><td>17.34</td><td>272</td><td>44</td><td>141</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>No o.v.</td><td>Α</td><td>HBV</td></td<>	72	41/M	11.2	2,10,000	0.9	28/22	7	3.6	10/1.2	28	1.1	17.34	272	44	141	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
75 49/M 11.1 2,36,000 1.9 40/24 7.6 3 15/1.4 23 0.8 17.36 279 41 135 - <td>73</td> <td>48/M</td> <td>9.8</td> <td>1,84,000</td> <td>11.2</td> <td>84/98</td> <td>5.7</td> <td>2.4</td> <td>34/3.1</td> <td>89</td> <td>3.6</td> <td>13.45</td> <td>269</td> <td>43</td> <td>136</td> <td>1.9</td> <td>60</td> <td>Р</td> <td>-</td> <td>Р</td> <td>Р</td> <td>Р</td> <td>_</td> <td>Gr11 o.v.</td> <td>С</td> <td>Metabolic</td>	73	48/M	9.8	1,84,000	11.2	84/98	5.7	2.4	34/3.1	89	3.6	13.45	269	43	136	1.9	60	Р	-	Р	Р	Р	_	Gr11 o.v.	С	Metabolic
76 51/M 10.1 1,86,000 5.3 50/67 6.1 2.9 17/1.58 17 0.7 19.19 268 42 131 -	74	36/F	9.6	2,14,000	4.3	28/22	6.8	2.7	19/1.59	19	0.9	18.42	273	40	136	1.7	90	-	-	Р	-	-	-	Gr1 o.v.	В	Ethanol
77 48/M 10.6 2,12,000 17 148/77 6.8 2.1 24/2.76 98 4.2 2.81 149 33 81 2.4 400 P <th< td=""><td>75</td><td>49/M</td><td>11.1</td><td>2,36,000</td><td>1.9</td><td>40/24</td><td>7.6</td><td>3</td><td>15/1.4</td><td>23</td><td>0.8</td><td>17.36</td><td>279</td><td>41</td><td>135</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>No o.v.</td><td>Α</td><td>HBV</td></th<>	75	49/M	11.1	2,36,000	1.9	40/24	7.6	3	15/1.4	23	0.8	17.36	279	41	135	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
78 37/F 9.8 3,10,000 7.4 52/64 5.2 2.8 11/1.3 27 1 21.56 248 42 124 1.9 60 - - P - - Gr1 o.v. B Ethanol 79 47/M 10.2 2,10,000 1.9 28/32 7.6 3.1 15/1.4 33 0.8 18.32 236 40 121 - - - - - - - R - <	76	51/M	10.1	1,86,000	5.3	50/67	6.1	2.9	17/1.58	17	0.7	19.19	268	42	131	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
79 47/M 10.2 2,10,000 1.9 28/32 7.6 3.1 15/1.4 33 0.8 18.32 236 40 121 - 0 0.0	77	48/M	10.6	2,12,000	17	148/77	6.8	2.1	24/2.76	98	4.2	2.81	149	33	81	2.4	400	Р	Р	Р	Р	Р	Р	Gr11/red signs	С	Ethanol
80 52/M 9.6 1,40,000 1.6 68/42 6.3 2.3 16/1.7 73 3.4 16.15 266 41 132 2.2 45 - P	78	37/F	9.8	3,10,000	7.4	52/64	5.2	2.8	11/1.3	27	1	21.56	248	42	124	1.9	60	-	-	Р	-	-	-	Gr1 o.v.	В	Ethanol
81 34/F 9.8 1,36,000 4.2 50/67 5.4 2.5 11/1.4 28 1 16.28 278 46 141 1.4 40 - - P P - - Gr 1 o.v. B HBV 82 39/M 10.1 1,80,000 1.6 34/42 6.1 3.2 17/1.58 19 1.1 16.64 246 43 156 - - - - - - No o.v. A Ethanol 83 42/F 7.9 67,000 7.8 88/92 5.7 2.3 11/1.4 29 3.2 18.32 228 44 134 1.6 65 - P	79	47/M	10.2	2,10,000	1.9	28/32	7.6	3.1	15/1.4	33	0.8	18.32	236	40	121	-	-	-	-	-	-	-	-	No o.v.	Α	HBV
82 39/M 10.1 1,80,000 1.6 34/42 6.1 3.2 17/1.58 19 1.1 16.64 246 43 156 -	80	52/M	9.6	1,40,000	1.6	68/42	6.3	2.3	16/1.7	73	3.4	16.15	266	41	132	2.2	45	-	Р	Р	Р	-	Р	Gr11/red signs	С	Ethanol
83 42/F 7.9 67,000 7.8 88/92 5.7 2.3 11/1.4 29 3.2 18.32 228 44 134 1.6 65 - P P - P Gr 111/red signs. C Metabolic	81	34/F	9.8	1,36,000	4.2	50/67	5.4	2.5	11/1.4	28	1	16.28	278	46	141	1.4	40	-	-	Р	Р	-	-	Gr 1 o.v.	В	HBV
	82	39/M	10.1	1,80,000	1.6	34/42	6.1	3.2	17/1.58	19	1.1	16.64	246	43	156	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
84 49/M 9.2 88.000 4.7 66/48 5.2 2.9 21/1.93 23 0.9 3.21 151 39 78 No o.v. B Ethanol	83	42/F	7.9	67,000	7.8	88/92	5.7	2.3	11/1.4	29	3.2	18.32	228	44	134	1.6	65	-	Р	Р	Р	-	Р	Gr 111 /red signs.	С	Metabolic
	84	49/M	9.2	88,000	4.7	66/48	5.2	2.9	21/1.93	23	0.9	3.21	151	39	78	-	-	-	-	-	-	-	-	No o.v.	В	Ethanol

S.No	Age/Sex	Hb	Platelets	S.Bilirubin	AST/ALT	T.Protein	S.Albumin	PT/INR	B.Urea	S.Creatinine	S.Cortisol	T.Cholesterol	HDL	LDL	SAAG	A.F.PMN	A.F.Culture	UGIB	Ascites	HE	SBP	HRS	OGD	CTP	Etiology
85	48/F	8.4	92,000	5.9	39/24	5.7	2.4	13/1.4	16	1.1	17.04	268	46	142	2.4	400	Р	Р	Р	Р	Р	-	Gr11/ red signs	С	HCV
86	51/M	11.4	1,56,000	1.9	28/36	6.4	3.8	16/1.48	18	0.9	14.98	239	48	124	-	-	-	I	-	-	-	-	No o.v.	A	HBV
87	32/F	9.4	1,79,000	2.9	44/68	5.8	2.4	17/1.58	25	1.1	14.36	268	47	134	1.6	40	-	Р	Р	-	-	-	Gr11/red signs	В	HBV
88	48/M	8.7	96,000	4.2	112/88	6.3	1.8	16/1.7	85	3.8	2.45	142	38	82	2.1	80	-	Р	Р	Р	Р	Р	Gr111/red signs	С	Ethanol
89	54/M	9.8	1,48,000	3.8	82/64	6.4	3.8	13/1.4	19	1.1	15.24	274	47	156	1.4	50	-	I	Р	-	-	-	Gr1 o.v	В	Ethanol
90	41/M	11.4	2,10,000	1.9	24/38	6.9	4.2	11/1.	20	0.7	17.32	309	52	165	-	-	-	I	-	-	-	-	No o.v.	Α	HBV
91	49/M	10.6	88,000	2.2	56/48	6.1	2.4	17/1.52	26	1.1	3.45	138	38	81	1.2	45	-	-	Р	-	-	-	Gr.11 o.v	В	Ethanol
92	48/F	10.1	1,54,000	4.9	73/66	5.8	2.9	21/2.03	29	0.9	15.81	296	49	154	2.6	350	Р	I	Р	Р	Р	-	Gr11 o.v	С	Ethanol
93	56/M	8.4	92,000	7.4	112/84	5.1	1.9	17/1.3	27	1.1	3.98	147	37	76	2.2	70	-	Р	Р	Р	-	-	Gr11/red signs	С	Ethanol
94	44/M	11.1	,86,000	1.8	25/32	6.8	4.2	11/1.4	19	0.9	14.98	308	52	172	-	-	-	-	-	-	-	-	No o.v.	Α	Ethanol
95	49/M	12.3	2,34,000	3.1	53/68	6.1	3.5	16/1.7	18	0.8	21.34	294	48	166	-	-	-	-	Р	-	-	-	Gr 1 o.v,	В	Ethanol
96	39/M	10.9	1,66,000	0.9	22/33	6.9	4.5	10/1.2	23	0.8	23.64	312	49	174	-	-	-	-	-	-	-	-	No o.v.	Α	Metabolic
97	42/M	9.8	84,000	5.3	78/94	6.1	2.6	14/1.3	26	0.9	21.22	303	51	168	1.9	350	Р	-	Р	Р	Р	-	Gr 11 o.v,.	С	Ethanol
98	53/M	10.6	1,36,000	2.6	38/49	6.4	3.2	18/1.68	18	1	19.68	288	49	152	-	-	-	-	-	-	-	-	No o.v.	В	Ethanol
99	56/M	10.9	1,79,000	5.8	112/94	5.1	1.7	36/3.13	77	3.6	18.64	294	47	161	2.2	50	-	-	Р	Р	-	Р	Gr11 o.v	С	Ethanol
100	48/M	11.2	1,82,000	0.8	24/34	7.6	4.8	15/1.4	19	0.8	19.18	266	48	158	-	-	-	-	-	-	-	-	No o.v.	А	HBV

Abbreviations:


- Hb Haemoglobin AST Aspartate Aminotransferase ALT Alanine Aminotransferase РТ **Prothrombin Time** Spontaneous Bacterial Peritonitis SBP Hepatorenal HRS syndrome
- Low Density Lipoprotein LDL

OV **Oesophageal Varices** HEHepatic
EncephalopathyUGI bleedUpper Gastrointestinal bleedHBVHepatitis B VirusHCVHepatitis C VirusHDLHigh Density Lipoprotein

MASTER CHART - CONTROLS

S.No	Age/Sex	ЧН	Platelets	S.Bilirubin	AST/ALT	T.Protein	S.Albumin	PT/INR	B.Urea	S.Creatinine	S.Cortisol	T.Cholesterol	HDL	LDL	SAAG	A.F.PMN	A.F.Culture	UGIB	Ascites	HE	SBP	HRS	OGD	CTP	Etiology
1	48/M	12.1	2,44,000	0.9	14/21	7.2	3.4	-	19	0.9	25.48	184	51	111	-	-	-	-	-	-	-	-	-	-	-
2	38/M	11.9	3,12,000	0.8	15/22	6.9	3.6	I	21	0.8	26.34	169	49	103	-	-	-	-	-	-	-	-	-	-	-
3	49/M	11.2	2,26,000	1.1	22/24	6.8	3.8	I	23	0.8	27.46	198	50	98	-	-	-	-	-	-	-	-	-	-	-
4	29/F	12.4	2,98,000	0.9	21/24	7.4	3.9	-	22	1	25.34	187	48	112	-	-	-	-	-	-	-	-	-	-	-
5	38/M	13.1	2,34,000	0.7	16/18	6.9	3.4	-	15	0.9	26.24	179	47	124	-	-	-	-	-	-	-	-	-	-	-
6	31/F	12.8	2,46,000	0.8	14/19	7.1	3.7	_	24	0.8	24.18	176	47	98	-	-	-	-	-	-	-	-	-	-	-
7	28/M	11.3	3,22,000	1	13/20	7.4	3.5	_	16	0.8	25.32	169	48	97	-	-	-	-	-	-	-	-	-	-	-
8	34/F	11.1	3,78,000	1.1	15/21	6.7	3.6	_	17	0.9	26.19	178	46	102	-	-	-	-	-	-	-	-	-	-	-
9	37/M	13.4	2,68,000	0.9	14/17	7.2	3.8	_	20	0.7	27.34	184	49	113	-	-	-	-	-	-	-	-	-	-	-
10	28/M	12.6	3,09,000	0.7	16/19	6.8	3.5	_	22	1	20.98	168	50	102	-	-	-	-	-	-	-	-	-	-	-
11	35/F	12.8	2,78,000	0.8	15/19	7.3	3.8	_	25	0.9	22.86	172	49	105	-	-	-	-	-	-	-	-	-	-	-
12	41/F	11.8	2,45,000	0.8	16/19	6.8	3.4	_	22	0.8	23.84	175	51	98	-	-	-	-	-	-	-	-	-	-	-
13	44/F	11.2	2,89,000	0.9	14/18	6.9	3.6	_	23	0.9	22.14	182	48	99	-	-	-	-	-	-	-	-	-	-	-
14	47/M	12.6	2,54,000	0.7	16/21	7	3.2		20	0.8	23.86	178	47	92	-	-	-	-	-	-	-	-	-	-	-
15	42/F	11.3	3,14,000	0.8	14/22	7.2	3.8	_	18	0.7	24.67	185	49	98	-	-	-	-	-	-	-	-	-	-	-
16	38/F	11.7	2,86,000	1.1	17/19	6.8	3.7	_	21	0.8	25.87	188	47	99	-	-	-	-	-	-	-	-	-	-	-
17	28/M	13.2	2,58,000	0.9	18/22	7.3	3.9	_	20	0.9	26.16	178	46	96	-	-	-	-	-	-	-	-	-	-	-
18	43/M	12.8	2,96,000	1	15/21	6.9	3.6	_	16	0.8	25.78	168	49	98	-	-	-	-	-	-	-	-	-	-	-
19	46/M	12.4	2,78,000	0.7	18/21	6.6	3.8	_	21	0.9	24.76	174	48	93	-	-	-	-	-	-	-	-	-	-	-
20	44/M	11.6	2,46,000	0.8	17/22	7.1	3.6	_	23	0.7	24.34	168	48	94	-	-	-	-	-	-	-	-	-	-	-

avorites 🚖 🖉 Suggested Sites 👻 🖉 Web Slice Gallery 👻					
avorites Avorites Suggested Sites Callery Call	9		=en_us&session-id=ef7b8239be55ec6b40829bcfc053ea71#	🔻 🔒 😽 🗙 🔍 er	ntrusted Customized Web Search
mitin	Secure Search	👂 🔍 McAfee 🕜 🎽 🔻			
Class Homepage Class Homepage s is your class homepage. To submit to an assignment click on the "Submit" button to the right of the assignment name. If the Submit button is grayed out, no submissions can be made to the assignment. If resubmit allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, you be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8%	Favorites 🛛 👍 🙋 Suggested Sites 👻	🕘 Web Slice Gallery 🔻			
e is your class homepage. To submit to an assignment click on the "Submit" button to the right of the assignment name. If the Submit button is grayed out, no submissions can be made to the assignment. If resubmits allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, yo be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity Medical ① Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8% Resubmit View	urnitin			🟠 🔻 📓 👻 🖃	🛛 🖶 🔻 Page 🕶 Safety 👻 Tools 🕶
e is your class homepage. To submit to an assignment click on the "Submit" button to the right of the assignment name. If the Submit button is grayed out, no submissions can be made to the assignment. If resubmits allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, yo be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity Medical ① Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8% Resubmit View				4 100000	
e is your class homepage. To submit to an assignment click on the "Submit" button to the right of the assignment name. If the Submit button is grayed out, no submissions can be made to the assignment. If resubmits allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, yo be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity Medical ① Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8% Resubmit View					
allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, you be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity Medical Info Start 13-Nov-2013 12:50PM 8% Resubmit View			Class Homepage		
allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, you be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity ledical ① Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8% Resubmit View					
Illowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, you be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity edical () Due 31-Mar-2014 11:59PM 8% Resubmit View	in very along homenand. To submit to	an ancient aliak on the "Output" button	to the right of the appingment pages of the Cubmit button is any	ad aut an automicaiana ana ba mad	a to the enginement of secondariasis
be able to view the feedback left on your paper by clicking the "View" button. Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity edical ① Due 31-Mar-2014 11:59PM 8% Resubmit View					
Assignment Inbox: The Tamil Nadu Dr. M.G.R. Medical University Info Dates Similarity edical ① Due 31-Mar-2014 11:59PM 8% Resubmit View			Tto the assignment. To view the paper you have submitted, click	the view button. Once the assign	ment's post date has passed, you w
ledical (info Dates Similarity Start 13-Nov-2013 12:50PM Due 31-Mar-2014 11:59PM 8% Resubmit View					
edical ① Due 31-Mar-2014 11:59PM 8% Resubmit View		Assignment	Inbox: The Tamii Nadu Dr. M.G.R. Medical Universi	ty	
edical ① Due 31-Mar-2014 11:59PM 8% Resubmit View		Info	Dates	Similarity	
ledical 🕕 Due 31-Mar-2014 11:59PM 8% Resubmit View					
		•		8%	Decuberit Man
	edical	U			Resubmit View
Copyright © 1998 – 2014 iParadigms, LLC. All rights reserved.			Copyright ⊚ 1998 – 2014 iPeradigms, LLC. All rights reserved.		
Copyright © 1998 – 2014 iParadigms, LLC. All rights reserved. Usage Policy Privacy Pledge Helpdesk Research Resources		ų			
		U			
Usage Policy Privacy Pledge Helpdesk Research Resources		ų		Internet Protected Moc	le: On 🖓 🕶 🕄 100

