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                                   INTRODUCTION

Coronary artery disease remains the leading cause of mortality and morbidity. Earlier thought to 

be  a  disease  of  the  modern  world,  it  has  been  found  to  be  equally  or  even  more  prevalent  in 

underdeveloped  and  developing  countries1,2..This  disease  is,  unfortunately,  being  witnessed  in  the 

younger population also. It remains the most common single cause of mortality and morbidity in men 

below 65 years of age. Diastolic  dysfunction is the primary mechanism responsible for dyspnea in 

patients with heart failure, irrespective of the presence or severity of systolic dysfunction.

Left Ventricular Diastolic Function

             Left ventricular diastolic function is recognized as an important contributing factor in the 

pathophysiology of many common cardiovascular diseases.  The clinical  manifestations of coronary 

artery disease are often the result of abnormalities of left ventricular filling. Diastolic dysfunction may 

be present prior to, or concomitant with, systolic dysfunction. Although treatments are often aimed at 

improving  left  ventricular  contractile  performance,  they may conflict  with  appropriate  therapy for 

diastolic  abnormalities.  Recently,  attention  has  been  increasingly  directed  toward  the  diagnosis, 

evaluation, and treatment of diastolic dysfunction2,3Although catheterization measurements of diastolic 

performance remain the standard, these invasive parameters have proved technically challenging and 

tedious to acquire. In recent years, a large body of literature has accrued describing various Doppler 

echocardiographic techniques for assessing diastolic function. These methods have given new insight 

into the flow dynamics of the left ventricle, mitral valve, and pulmonary veins and have allowed a more 

practical noninvasive assessment of diastolic function. Several features of Doppler flow patterns have 

emerged as having important diagnostic and therapeutic implications. 

Physiology of Diastole

Definition

              Traditionally, diastole has been described as the portion of the cardiac cycle that begins with  



aortic  closure  (S2)  and  ends  with  mitral  closure  (S1).  Importantly,  this  definition  includes  the 

isovolumic relaxation phase. Normal diastolic function may be clinically defined as the ability of the 

left ventricle to accommodate an adequate filling volume to maintain cardiac output while operating at 

a low pressure. The initial diastolic event is myocardial relaxation, an active energy-dependent process 

that causes pressure to decrease rapidly in the LV after the end of contraction and during early diastole.

              The normal cycle of cardiac contraction and relaxation requires a precise, transient increase 

and  decrease  in  the  intracellular  concentration  of  calcium ions.  The  sarcoplasmic  reticulum helps 

orchestrate the movement of calcium during each contraction and each relaxation. The contraction of 

cardiac  muscle  is  initiated  by  the  cellular  action  potential  that  causes  the  opening  of  L-type 

sarcolemmal calcium channels through which calcium ions enter the cytosol. This influx of calcium 

ions results  in the release of more calcium ions from the adjacent  sarcoplasmic reticulum through 

ryanodine receptor channels, a process called calcium-induced calcium release.  These calcium ions 

bind to troponin C, which ultimately disinhibits the interaction of actin and myosin and results in the 

formation of cross-bridges. Myocardial relaxation is accomplished primarily by the removal of calcium 

ions  from troponin  C by an  enzyme in  the  sarcoplasmic  reticulum,  called  sarcoplasmic  reticulum 

calcium  adenosine  triphosphatase  (SERCA2),  and  the  sarcolemmal  sodium-calcium  exchanger.  In 

humans, approximately 75% of calcium ions are removed by SERCA2 and 25% by the sodium-calcium 

exchanger. The activity of SERCA2 is modulated by phospholamban, a protein located near SERCA2 in 

the  sarcoplasmic  reticulum.  Through  phosphorylation  by  protein  kinase  A  and  other  kinases, 

phospholamban enhances calcium ion uptake by SERCA2. Failure of the mechanisms of reuptake of 

calcium ions extruded during contraction can result in the slowing of relaxation or the inability of the 

cytosolic calcium concentration to return to normal diastolic levels. The latter causes diastolic calcium 

overload  and  incomplete  relaxation  that  includes  excessive  diastolic  tension  or  stiffening.  An 

experimental  model  of  senescence has  demonstrated  that  decreased  uptake of  calcium ions  by the 

sarcoplasmic reticulum during relaxation is associated with a decrease in the concentration and activity 



of SERCA2. More recently, SERCA2 levels were found to be greatly decreased in senescent human 

myocardium (14). This decrease was associated with impaired myocardial function at baseline, and 

further deterioration occurred during hypoxic conditions. Thus, a decrease in SERCA2 concentration 

and an associated decrease in uptake of calcium ions by the sarcoplasmic reticulum are thought to 

influence diastolic dysfunction. Despite normal systolic function, the vulnerability of calcium reuptake 

is a contributing factor to abnormal LV relaxation early in cardiac disease.

Phases of Diastole

              For descriptive purposes, the diastolic period can be divided into four stages after systolic 

ejection is complete and left ventricular pressure falls below aortic pressure, the aortic valve closes. 

This marks the beginning of isovolumic relaxation, which subsequently ends at mitral valve opening. 

During  this  interval,  pressure  continues  to  fall  at  a  rapid  rate,  while  ventricular  volume  remains 

constant. Events occurring during this phase have been attributed mainly to myocardial relaxation and 

have been shown to be an energy-requiring process. At this time, myofibrils return to their resting state 

from the  contracted  state.  The  left  ventricular  cavity  changes  in  geometry,  while  volume remains 

constant3,4.

Invasive Measures of Diastolic Function

             From the description just given, it should be evident that no single parameter can be derived 

that will adequately describe diastolic performance. Left ventricular filling is the result of a variety of 

complex forces, including myocardial relaxation, ventricular suction, ventricular stiffness, viscoelastic 

properties  of  the  myocardium,  filling  of  the  coronary  arteries,  atrial  contraction,  ventricular 

interdependence,  and  pericardial  restraint.  To  understand  the  role  of  Doppler  echocardiographic 

information  in  assessing  diastolic  function,  it  is  necessary to  have  a  working  knowledge  of  other 

conventional methods.5



       Schematic of intracardiac pressures and volumes to define the four stages of diastole. The periods 

of isovolumic relaxation, rapid filling, slow filling (diastasis), and atrial filling are shown.  AVC, aortic 

valve closure; AVO, aortic valve opening; LV, left ventricle; MVC, mitral valve closure; MVO, mitral 

valve opening.

(From Zile M: Mod Concepts Cardiovasc Dis 1989;58:67.)

Traditionally, catheterization-based methods for studying diastolic events have focused on evaluation 

of the relationship between left ventricular pressure and volume. Because of the dynamic nature of 



diastole, measurements have been derived to describe the function of the ventricle during its isolated 

phases. The indices of function have centered on the evaluation of relaxation, filling, or compliance. As 

shown, these measurements are not interchangeable and, like Doppler descriptors, describe different 

phenomena during the sequential phases of diastole. They may also be variably influenced by changes 

in factors such as load or heart rate. Hemodynamic indices describing early diastolic events include 

peak -dP/dt, the time constant of isovolumic left ventricular pressure decay or tau (τ), the isovolumic 

relaxation time (IVRT), and the half-time of ventricular pressure decline (T1/2 ).6,7

 Chamber Stiffness

          Catheterization methods have also been derived for pressure-volume events during filling. The 

assessment  of  diastolic  mechanics  in  the  catheterization  laboratory  requires  highly  accurate 

determinations of both pressure and volume. The simultaneous recording of these values allows the 

calculation of compliance as the rate of change in volume per rate of change in pressure, dP/dt. The 

reciprocal of this value, dP/dV (called chamber stiffness), is usually derived by obtaining pressures at 

different volumes, measured at end-diastole. Since this relationship is exponential for the left ventricle, 

the rate of change is calculated from a single point and represents the instantaneous slope of the tangent 

to this curve. Chamber stiffness values are preload dependent, so that an increase in volume will result 

in  an  increase  in  chamber  stiffness.  However,  when  dP/dV  is  plotted  against  pressure,  a  linear 

relationship exists  for  a given ventricle.  The slope of  the line describing chamber  stiffness  versus 

pressure is called the modulus of chamber stiffness, or Kv. Although Kv is relatively independent of 

pressure  and  volume,  comparison  between  ventricles  of  different  volume must  be  normalized  for 

chamber  stiffness  (i.e.,  VdP/dV).  The  reciprocal  dV/VdP represents  specific  chamber  compliance. 

Normal values for Kv range from 0.010 to 0.025, and dV/VdP data generally fall between 0.015 and 

0.045.  Although often difficult  to  acquire,  these  values  are  descriptive  of  events  occurring in  late 

diastole and define the passive components of ventricular filling. The values have not been validated 

for acute conditions, making comparisons among patients somewhat impractical.13.14



Radionuclide Descriptors of Filling

              Contrast ventriculography and radionuclide angiography have been used to describe the 

volume changes that occur with ventricular filling. When volumes are calculated and plotted over time, 

the  resultant  curve  can  readily  define  the  rapid  filling,  diastasis,  and  atrial  contraction  phases  of 

diastole. The first derivative of this time-activity curve (dV/dt) describes the peak filling rate and time 

to peak filling rate. Other available measurements include the atrial filling fraction and early or rapid 

filling fraction. In summary, there are a number of time-honored methods for describing left ventricular 

diastolic function.15, 16 Catheterization methods have the advantage of combining pressures with volume 

but are tedious, often define only a single point in time, and are load dependent. Although these elegant 

indices can provide significant insight regarding the physiology of ventricular diastole, their practical 

application to individual patients remains limited.

Doppler Echocardiographic Indices of Diastolic Function

Isovolumic Relaxation Time

           Dynamic left ventricular relaxation begins at the time of peak systolic pressure. The 

process continues as ventricular pressure falls below aortic pressure, ejection ceases, and 

the valve closes. Left ventricular pressure continues to fall even as volume remains constant 

during  the  isovolumic  phase  of  diastole  but  prior  to  mitral  valve  opening.  M-mode 

echocardiography  with  simultaneous  phonocardiography  traditionally  has  been  used  to 

assess the length of this period between aortic closure and mitral opening. With the aortic 

closure sound (phono) recorded on a separate channel from but with the same time sweep as 

mitral  leaflet  opening  (M-mode  echo),  the  aortic  closure-mitral  opening  time  interval 

(representing  IVRT)  can be readily  measured.  The  IVRT has been  described for  normal 

subjects  and  for  subjects  in  ischemic  heart  disease.  Generally,  as  relaxation  becomes 

impaired,  the IVRT is  prolonged,  with  normal  values  approximating 65  ± 20  msec.  More 



recently, the phonocardiographic method has been replaced by a continuous wave Doppler 

echocardiographic method. In this technique, the continuous wave beam is directed from the 

apical five-chamber view across the region between the aortic outflow tract and the mitral 

inflow tract. The Doppler echocardiographic spectrum in this position includes aortic valve 

flow with valve closure and the onset of mitral inflow, so that the aortic closure-mitral opening 

interval  can  be  determined.17,18 Comparisons  of  Doppler  IVRT  with  catheterization 

measurements  of  this  time  period  have  shown  reasonable  correlations.  Notably,  nuclear 

scintigraphy  conventionally  includes  the  IVRT  in  the  early  filling  phase,  since  the 

volume/count  technique is  unable to  distinguish isovolumic changes.  The IVRT has been 

demonstrated to be shortened in restrictive diastolic dysfunction, probably because of high left 

atrial pressures resulting in early mitral opening. However, measurement of the IVRT as the 

sole  predictor  of  diastolic  function  is  limited,  since  no  information  on  ventricular  filling  is 

provided.

Transmitral Flow

The use of pulsed Doppler echocardiography to describe events of left ventricular filling 

is  based  on  the  assumption  that  transmitral  blood  flow  velocities  are  representative  of 

volumetric flow. According to the law of conservation of mass, true volumetric transmitral flow 

is equal to the velocity of flow times the area of the orifice (F = A × V). Thus, the dynamic 

nature of the mitral orifice during diastole plays a role in producing the flow profile. Although 

the mitral cross-sectional area remains relatively constant in size at the annulus level, the diastolic 

area of flow constantly changes at the leaflet tips. The Doppler velocity profile, therefore, does not 

represent  a  direct  recording  of  volumetric  flow but  is  proportional  to  the atrioventricular  pressure 

gradient, according to the modified Bernoulli equation: P1 − P2 = 4(V2 ), one of the main determinants 

of transvalvular blood flow. True volumetric flow rates can be derived when combined with valve area 



measurements, although a significant benefit of this step in assessing diastolic function has not been 

well established. The two phases of forward flow in early diastole and late diastole can be readily 

identified by their19,20 triangular shape and are separated by a brief period of diastasis. The early phase, 

or E wave, represents flow during the rapid filling phase, while the second peak, or A wave, represents 

transmitral flow occurring as a result of atrial contraction. The E and A waves are two well-defined 

peaks within the spectrum and usually display a linear upslope and downslope that can be measured as 

acceleration  and  deceleration,  respectively,  in  centimeters  per  second.  Other  conventional 

measurements include the peak E and A velocities, as well as the integrated areas within each phase, Ei 

and Ai. At slower heart rates, the E and A waves are separated by low, flat velocities during diastasis. 

These velocities are more readily recorded using low wall filter settings and sweep speeds of 50 or 100 

mm per second. Occasionally, a separate distinct and positive inflow wave is seen immediately after 

the E wave; this wave has been designated the  L wave.  It is thought to represent pulmonary venous 

flow passing through the left atrium, which acts as a conduit during this period. Studies performed to 

compare transmitral velocities with ventricular cineangiography have found a significant correlation for 

both early and late phases.21,22

        Studies by Friedman et al and Spirito et al demonstrated similar findings for Doppler versus 

radionuclide techniques. However, filling time intervals between Doppler and these methods have not 

correlated well,  in part  because of the inclusion of IVRT by nuclear methods but not by Doppler 

echocardiography. Normative data from Doppler transmitral velocities have been reported mainly as 

control data for studies of various disease states A normal peak E wave velocity is in the range of 

70 to 100 cm per second, with a peak A wave of 45 to 70 cm per second, resulting in an E/A 

ratio of 1.0 to 1.5. The normal deceleration time (DT) for the E wave is 160 to 220 msec . The 

recording methods and the populations sampled vary considerably among centers. Therefore, 

normative data should be established for each laboratory using standard examination and 

measurement  techniques  so  that  individual  subjects  can  be  evaluated  against  control 



subjects.23,24

Measurement of isovolumic relaxation time by continuous wave Doppler with the beam directed 
between the aortic outflow tract and mitral inflow

Abnormal Transmitral Flow Patterns

            Although the ranges for normal values are wide and Doppler parameters are affected 

by  a  variety  of  hemodynamic  and  physiologic  factors,  patients  with  proven  diastolic 

dysfunction have been shown to demonstrate characteristic abnormalities in the spectral flow 

profile. Rarely is a single finding diagnostic of a specific disease process, but constellations of 

abnormalities tend to be present for a given pathophysiologic condition. Thus, three distinct 

clinical patterns of abnormal transmitral flow have been described. The first pattern consists 

of a prolonged IVRT and deceleration time with a reduced peak E and an increased peak A 

wave  velocity.  These  findings  have  been  associated  with  normal  early  diastolic  filling 

pressures and are attributed to  impaired left  ventricular  relaxation25,26.  The delay in  relaxation 

directly lengthens the IVRT and produces a smaller atrioventricular gradient in early diastole. 

The effect is a reduced E wave velocity with a more gradual downslope (or prolonged deceleration 

time). The increased peak A wave velocity and Ai are likely the result of diminished early diastolic 

flow with a higher left atrial residual volume at the time of atrial contraction. A second transmitral flow 



pattern has been termed restrictive. The characteristics of this pattern are a short (or normal) IVRT and 

reduced deceleration  time,  along with increased E wave and diminished A wave velocities.  Thus, 

filling is predominantly shifted to the rapid filling phase in early diastole and is thought to be due to a 

high  cross-over  pressure  at  the  time  of  mitral  valve  opening  in  the  presence  of  a  relatively 

nondistensible  left  ventricle.  The result  is  a  high early velocity of  transmitral  flow but with rapid 

equilibration of the atrioventricular pressures and an abrupt cessation of flow (short deceleration time). 

Late diastole is characterized by diminished atrial transport caused by high left ventricular pressures, 

poor atrial function, or both. A third pattern has been termed normalized or pseudonormal.This pattern 

has characteristics of normal transmitral velocities but results from counterbalancing influences of both 

abnormal relaxation and restrictive forces. This pattern represents an intermediate pattern between the 

two ends of the pathologic spectrum and may be viewed as a transition from one pattern to another. An 

example of a pseudonormal pattern is shown. 27,28 The pseudonormal flow pattern shows nearly equal E 

and A wave velocities, with a deceleration time that is either normal or shortened. The fact that flow 

patterns can be seen to change over time within individual patients has caused concern that transmitral 

doppler  tracings  alone  may  not  be  used  to  identify  diastolic  dysfunction.  Indeed,  it  is  currently 

recognized that patients with a pattern of impaired relaxation may convert to "normal" (pseudonormal) 

as a result of increased mitral regurgitation, hypervolemia, or increased ventricular stiffness resulting 

from progression of the underlying disease. These physiologic changes can all potentially produce an 

increased E wave and more rapid deceleration slope. Similarly, the restrictive pattern may be affected 

by lowering preload. The ability of Doppler flow patterns to mutate as a result of changes in load 

compromises the use of these recordings from a single examination to assess diastolic function. Thus, 

serial studies, along with available clinical or direct hemodynamic information, may be beneficial in 

sorting out findings in individual patients. In addition, studies of Doppler recordings of pulmonary vein 

flow have contributed to knowledge in this area.



Physiologic Factors Affecting Transmitral Flow

             A number of physiologic variables have been shown to influence the pattern of flow across the 

mitral valve during diastole; these include age, heart rate, heart rhythm, loading conditions, systolic 

function, atrial function, and phases of respiration. The complex interplay of these parameters results in 

the final spectral Doppler echocardiographic signal. It is therefore important to consider each of these 

factors to interpret the clinical relevance of the Doppler echocardiographic findings.

Age

       Age has been found to be an important determinant of the transmitral flow profile. In studies of 

normal  populations,  the  peak  E  wave  and  integrated  E  wave  (Ei)  velocities  have  been  shown to 

decrease with advancing age from 20 to 75 years. The peak A and Ai velocities increase with age, 

resulting  in  a  decreased  E/A  ratio.  Furthermore,  the  IVRT  and  deceleration  time  have  been 

demonstrated  to  be  progressively  longer  with  age.  Thus,  Doppler  examination  of  normal,  young 



patients may resemble the restrictive pattern, whereas patients with advanced age often show findings 

compatible  with  impaired  relaxation.  It  has  been  proposed  that  these  changes  are  due  to  the 

development of left ventricular hypertrophy, since wall thickness and mass are known to increase over 

time  in  the  normal  population.  An  increase  in  hypertrophyand  myocardial  stiffness  could  lead  to 

delayed relaxation and result in prolonged IVRT, decreased E wave, and longer deceleration time. This 

development  of  a  "physiologic  state  of  hypertrophy"  remains  hypothetical,  since  Doppler 

echocardiographic characteristics  were not dependent on blood pressure or left  ventricular mass in 

these studies.29,30

Heart Rate

Changes in heart rate affect the resulting transmitral flow pattern by several mechanisms. As 

heart  rate  increases  and the diastolic  interval  is  shortened,  the  A wave begins  to  encroach on the 

preceding E wave. Studies of patients with dual-chamber pacemakers have shown a decreased E wave 

peak velocity and Ei, with concomitant increases in A waves with heart rates up to 90 beats per minute. 

The increase in atrial  contribution may be due to a reflex increase in myocardial  contractility  (the 

Bowditch phenomenon); a rise in left atrial pressure; or, more simply, the result of higher atrial volume 

at the onset of atrial systole due to elimination of diastasis. Similarly, in normal volunteers with atrial 

pacing via a transesophageal electrode, the peak A wave was seen to increase by a mean value of 8 cm 

per second for each increment of 10 beats per minute in heart rate. Most studies have shown that at 

rates  greater  than  100  beats  per  minute,  the  E and  A waves  become  fused,  making  conventional 

measurements of peak velocities, velocity integrals, and acceleration or deceleration unobtainable in 

most cases.31,32

Heart Rhythm

Changes in atrioventricular synchrony due to alterations in the PR interval, atrial fibrillation, or 

ectopic rhythms can cause dramatic changes in Doppler transmitral flow. A prolongation of the PR 

interval usually results in a reduced E wave component, possibly due to more complete atrial emptying 



and a reduced diastolic time interval, especially during the rapid filling period. Atrial ectopic rhythms 

and  heart  block  may  provide  a  variety  of  E  and  A  wave  profiles  depending  on  the  timing  of 

atrioventricular dyssynchrony. Atrial fibrillation results in an absence of organized A wave velocities, 

with variable E waves, depending on the length of the preceding RR interval.

Loading Conditions

Loading conditions have a substantial impact on the Doppler transmitral flow pattern. The most 

important variable appears to be the left ventricular preload, which can have a profound effect on 

E wave velocities.

A study by  Choong et  al  first  demonstrated that the administration of  nitroglycerin 

reduced the peak E, Ei, and deceleration rates of the rapid filling phase without significant 

changes in A wave parameters. Most importantly, these changes were noted to resemble the 

pattern of impaired relaxation, even though there was no hemodynamic evidence for diastolic 

dysfunction. The mechanism for these changes is felt to be related to a decreased left atrium

—left ventricle pressure gradient at the time of mitral valve opening ("cross-over pressure"), 

which results in lower E wave velocities. Other studies using a tilt table or lower body negative 

pressure have substantiated these findings. Of all hemodynamic parameters evaluated, left 

atrial pressure was the most significant determinant of peak E wave values.33,34

Systolic Function

Left ventricular systolic function also affects the transmitral flow rate during the rapid filling 

phase. Studies have shown that left ventricular end-systolic volume is indirectly correlated with peak E 

wave velocity. Thus, in the presence of systolic dysfunction or increased afterload, the early diastolic 

velocities can be expected to be reduced, with deceleration time prolonged. These important studies 



make it clear that one must take volume status and loading conditions into account before classifying 

patients into categories of diastolic dysfunction. Obviously, patients evaluated in an echocardiographic 

laboratory may be subject to extremes of load and volume due either to the underlying disease process 

or to treatment with vasoactive drugs. Careful consideration of these circumstances must be given to 

individual patients during analysis of the Doppler data.35

Atrial Function

The size and functional status of the left atrium itself may contribute to changes in the Doppler 

transmitral flow profile. For example, it has been noted that the reduced atrial contractility (or "atrial 

stunning")  that  occurs  after  cardioversion  of  patients  with  atrial  fibrillation  or  flutter  results  in  a 

reduced peak A-wave velocity. Thus, despite restoration of sinus rhythm, the atrial transport function 

(and A wave component) of diastole may remain impaired for weeks after cardioversion. Theoretically, 

any acute process affecting atrial function (e.g., inflammation, scarring, or infarction) could produce 

similar abnormalities in transmitral flow.

Respiration

The physiologic  intrathoracic  pressure changes  that  occur  during  normal  breathing  produce 

minor  changes  in  transmitral  flow.  As a  result  of  negative  pressures  and,  consequently,  enhanced 

peripheral  venous  return—developed  during  inspiration,  right  heart  and  transtricuspid  flows 

predominate37,38. Concurrently, the transmitral velocity spectrum yields reduced peak E wave velocities 

in the range of 5% to 10%. Since little or no change is seen in the corresponding A wave, the E/A ratio 

may fall slightly under that seen in normal circumstances. These changes are compatible with known 

physiologic reduction of left ventricular preload during inspiration. However, in situations of acute 

right heart strain or pericardial tamponade, the effect of respiration on transmitral flow has been shown 

to be much more dramatic. To minimize respiratory changes, most laboratories record the transmitral 

spectral Doppler echocardiogram with the patient in held, shallow endexpiration.

Technical Considerations of Transmitral Flow Measurements



Two-Dimensional Imaging Plane

Doppler  recordings  of  transmitral  flow  must  be  performed  in  a  standardized  fashion  for 

consistency.  Since  the  Doppler  equation  includes  a  term  for  angle  of  incidence  (cos  theta),  the 

technique for recording transmitral  flow velocities is  optimally performed from the apical  window 

(four-chamber,  two-chamber,  or  long-axis  views).  Most  laboratories  use  the  four-chamber  view 

because of its orthogonal relationship to the major diameter of the mitral annulus.39

Pulsed Wave versus Continuous Wave Doppler

Because of its superior temporal and range resolution, pulsed wave Doppler echocardiography 

is the preferred technique for recording transmitral flow. Although the continuous wave method may 

ensure that the highest velocities are recorded, these signals may arise from other locations along the 

interrogating beam path (i.e., from aortic insufficiency) rather than via diastolic transmitral flow. In 

addition, the pulsed wave signal provides a "cleaner" outer border that readily lends itself to tracing 

peak velocities and slopes. However, the continuous wave Doppler technique is required for obtaining 

the IVRT, as previously described.40

Sample Site

            Studies in the literature differ according to optimal location of the pulsed wave sample volume.  

Some  investigators  have  recommended  placing  the  sample  volume  near  the  center  of  the  mitral 

annulus, just on the ventricular side, using two-dimensional imaging for positioning. This scheme has 

the advantage of being more reproducible among patient studies and providing a better evaluation of 

the atrial component. Recordings made between the mitral leaflet tips yield higher velocities of flow 

and a better  assessment  of  the rapid filling phase.  Since no clear  consensus currently exists,  each 

laboratory must establish a protocol for recording and analysis, as the spectral profiles often differ at 

these location, and published studies must be read carefully if the methods are to be reproduced. Flow 

through the normal mitral orifice with normal cardiac output remains essentially laminar and has a 

blunt  profile.  Thus,  the border  of  the pulsed  wave velocity spectrum generally exhibits  very little 



spectral  dispersion,  since at  any given instant the red cell  targets  within the region of interest  are 

moving at nearly the same speed and direction. However, the border does show a finite width. The 

darkest portion of this band represents the modal velocity and has been suggested as the best location 

for tracing or measuring the spectrum, as it should be less susceptible to changes in gain.41,42

E and A Wave

             At slower heart rates, the early (E) and late (A) contributions to left ventricular filling can be 

readily identified, as well as the lower velocities occurring during diastasis (if wall filters are kept low). 

However, at heart rates above 100 beats per minute, the individual E and A waves often become fused, 

making measurements of Ei and Ai difficult. At higher heart rates (around 130 beats per minute), peak 

velocities may not be readily discriminated and appear as a single large wave . Various approaches 

have been taken to this problem. For example, the E and A waves can be measured by extrapolating the 

descending  and  ascending  slopes,  respectively,  through  the  merged  portion  of  velocity  spectrum. 

Another  approach  involves  dropping  a  perpendicular  line  from  the  point  of  convergence.  Our 

experience suggests that integrated time velocity values may be less reliable in this setting and that 

perhaps only peak velocity values should be used, since these usually remain distinctly visible. The E 

wave deceleration time can usually be obtained by extrapolating the visible portions of the downslope 

to the baseline. If Ei and Ai are to be measured, a convention should be adopted for the laboratory. It 

should  be  noted  that  use  of  these  different  methods  may account  for  differences  in  time-velocity 

integrals and time intervals between separate examinations and centers.

Diastasis

The velocities recorded between the E and A waves represent the ventricular filling that occurs 

during diastasis. Normally these velocities are low and represent a very small contribution to overall 

volume of flow. Indeed, if wall filters are increased to eliminate noise around the baseline, the velocity 

spectrum during the period may be completely eliminated. Since this portion of the Doppler spectrum 

may be helpful in understanding pulmonary vein flows, the wall filters should be adjusted as low 



as possible to eliminate noise and yet preserve the outer border of the spectrum during this 

time period. 

Deceleration Slope versus Deceleration Time

Measurements of the descending limb of the transmitral E wave have been reported in 

terms of both deceleration slope (cm per second squared) and time (msec). The slope is 

defined by the rate of decline from the peak velocity, whereas deceleration time describes the 

time  interval  between  peak  velocity  and  the  point  of  intercept  of  the  decay  slope  (or 

extrapolated slope) with the baseline. Although these parameters have both been used to 

describe relaxation events in early diastole, they are not equivalent.43 The deceleration slope 

is influenced by and directly related to peak E velocity, whereas deceleration time has the 

advantage of being more independent of the E velocity.

Pulmonary Vein Flow

Normal Patterns

Doppler  echocardiographic  recordings of  flow within  the pulmonary venous system 

have been obtained using both transthoracic and transesophageal windows.These spectral 

patterns  have  yielded  important  insight  into  the  physiology  of  left  ventricular  filling  and 

diastolic function. The pattern of flow is largely determined by transmitral flow and left atrial 

function. The pattern consists of two forward waves and one reverse (below the baseline) 

wave. One forward wave occurs during systole (S) and coincides with left  atrial  relaxation 

immediately  after  atrial  contraction.  The  systolic  wave  occasionally  demonstrates  two  separate 

components  at  slow heart  rates;  these may be distinguished by a  notch  in  the  upslope.  The early 

component (SE) is thought to result from atrial relaxation, and the late systolic wave (SL) has been 

described as originating from movement of the mitral annulus toward the apex. The other forward wave 

occurs during diastole (D) and coincides with the early transmitral flow and ventricular filling but is 

delayed by approximately 50 msec. In this context, the diastolic flow can be viewed as produced by 



ventricular  relaxation,  resulting  in  forward  pulmonary  vein  flow,  with  the  left  atrium acting  as  a 

conduit  after  mitral  valve opening.  With  short  RR intervals,  the  systolic  and  diastolic  waves  may 

merge,  resulting  in  a  single  forward-flow  wave.  Thus,  depending  on  heart  rate  and  rhythm,  the 

pulmonary vein velocities above the baseline may be recorded as monophasic, biphasic, or triphasic. 

Reverse flow can often be recorded as a small, brief velocity signal below the baseline during atrial 

contraction (just after the P wave). This wave has been variously designated the  pulmonary vein A 

(PVa) or atrial reversal (Ar) wave and represents retrograde pulmonary vein flow. It is usually larger 

when the atrial afterload is high from left ventricular hypertrophy or restrictive/constrictive processes. 

Some workers have termed the systolic and diastolic forward waves as  J and  K waves  or  X  and  Y 

waves, respectively. Although labeling of the pulmonary vein velocity has not yet been standardized as 

for transmitral flow, most recent investigators have used the S and D designations. This format has the 

advantage of being readily associated with timing within the cardiac cycle.  However,  the J and K 

terminology is more easily associated with the L wave of transmitral flow during diastasis and thus is 

preferred in some laboratories. Other authors have named these as X and Y waves to correspond to the 

x and y descent of the pulmonary capillary wedge pressure tracings. In this scheme, the atrial reversal 

velocity is called the Z wave.44

Measurements

         As with the transmitral flow, the conventional assessment of pulmonary vein velocity waves has 

included the measurement of peak velocities, as well as the time velocity integral for S (Si ) and D 

(Di ). The ratio of the systolic to diastolic components has also been described by peak S/peak D or 

expressed as the systolic fraction (percent) 

by the following equation

       



         The peak Ar velocity, velocity time integral, and duration (Adur, in milliseconds) have also been 

defined. Fewer studies of normative data are available for pulmonary vein flow than for transmitral 

Doppler  data.  However,  as  indicated,  some  of  these  investigations  were  performed  in  patients 

undergoing catheterization or elective operations and thus may not reflect values obtained during a 

routine echocardiographic examination. In general, the S wave is predominant in normal patients, with 

peak velocities ranging from approximately 40 to 60 (±15) cm per second and time velocity integrals of 

15 ± 5 cm. The SE component is usually smaller than SL, with peak velocities of 30 to 40 (±10) cm per 

second. The diastolic wave has been measured in the range of 35 to 45 (±15) cm per second with a 

velocity integral of around 7.5 to 9.5 (±4) cm. The ratio of peak S to peak D has been described in 

normal subjects as 1.3 to 1.5 (±0.3), with a systolic fraction of 60 to 68 (±10%). The peak A wave is 

normally the smallest of the velocity components at -22 to -32 (±10) cm per second, with integrated 

values of 2 ± 1 cm. The Ar duration has been found to be helpful in the clinical interpretation of 

pulmonary vein flow and is approximately 137 ± 31 msec45,46.

Normal Doppler pulmonary vein flow tracings using
transthoracic techniques



Normal Doppler pulmonary vein flow tracings using
Transesophageal techniques

Abnormal Patterns of Pulmonary Vein Flow

The alterations  in transmitral  waveforms seen in  various cardiac disease states and loading 

conditions and with aging have also been described for pulmonary vein velocities. Since pulmonary 

vein tracings provide additional information about atrial filling and function, these patterns have been 

used  in  conjunction  with  transmitral  flows  to  better  define  abnormalities  of  ventricular  filling.  In 

patients with impaired left ventricular relaxation, the pulmonary vein flow during early diastole (D) 

becomes  smaller,  corresponding to  decreased E wave velocities  at  the  transmitral  site,  both  being 

related to a slower rate of ventricular relaxation. As a result, pulmonary vein flow is shifted toward the 

systolic phase (S) and results in a in this category often have had progressive increases in left atrial 

volume  and  pressure  due  to  decreasing  left  ventricular  compliance  over  time.  Because  atrial 

compliance often becomes gradually reduced in this setting, the pulmonary venous flow during systole 

(S)  is  reduced  owing  to  decreased  atrial  relaxation.  Thus,  the  diastolic  (D)  wave  may  become 

predominant, with Si /Di less than 1 and systolic fraction less than 50%. A characteristic feature to this 

pattern is also a larger Ar wave, reflecting reduced ventricular compliance.47,48

The features of pulmonary vein velocity waveforms in patients with restrictive physiology are a 

small S wave and a large D with an abrupt cessation of flow. The Ar wave size and duration are 



variable  depending  on  the  state  of  left  atrial  function.  If  left  atrial  contractility  is  preserved,  the 

pulmonary vein A may be very large and prolonged. However, if left atrial failure has occurred due to 

chronic dilation, the Ar may become diminutive.

Three patterns of pulmonary venous flow are presented: (A) the pattern of impaired relaxation 
with a low velocity D wave; (B) this is pseudonormal; and (C) is an example of the restrictive pattern with 
a high velocity D wave and low velocity S wave.
Estimation of Left Atrial Pressure

A relationship between pulmonary venous flow variables and mean left atrial or left ventricular 

diastolic pressures has been described.

Kuecherer et al compared pulmonary vein flow variables as well as mitral inflow with mean 

left  atrial  pressure  (LAP)  in  47  consecutive  patients  undergoing  cardiovascular  surgery  and 

transesophageal echocardiography. The pulmonary vein systolic fraction correlated best with LAP (r = 

-.88; SEE = 3.5 mm Hg). The relationship between the two parameters was described by the following 

equation: 

                              LAP = 35 − 0.39 × (systolic fraction)



              The authors believed that the shift from predominant systolic flow to diastolic flow seen with 

rising  left  atrial  pressure  was  most  likely  due  to  decreased  left  atrial  compliance.  Retrospective 

evaluation of the data also suggested that a systolic fraction less than 55% was 91% sensitive and 87% 

specific for predicting a mean left atrial pressure of 15 mm Hg or greater.49 

A  similar  study  using  transthoracic  pulmonary  venous  flow  recordings  was  reported  by 

Brunazzi et  al  in  116  consecutive  patients  undergoing  elective  catheterization  that  included 

measurements of pulmonary capillary wedge pressures (PCWP). The systolic fraction was again noted 

to correlate best, with r = -.88 and SEE = 3.1 mm Hg. A success rate of 83% was reported in recording 

pulmonary vein flow from the transthoracic window, and the authors suggested that a systolic fraction 

of less than 36% percent predicted a mean PCWP of 18 or greater, with a 90% sensitivity and 85% 

specificity.

Rossvoll and Hatle have demonstrated a strong relationship between systolic fraction and the 

pre-A wave left ventricular end-diastolic pressure (LVEDP). A systolic fraction less than 40% was 

predictive  of  LVEDP greater  than  18  mm Hg (r  = -.70).  These  investigators  also  found  that  the 

pulmonary A wave duration (Adur) was frequently prolonged, whereas the transmitral A wave was 

significantly shortened in patients with increased LVEDP. The difference ([PV−Adur ] − [M−Adur ]) 

in milliseconds correlated best with LVEDP (r  = -.68). A longer duration of the pulmonary vein A 

wave than transmitral A wave predicted LVEDP greater than 15 mm Hg with a sensitivity of 85% and 

specificity  of  79%.  This  study was  also  recorded  using  the  transthoracic  approach  in  45  patients 

undergoing diagnostic catheterization.50

Factors Affecting Pulmonary Vein Flow

As with transmitral recordings, a number of physiologic factors may affect the pulmonary vein 

Doppler echocardiographic velocity profile.

Age

Studies  of  normal  subjects  with  a  wide  age  range  have  demonstrated  that  the  diastolic 



components  are  diminished  and  the  systolic  velocities  are  increased  with  advancing  age.  A  trend 

toward a larger atrial flow reversal wave has also been noted, perhaps reflecting abnormalities of left 

ventricular diastolic performance as part of the normal aging process.

Loading Conditions

          The volume of pulmonary venous flow occurring during systole is dependent on preload—that is, 

with preserved myocardial contractility and increasing preload (i.e., volume loading), the atrial preload 

will also increase, resulting in increased pulmonary venous systolic flow. This increase in S and S/D 

has been observed in human studies in the operating room. A direct correlation between both systolic 

and diastolic forward flows and cardiac output has also been found.

The effect  of afterload was studied by Nishimura et  al.  Patients given phenylephrine in the 

operating room exhibited variable responses in pulmonary vein flow patterns. Those with a dramatic 

rise in PCWP (>50%) showed an increase in diastolic pulmonary vein velocities, and a middiastolic 

flow wave (L) became apparent.

Mitral Regurgitation

Changes  in  transmitral  and pulmonary vein  velocity profiles  have  been  found to  be useful 

clinical markers for the estimation of severity of mitral insufficiency. 

             Castello et al found a significantly lower peak S/D velocity ratio (0.4 ± 1.3) in patients with 

moderate to severe regurgitation compared with patients with less regurgitation (1.4 ± 0.5, P < .0001). 

This trend toward "systolic blunting" was more remarkable as regurgitation worsened. In patients with 

severe mitral regurgitation, the systolic flow was reversed (retrograde) into the pulmonary veins. The 

presence of reversed systolic flow was identified as a sensitive (90%) and specific (100%) marker for 

severe regurgitation in the 75 patients evaluated.51

Similar results were reported by  Klein et  al.  An equally high sensitivity and specificity for 

reversed systolic flow was noted, and the pattern subsequently returned to normal after operative repair 

in 22 patients. Thus, significant mitral  regurgitation may alter the phasic appearance of pulmonary 



venous flow, with a progressive increase in the diastolic (D) wave component for increasing grades of 

insufficiency.

Technical Considerations in Pulmonary Vein Flow Recordings

Transesophageal versus Transthoracic Methods

The pulmonary vein flow spectrum is generally of superior quality when recorded from the 

transesophageal  window.  The transesophageal  window has  been  described  as  especially  helpful  in 

recording reversed flow during atrial contraction (Ar) and in separating the two components of forward 

systolic flow (SE and SL) Indeed, the transthoracic method may be limited in these areas, yielding Ar 

recordings  of  acceptable  quality  in  the  minority  of  patients  studied.  When  the  transthoracic  four-

chamber view is used, the right upper (medial) pulmonary vein is recommended for sampling. Spectral 

data from this site correlate well with velocities recorded from the same vein using the transesophageal 

technique. The use of color flow or newly available echocardiographic contrast agents may help in 

identifying the location of the pulmonary vein orifice and in improving Doppler signal intensity from 

transthoracic studies. Although the esophageal window normally allows imaging of all four pulmonary 

veins, the upper veins are preferred for sampling because they provide a more parallel flow angle for 

Doppler interrogation. The advantages of the transesophageal study must be weighed against those of 

patient discomfort to determine the need for this procedure in each clinical instance.

Sample Position

         The ideal position for sampling pulmonary vein velocities and analyzing waveforms is 0.5 to 1 

cm from the pulmonary vein orifice into the left atrium. Sampling at greater depths results in spectral 

broadening, decreased diastolic flow velocities, and loss of phasic characteristics of systolic flow.

Pulmonary Vein Size

           One potential factor affecting reproducibility of pulmonary vein inflow velocities is variation of 



the vein orifice size during the cardiac cycle. Studies of vein dimensions and flow humans have not 

demonstrated this to be a substantial factor under physiologic conditions. However, in comparisons 

between mitral and pulmonary vein flow velocities, this factor must certainly be considered.52

Clinical Applications of Doppler Techniques for Assessing Diastolic Function

Transmitral and Pulmonary Vein Recordings: A Combined Approach

From the preceding discussion, it should be clear that no single noninvasive or catheterization-

derived parameter can be used to describe the complex nature of diastolic function. As with systolic 

measures  of  performance,  there  are  general  descriptors  (e.g.,  ejection  fraction)  and  more  specific 

measurements (e.g., Vmax , dP/dt, and mean velocity of circumferential fiber shortening [Vcf ]) that 

define the process of contractility in greater detail. Each measurement must be evaluated in the context 

of the clinical situation so that modifiers such as age, loading conditions, and volume status can be 

included. Since the 1980s, diastolic dysfunction has become increasingly recognized as an important 

part  of many clinical  syndromes.Consequently,Doppler  echocardiography has been recognized as a 

readily available tool for evaluating left ventricular filling and has given the clinician a method for 

better  understanding  these  events.  However,  it  must  be  recognized  that  the  diagnosis  of  diastolic 

abnormalities is not routine and requires significant effort and knowledge, even for the experienced 

echocardiographer. In specific disease states, Doppler variables have provided a conceptual framework 

for  understanding  pathophysiology  without  necessitating  cardiac  catheterization.  Recordings  of 

transmitral and pulmonary vein flows, along with isovolumic relaxation time, should be evaluated in 

context with other two-dimensional echocardiographic information to best apply these techniques. For 

example, in the assessment of left ventricular filling, the thickness, cavity size, and systolic function, as 

well as left atrial size, should be assessed. In other settings, the Doppler data may provide more subtle 

clues  that  are  helpful  in  distinguishing  restrictive  from constrictive  processes.  Thus,  although  the 

Doppler  information  represents  a  significant  advance  in  the  field,  its  use  for  detecting  abnormal 

hemodynamics may still be considered part of the "art of medicine."  More recent studies also suggest 



that these noninvasive indices may give insight regarding the prognosis of various heart diseases.53

Characteristic Doppler Findings in Various Stages of Diastolic Dysfunction

Modified from Garcia MJ, Thomas JD, Klein AL: J Am Coll Cardiol 1998;32:872

Newer Doppler Echocardiographic Approaches to Diastolic Function

Two-Dimensional Left Ventricular Volume Methods

       Echocardiographic methods have been described to assess the time course of diastolic changes 

in  left  ventricular volume and dimension.  M-mode methods are  limited by the need for geometric 

assumptions  to  calculate  volume and inaccuracies  introduced by regional  wall  motion  differences. 

Traditional  two-dimensional  techniques  require  off-line  manual  tracing  of  imprecise  borders  from 

multiple stillframe images. The frame rate produced at usual scanning depths (around 30 per second) is 

also slow relative to the instantaneous changes that occur during the isovolumic time period. As a result 

of  these problems,  alternative methods have been developed.  Research in  this  area  has  led to  the 

development of computer-assisted automated border detection algorithms. By differentiating between 

ultrasound  backscatter  from  myocardium  and  low-energy  reflectances  from  blood  within  the  left 

ventricular cavity, these systems can track the motion of the endocardial edge throughout the cardiac 

cycle. Commercially available programs currently include a real-time assessment of area, volumes, and 

rate of change within a region of interest . The accuracy of this method compares well with manual 

edge tracing and has been validated in studies using radionuclide and cineangiography standards. The 

main  advantage  of  these  methods  of  quantitation  is  the  on-line  availability  of  data.  Comparisons 



between Doppler and acoustic quantitation in diastolic measurements of the rapid filling and atrial 

filling  phases  have  shown significant  correlations54.   Therefore,  this  method  has  potential  uses  in 

evaluating left ventricular filling. However, the technique is gain dependent and requires significant 

operator experience to acquire reproducible data, especially in patients with characteristics that lead to 

less than ideal image quality.55

Color M-Mode Doppler Echocardiography

            Several investigators have described a new method for relating ventricular inflow velocities to 

left  ventricular  relaxation.  This  method uses color  M-mode Doppler  echocardiography from apical 

windows,  directed along the longitudinal  axis  of  inflow from mitral  valve to  apex.  The  recording 

typically shows the two waves (early filling and atrial contraction) of flow propagation from the base 

toward the apex. The slope of the early filling wavefront has been shown to represent the presence of 

intraventricular gradients produced from active recoil (suction) of the ventricular myocardium. The 

velocity of streamlined flow propagation into the ventricle (Vp ) is therefore described along the M-

mode line by the slope of the color wavefront, in centimeters per second. Measurements of Vp have 

now been successfully obtained using either the leading edge (transition from black to color) or by 

tracing along any isovelocity line. 

More reproducible measurements can be obtained by 

(1) adjusting the color scale or baseline shift to produce color aliasing, 

(2) tracing the slope of the first aliasing velocity line,

(3) tracing the slope from the mitral leaflet tips to a position 4 cm distally into the left ventricle, and 

(4) avoiding intracavity flow originating before mitral opening.

          The method may not be applicable to patients with tachycardia, arrhythmia, or heart block. 

Young, healthy individuals generally have Vp greater than 55 cm per second, whereas older people 

have Vp greater than 45 cm per second. Patients with abnormal transmitral filling patterns such as 

delayed relaxation, restrictive or pseudonormal, will generally have Vp less than 45 cm per second. 



Thus, when combined with other Doppler parameters, measurement of early filling by color M-mode 

may be useful in distinguishing pseudonormal from normal patterns. This method appears to be less 

affected  by  preload  than  transmitral  or  pulmonary  vein  flow.  For  example,  a  "pseudonormal" 

transmitral flow pattern can be produced by increased left atrial pressure in otherwise normal patients. 

A blunted S wave is commonly seen in young people (especially athletes) in whom the left atrium is 

functioning as a "passive conduit" and can masquerade as restrictive filling pattern. These situations 

may be clarified by examining the color M-mode slope during the early filling phase.56 

• PCWP = 4.5 Ã— [103/(2 Ã— IVRT) + Vp] - 9

• PCWP = (5.27 Ã— E/Vp) + 4.6

Color M-mode Doppler recording of diastolic flow toward the apex from the four-chamber view.

Tissue Doppler imaging (TDI)  

TDI is a new ultrasound technique that is based on color Doppler imaging principles and allows 

quantification  of  intramural  myocardial  velocities  by  detection  of  consecutive  phase  shifts  of  the 

ultrasound signal reflected from the contracting myocardium. Doppler tissue imaging uses the same 

principles as colour flow Doppler mapping, applying standard autocorrelation processing but reversing 

high velocity and low amplitude filters such that the high amplitude/low velocity motion of tissue is 

displayed in preference to blood flow. 58

Principles of Tissue Doppler Imaging



Unlike  conventional  Doppler  signals  that  are  typified  by high  velocity  and low amplitude, 

myocardial motion is characterized by relatively low velocity and high amplitude signals. To record 

low wall motion velocity, gain amplification is reduced and high pass filters are bypassed with the 

tissue  signal  directly entered  into  the  autocorrelator.  The  thresholding  and filtering  algorithms  are 

changed to  reject  the low-amplitude echoes  from the blood pool.  As cardiac structures  move in  a 

velocity range  0.06  to  0.24 m/s,  some 10 times  slower  than  myocardial  blood flow,  and have  an 

amplitude approximately 40 decibels higher, it is possible to obtain images of tissue Doppler motion of 

high resolution without significant artifact originating from the blood pool. During image acquisition, it 

is important to optimise the frame rate using an image sector as narrow as possible and to select the 

appropriate velocity scale. 

         Principle of conventional Doppler. High amplitude myocardial wall signals are eliminated by 

high pass filter.  Right:  Doppler signals from myocardial  wall  are extracted,  blood flow signals are 

eliminated

Modalities of Tissue Doppler Imaging

TDI has three modalities: spectral pulsed wave Doppler, two dimensional, and M mode colour 

Doppler.

Pulsed Spectral Doppler



Spectral pulsed TDI has the advantage of online measurements of velocities and time intervals 

and an excellent  temporal  resolution (8 ms).  According to the Doppler  principle8,  tissue velocities 

moving toward the transducer are positive, whereas velocities moving away from the transducer are 

negative.  The  spectral  PW-TDI method provides  higher  temporal  resolution  and resolves  all  peak 

velocities.  With  this  modality  a  sample  volume  is  placed  within  the  myocardium  (either  in  the 

endocardium or the epicardium) and the low Doppler shift of frequencies recorded from the heart wall 

moving through the sample volume during the cardiac cycle is recorded. The pattern can be divided 

into two parts systolic and diastolic, from which several measurements can be obtained: 1. The systolic 

phase is  characterized by a  positive wave (S) preceded by the time taken for regional  isovolumic 

contraction (RIVCT); 2. The diastolic phase, which is complex, is composed of 4 periods: a) regional 

isovolumic relaxation (RIVRT); b) the rapid filling period characterized by a negative wave (Ea); c) 

diastasis, and d) filling due to atrial contraction, represented by a second negative wave (Aa). 59



Schema of the tissue Doppler imaging pattern of the left ventricular mitral annulus. Am, 

late diastolic wave; CTm,  myocardial  contraction time; Em,  early diastolic wave; PCTm,  myocardial 

precontraction time; RTm, myocardial relaxation time; Sm, myocardial systolic wave. 

Colour 

Doppler 

and  M 

Mode

In colour TDI, red encodes wall motion towards the transducer (positive velocities), whereas 

blue encodes wall motion away from the transducer (negative velocities). On each side of the scale, the 

brightest  shades correspond to the highest  velocities.  Colour images require digital  acquisition and 

storage for off-line post-processing analysis. In contrast to spectral Doppler, endocardial and epicardial 

layers can be separately analyzed. Peak and mean velocities, time velocity integral, and regional time 

intervals can be measured in each myocardial segment, in each myocardial layer, and in each phase of 

the cardiac cycle. 60,61

M mode colour encoded TDI has a high temporal resolution (5–10 ms). Colour two dimensional 

imaging has been limited by a slow frame rate, but parallel processing and advances in beam formation 

technology have  increased  the  frame rate  to  a  level  adequate  for  analysis  of  most  cardiac  events 

(temporal resolution 10–100 ms)

Color Doppler                                                               M- Mode



Strain and Strain Rate Echocardiography

Strain and strain rate are TDI derived modalities that are now available in real time. Strain rate 

measures the rate of deformation of a tissue segment.  Peak systolic strain rate represents the maximal 

rate of deformation in systole. An algorithm calculates spatial differences in tissue velocities between 

neighbouring samples within the myocardium aligned along the Doppler beam. A sample distance of 5 

to  11  mm  has  been  previously  used.  Strain  is  obtained  by  integrating  strain  rate  over  time  and 

represents deformation of a tissue segment over time. Strain is expressed as the per cent change from 

the original dimension. Systolic strain represents the magnitude of deformation between end diastole 

used as a reference point and end systole. 62  

Systolic strain is positive and blue encoded when there is regional expansion. This is thickening 

in parasternal views and lengthening in apical views. Negative systolic strain is yellow to red encoded 

to denote regional compression, which is thinning in parasternal views and shortening in apical views. 

Infarcted myocardial tissue does not demonstrate shortening or lengthening activity and shows no or 

minimal systolic strain rate or strain, which is displayed as green. The technique of raw data storage 

and reconstruction permits the measurement of tissue velocity, peak systolic strain rate, peak early and 

late diastolic strain rate, and peak systolic strain from the same sample volume within the same cardiac 

cycle. Simultaneous interrogation of multiple myocardial segments and curved M mode colour display 

are also applicable to strain and strain rate63.



Strain and Strain Rate Imaging

Detection of Ischemia Using TDI

Experimental  and  clinical  studies  have  shown that  during acute  ischemia,  myocardial  peak 

systolic  velocity and strain  rate were notably reduced or reversed within 5 seconds after  coronary 

occlusion and were delayed. In addition, there was positive velocity after the end of ejection [Post 

systolic  velocity].  Post-systolic  shortening or  thickening  can be  easily recognised by pulsed tissue 

doppler  imaging and high velocity,  strain  rate  or strain occurring during the isovolumic relaxation 

period, often extending into the early filling period.64,65 

REVIEW OF LITERATURE

Myocardial Ischemia



             Several  studies  have  demonstrated  that  acute  coronary occlusion  results  in  diastolic 

dysfunction. Most studies have used Doppler indices recorded before and during angioplasty in patients 

with angina as the clinical model for evaluating the effects of ischemia on diastolic function. 

Wind et al reported an increased proportion of left ventricular filling during late diastole and a 

decreased  E/A  ratio  in  34  patients  with  normal  global  systolic  function  who  underwent  Doppler 

echocardiographic examination 1 day before and 1 day after coronary angioplasty for angina. These 

findings  were  thought  to  be  consistent  with  impaired  relaxation,  as  previously  reported  from 

radionuclide scans in coronary angioplasty patients. The authors provided indirect evidence that the 

abnormal  diastolic  indices  were  due  to  a  prolongation  of  IVRT,  although  this  was  not  directly 

measured.

Labovitz et al investigated 32 patients during coronary angioplasty and found that evidence of 

diastolic  left  ventricular  dysfunction  was  the  earliest  change  during  coronary  occlusion  with  the 

balloon,  preceding electrocardiographic changes,  chest  pain,  or  systolic  wall  motion abnormalities. 

Impaired relaxation was the pattern most often exhibited and occurred within 15 seconds of balloon 

inflation but returned to baseline by 15 seconds after deflation.

Masuyama et  al also found a  reduction in  peak E-wave velocities  and E/A ratio  in serial 

Doppler  echocardiographic  studies  of  patients  undergoing  percutaneous  transluminal  coronary 

angioplasty to be a strong predictor of significant coronary restenosis. 66,67

The most complete comparison of hemodynamic and Doppler indices of diastolic function in 

patients  with  coronary  disease  has  been  performed  by  Stoddard  et  al.  Their  study evaluated  the 

relationship of chamber stiffness and relaxation (tau) to the traditional transmitral indices in 35 patients 

undergoing diagnostic catheterization for chest pain. Subjects without coronary artery disease and with 

normal relaxation were found to have a direct correlation between increasing chamber stiffness and 

enhanced early filling velocities. Conversely, the group with coronary disease showed a significant 

indirect correlation between impaired relaxation and decreased peak E velocity. Although their findings 



differ from those of previous studies in that a variety of patterns of transmitral flow were found, they 

are  consistent  with early observations  by other  investigators.  The  authors  concluded that  chamber 

stiffness has a greater influence than relaxation on the pattern of diastolic filling in patients without 

coronary disease. In contrast, abnormal relaxation appears to be the predominant factor influencing the 

Doppler pattern in patients with coronary disease and an abnormal tau value.68,69

El-Said et al studied the effects of ischemia on left ventricular filling using Doppler transmitral 

flow recordings during dobutamine stress echocardiography. Their data showed marked decreases in 

peak E velocities (-22%) and time to peak E acceleration (-28%) in ischemic subjects, whereas 10 

control subjects had an increase in both values (+33% and +75%, respectively; P < .0001). There was 

no overlap in the percentage change from baseline to peak dobutamine stress values between 

normal  subjects  and  patients  who  had  documented  singlevessel coronary  disease.  The 

authors also found diastolic abnormalities to be more sensitive than induction of wall motion 

abnormalities  for  detecting coronary  stenoses. Thus,  the  transmitral  Doppler  pattern  of 

impaired relaxation appears to be the type most  often seen in association with acute (or 

induced) myocardial ischemic syndromes.70

Fujii et al showed a reduced E/A ratio and prolonged deceleration time to be common 

in patients with a history of infarction, regardless of location. Other studies comparing inferior 

with anterior infarct patients have suggested that transtricuspid Doppler echocardiographic 

recordings may be more sensitive in demonstrating abnormal filling and high right ventricular 

end-diastolic pressures. One study also suggests a significant relationship among infarct size, 

degree of systolic dysfunction, and restrictive transmitral flow patterns. This pattern is seen 

more  often  in  coronary artery disease patients  with  a  worse  functional  class  and  poorer 

prognosis. However, larger studies specifically designed to assess the clinical applicability of 

Doppler filling patterns in this population are currently not available.71

A recent study by Sohn et al has shown Em values from tissue Doppler echocardiograms to 



correlate well with tau as measured during catheterization and to be relatively unaffected by preload 

changes  induced  by  volume  infusion  and  nitroglycerin.  Patients  with  pseudonormal  filling  were 

separated from normal by an Em velocity of less than 8.5 cm per second and an Em/Am ratio less than 

1,  with  a  sensitivity  of  88% and a  specificity  of  67%.  Thus,  the  combination  of  transmitral  flow 

patterns and color M-mode and tissue Doppler measurements may be helpful in distinguishing patients 

in various stages of diastolic dysfunction. 

Patterns of mitral annulus velocity as recorded by Doppler tissue imaging, with sampling of the 
septal side of the mitral annulus from the apical view.

Estimation of Left Ventricular Filling Pressures

             As described previously,  various Doppler echocardiographic indices of transmitral and 

pulmonary  vein  flow have  been  combined  to  predict  left  atrial  pressure.  Similarly,  by combining 

transmitral E wave velocities with a preload-independent parameter such as the velocity of motion of 

the lateral mitral annulus (Ea), a reasonable estimate of left atrial pressure can be obtained. 

             Nagueh et al found that an E/Ea ratio of greater than 10 correlated well with a mean 

pulmonary capillary wedge pressure of greater than 15 mm Hg. The correlation coefficient was 0.87 in 

60 patients who had hemodynamic measurements, with the relationship described by the following 

equation: 

                                          PCWP (mm Hg) = 1.24[E/Ea] + 1.9

The  authors  proposed  that  left  ventricular  filling  pressure  can  be  estimated  (with  a  95% 



confidence level of ± 7.6 mm Hg) from these two simple Doppler measurements. 

           These findings have recently been confirmed by Ommen et al. Their study consisted of 100 

consecutive  patients  who  underwent  catheterization  with  micromanometer-tipped  catheters  and 

simultaneous Doppler measurements. A ratio of E/E' (or E/Ea) greater than 15 identified patients with 

elevated LVEDP greater than 12 mm Hg, whereas an E/E' ratio less than 8 accurately predicted normal 

pressures. Patients with ratios between 8 and 15 had widely variable ventricular diastolic pressures. The 

authors also noted that, in their experience, adequate signals were more often obtained from the medial 

or septal portion of the annulus. Although there are currently few such data available, these early and 

well conducted investigations are highly suggestive that the combination of tissue Doppler and mitral 

inflow velocities can be used to noninvasively estimate left ventricular filling pressures.72

          Acute myocardial infarction (AMI) is characterized by regional myocardial damage that may 

lead to systolic and diastolic dysfunction with a subsequent risk of left ventricular (LV) remodeling, 

local  and  systemic  neurohormonal  activation,  and  vascular  dysfunction.  The  pathophysiology and 

prognosis of LV systolic dysfunction after AMI have been the focus of research for several decades. 

Insights  from these studies  have  led to  several  therapeutic  interventions  that  improve  outcome.  In 

addition to depressed systolic function, clinical or radiographic evidence of heart failure is a consistent 

and powerful predictor of outcome in patients after AMI. Pulmonary congestion after infarction reflects 

raised LV filling pressures but is  frequently seen after  what  appears to  be only minor myocardial 

damage.  The  pathophysiological  mechanism for  this  is  incompletely  understood  but  may  involve 

impaired  active  relaxation  of  the  myocardium  and  increased  LV  chamber  stiffness  and  hence 

abnormalities in diastolic function. If these are to be determined directly, cardiac catheterization with 

assessment of pressure volume relationships with the use of high-fidelity micromanometer catheters is 

required. This highly specialized approach is not suitable for daily clinical practice.





         Likewise, although direct measurements of  LV end-diastolic pressure are important predictors of 

adverse outcome after AMI in selected populations, the risk of complications precludes routine use of 

indwelling catheters in all patients. There has therefore been considerable interest in using noninvasive 

estimates  of  diastolic  function,  particularly  Doppler  echocardiographic  assessment  of  LV  filling 

dynamics and, more recently, the volume of the left atrium (LA), to predict outcome in patients with 

AMI.74

The objective of this review is to summarize the current understanding of abnormal LV filling 

in the early phase after AMI with focus on the complementary prognostic information that may be 

gained  by assessment  of  LV filling  dynamics  and LA volume with the  use  of  2-dimensional  and 

Doppler echocardiography.

       After an AMI, myocardial ischemia, cell necrosis, microvascular dysfunction, and regional wall 

motion  abnormalities  will  influence  the  rate  of  active  relaxation.  In  addition,  interstitial  edema, 

fibrocellular  infiltration,  and  scar  formation  will  directly  affect  LV  chamber  stiffness.  Thus, 

abnormalities in LV filling are common in this setting.

Spectral Pulsed-Wave

Doppler Echocardiography

    The pulsed-wave Doppler technique allows assessment of flow velocities (2 m/s) at a distinct 

spatial position, making the technique suitable for assessment of changes in inflow velocities across the 

mitral valve during diastole. With mitral valve opening, the early inflow velocity will be determined 

largely by ventricular suction and the pressure gradient between the LA and LV.5–7 This is followed 

by  a  steady  decrease  in  inflow  velocity,  with  a  normal  duration  of  140  to  240  ms  (early  mitral 

deceleration time [DT]). After a period of diastasis, atrial contraction will cause a new increase in 

inflow velocity less than that of the early inflow; thus, the ratio of early to atrial inflow velocities (E/A 

ratio) will usually be 1 to 1.5. If active relaxation is impaired, the early mitral inflow velocity will 



decrease,  increasing the atrial  contribution to filling,  resulting in a reversal  of the E/A ratio and a 

prolonged DT. This “impaired relaxation” pattern, indicative of grade 1 diastolic dysfunction, is usually 

associated  with  normal  LV filling  pressure  With  worsening  of  diastolic  dysfunction,  LA pressure 

increases,  and the  gradient  between the LA and LV at  mitral  valve  opening increases;  hence,  the 

velocity  of  early  inflow  will  increase  even  though  relaxation  is  impaired.  Because  of  rapid 

equilibration, early ventricular filling is terminated abruptly, causing a shortening of the time period 

during which early filling occurs; hence, DT returns to normal. Therefore, the combination of delayed 

relaxation and elevated LA pressure may create an apparently normal transmitral inflow pattern that 

has been termed pseudonormal (grade 2 diastolic dysfunction) . With further deterioration, early filling 

will terminate abruptly because of the increase in LV stiffness. The DT will be abnormally short and 

the E/A ratio will be high, a pattern termed restrictive (grade 3 diastolic dysfunction) .The restrictive 

filling pattern can be subdivided further as reversible,  if  preload reduction, accomplished either by 

treatment  or  by the  Valsalva  maneuver,  causes  reversal  of  the  filling  pattern  to  the  nonrestrictive 

pattern, or irreversible, if preload reduction causes no reversal of the filling pattern. In patients with 

previous  AMI,  short  DT (<140 ms)  is  associated  with  elevated  LV filling  pressures,  even  in  the 

presence of atrial Fibrillation and irrespective of the severity of mitral regurgitation. In contrast, DT 

>140 ms,  especially in  patients  with preserved LV systolic  function,  correlates poorly with filling 

pressures.  Although  transmitral  filling  patterns  are  fundamental  to  the  assessment  of  LV diastolic 

function,  they  have  several  limitations.  They  may  change  rapidly  with  variations  in  preload. 

Pseudonormalization of the inflow pattern despite moderate elevation of filling pressures is a further 

major shortcoming. To overcome this, less load-dependent indices of LV filling can be used, usually in 

combination with transmitral parameters. These may include assessment of the pulmonary venous flow 

pattern. This, however, is difficult to obtain in all patients18 and is greatly affected by heart rhythm. 

Thus,  other  techniques  have  been  developed.  The  most  extensively  validated  of  these  are  the 

determination  of  blood flow propagation within  the LV with  the use of  color  M-mode and tissue 



Doppler assessment of mitral annulus motion during diastole75

Spectral Pulsed-Wave Tissue

Doppler Echocardiography

        The motion of myocardium during the cardiac cycle can be displayed as a spectral 

pulsed-wave Doppler image, in which the signal  will  reflect  the movement of myocardium 

parallel with the Doppler cursor. Because the apex of the LV is relatively fixed throughout the 

cardiac cycle and the motion of the LV base is nearly parallel with the long axis, assessment 

of the movement of the basal LV segments reflects the longitudinal vector of contraction and 

relaxation. Early diastolic mitral annulus velocity (Ea) is a useful indicator of LV relaxation. 

Invasive  studies  have  demonstrated  that  Ea  correlates  inversely  with  invasive  indices  of 

relaxation. In the presence of low (<0.1 m/s) velocities, Ea is less affected by changes in 

preload and may be used to identify pseudonormal LV filling. Using the ratio of peak mitral E-

wave velocity to early mitral annulus velocity (E/Ea), numerous studies have demonstrated a 

good  approximation  of  LV  filling  pressures.  This  relationship  has  been  validated  in  the 

presence of atrial fibrillation, sinus tachycardia, preserved or depressed LV systolic function, 

secondary mitral regurgitation, and LV hypertrophy. 

          Ommen et al demonstrated that E/Ea -15 accurately detects elevated filling pressures, 

and E/Ea  -8 accurately detects normal LV filling pressures. However, because the Doppler 

method tracks the velocity of movement, tissue Doppler cannot separate active contraction 

from passive tethering. Annular velocities vary depending on the location sampled, with the 

velocity of the lateral annulus usually higher than that of the septal annulus. This has led to 

controversy about which site should be used. Local myocardial damage may affect the mitral 

annular velocity, which may be a theoretical disadvantage of this measurement in AMI.

E/Ea = 18 ± 12 (cm/s) in the Anterior AMI group;



E/Ea = 16 ± 10 (cm/s) in the Posterior AMI group;

E/Ea = 8 ± 2 (cm/s) in the control group.

Tissue Doppler or Color M-Mode for Assessment of LV Filling?

Although  different  in  methodology,  both  tissue  Doppler  and  color  M-mode  are  relatively 

preload  insensitive,  allow  estimation  of  filling  pressures  with  reasonable  accuracy,  and  facilitate 

identification  of  the  pseudonormal  LV  filling  pattern.  In  patients  with  small  LV  cavities  due  to 

hypertrophy, tissue Doppler is preferred because of pseudonormalization of Vp. Although Vp has a 

good reproducibility for distinguishing normal from abnormal, the reproducibility of Ea is superior. In 

assessment of filling pressures and detection of pseudonormal LV filling, most studies but not all  that 

have  compared  the  techniques  have  favored  E/Ea.  Thus,  the  better  reproducibility  and  lesser 

dependence on LV geometry make tissue Doppler echocardiography Ea measurement the preferred 

technique.

Relation between LV Filling Pattern/LA Size and Prognosis after AMI

            The prognostic importance of a restrictive filling pattern after AMI was initially reported by Oh 

et  al in  1992.  In  a  cohort  of  62  patients,  a  restrictive  filling  pattern  was  associated  with  a  high 

occurrence of in-hospital congestive heart failure. 

            This was confirmed by Poulsen et al 52 in an age-selected population with a first AMI in which 

Doppler echocardiography was performed within 1 hour of hospital admission. 

In 1997, Nijland et al reported in a study of 95 patients with first AMI those DT <140 ms was 

associated  with  a  22% survival  rate  at  3  years  compared  with  100% in  the  nonrestrictive  group. 

Although the study was limited by a small number of deaths (n=8), this finding has subsequently been 

confirmed in  several  studies.  In  these  studies,  patients  with  a  restrictive  filling  pattern  have  been 

characterized by higher age, more advanced LV systolic dysfunction, and a high risk of in-hospital 

heart failure. A restrictive filling pattern seems to have the same prognostic importance in Stand non–

ST-segment elevation AMI and in patients treated with thrombolysis or primary angioplasty. Although 



the results of those studies have been strikingly similar, many have been limited by small populations 

and few events. However, in 799 patients with assessment of LV filling within 6 days of AMI, DT 

<140 ms was a predictor of all-cause mortality. However, a large study among 520 patients with ST-

segment elevation AMI treated with fibrinolysis enrolled in the ATTenuation by Adenosine of Cardiac 

Complications (ATTACC) study failed to  find an independent prognostic importance of restrictive 

filling. Restrictive filling was defined by either DT <140 ms or E/A ratio >2. Data on the number of 

patients screened for possible enrollment in this study were not provided. However, in the group in 

which echocardiography was performed between day 2 and 10, 1-year mortality rate was only 6.2%, 

lower than the 10.5% among all 608 patients enrolled in the study. Thus, selection bias, with exclusion 

of patients at highest risk, may account for the discrepant result. This is underscored by a relatively 

small  percentage (10%) of patients  with DT <140 ms.  Although the impact  of a restrictive filling 

pattern on outcome after  AMI has  been studied  extensively,  less  is  known about  milder  forms  of 

abnormal filling. In a previous prospective study of 125 post-AMI patients, pseudonormal filling was 

diagnosed when DT appeared normal (140 to 240 ms) and Vp was decreased < 45 cm/s.Those patients 

with an apparently pseudonormal filling pattern were characterized by a high occurrence of in-hospital 

heart failure and poor outcome. Although these patients were older and frequently had complicating 

heart failure, LV systolic function assessed by LV ejection fraction (LVEF) was relatively preserved 

(mean 0.50). In contrast to the restrictive and pseudonormal patterns, there is little evidence that mild 

diastolic dysfunction is an independent risk factor after AMI. In some studies, univariate analysis has 

suggested increased mortality among patients with impaired relaxation; however, this has not remained 

the  case  in  multivariate  analysis  after  adjustment  for  age,  LV systolic  function,  and  Killip  class. 

Because filling pressures are generally normal in patients with impaired relaxation, this suggests that it 

is  the  elevation  of  filling  pressure  that  is  the  important  link  between  diastolic  dysfunction  and 

prognosis.



ASSESSMENT OF LEFT VENTRICULAR DIASTOLIC 

DYSFUNCTION BY TISSUE DOPPLER IMAGING IN ACUTE 

MYOCARDIAL INFARCTION

AIM

    The aims of this study were;  

1. To assess the left ventricular diastolic dysfunction by tissue doppler imaging   in acute 

myocardial infarction

2. To assess the clinical correlation with the tissue doppler imaging

 



METHODS

Selection of the study group

This was a prospective study done between May 2006-September 2007 at the Department of 

Cardiology, Government Rajaji hospital, Madurai. We had enrolled 100 patients who were referred to 

our department for the management of acute myocardial infarction

Patients with chest pain with features of acute myocardial infarction were eligible for the study 

if they did not meet any of the following excluding criteria: hemodynamically significant valvular heart 

disease, congenital heart disease, previous myocardial infarction, unstable angina, pressure or volume 

right ventricular overload, permanent pacemaker and abnormal atrioventricular pathways. (Table.1)

The study group consisted of 100 patients with acute myocardial infarction including 78 males 



and 22 females after informed consent for study and approval of institutional ethical committee.

Mean age of the patients was 54.07±5.5 (27 to 74), 78(78%) were males, 22(22%) were females 

in this study. Totally 72 patients were thromb olysed including 46 patients with anterior wall infarction 

and 26 patients with inferior wall infarction.Of the 28 non-thrombolysed patients,19 patients were with 

anterior wall infarction and 9 patient were with inferior wall infarction. Totally there were 65 anterior 

wall infarction and 35 inferior wall infarction.Median delay of thrombolysed patients was 7±1.5 hrs 

(5.5 to 8.5 hrs).Most common cause for non-thrombolysis was median delay more than 12 hrs.  

          All the selected patients underwent standard Doppler and TD echocardiography and TEE of 

pulmonary veous flow.All patients were classified into thrombolysed and not thrombolysed 

Standard Doppler echocardiography and Tissue Doppler Imaging.

Standard Doppler echocardiograms and pulsed TD were performed with the subjects in partial 

left  decubitus,  using the Aloka SSD-4000 model  equipped with a  variable-frequency phased-array 

transducer,  TEE  probe  and  TD  capabilities.  Two  D-guided,  M-mode  LV  analysis  and  Doppler 

recording of the LV transmitral diastolic inflow was performed as previously described. The LV mass 

was calculated using the criteria of the American Society of Echocardiograph and normalized for body 

height.  The  two-dimensional  LV end-diastolic  and end-systolic  volumes  were calculated using the 

Simpson  method  and  the  LV  ejection  fraction  was  calculated  using  the  following  formula:  end-

diastolic volume end-systolic volume/end-diastolic volume x 100. 

Pulsed TD was performed at  transducer  frequencies  of 3.5-4.0 MHz,  adjusting the spectral 

pulsed Doppler signal filters to obtain the Nyquist limits of 15 and 20 cm/s, and using the minimal 

optimal  gain.  In  the apical  4-chamber  view,  the pulsed  Doppler  sample  volume was subsequently 

placed septal side mitral annulus. 

The  apical  4-chamber  view  and  parasternal  short  axis  views  were  chosen  to  obtain  the 

quantitative assessment of the regional myocardial wall motion.                           The apical 4-chamber 

view was used to measure transmitral  flow velocity parameters and tissue Doppler  mitral  annulus 



velocity parameters. The continuous wave beam is directed from the apical five-chamber view 

across the region between the aortic outflow tract and the mitral inflow tract to measure the 

IVRT. The Doppler echocardiographic spectrum in this position includes aortic valve flow with 

valve closure and the onset of mitral inflow, so that the aortic closure-mitral opening interval 

can  be  determined The  following  TD  measurements  were  determined  as  indexes  of  regional 

myocardial function: myocardial systolic peak velocity (Sa, m/s), and myocardial early (Ea m/s) and 

atrial (Aa m/s) peak velocities (m/s) and their ratios, as diastolic measurements by placing the sample 

volume  in  the  septal  aspect  of  mitral  annulus  .Our  TDI  methods  and  reproducibility  have  been 

previously described.Transpulmonary venous flow pattern parameters were obtained from TEE at 45- 

650   short axis view placing the sample volume 1 cm within the left upper pulmonary vein for better 

delineation of waveforms.

           Patient’s clinical data were analyzed in relation to the Doppler data in routine transmitral flow 

parameters, transpulmonary flow parameters and mitral annulus tissue doppler velocity parameters. 

Filling Pattern in Diastolic Dysfunction – Appletion and Hatle et al

Pattern E/A ratio
Deceleration 

time (ms)
IVRT (ms) S/D

AR 
(cm/sec)

Normal 2 : 1 180 76 1.0 19
Age > 50 

years
1 : 1 210 90 1.7 23

Impaired 
relaxation

<1.2 >220 >100 >1.0 <35

Pseudo 
Normal

1.0 – 2.0 150 – 200 60 – 100 <1.0 >35

Restriction >2.0 <150 60 <1.0 >35

Statistical analysis 

Variables were presented as mean ± 1 SD. Analysis of variance was performed to estimate 

intergroup  differences.  Linear  regression  analyses  and  partial  correlation  testing  using  Pearson’s 

method were used to assess univariate relations. The null hypothesis was rejected for p < 0.05. 

Results:

In this study there were 59% smokers, 28% type 2 DM, 31% systemic hypertension,11% family 

history of CAD and 28% dyslipidaemia. The demographic characteristics of the groups are listed in 



table 2. There were no differences in gender, age, body mass index, heart rate and blood pressure. The 

results of Doppler echocardiographic analysis are reported in table 3.

Table 3.Doppler echocardiographic analysis and ejection fraction

Parameters

Impaired 

relaxation

Pattern (n =17)

Pseudonormal

Pattern (n=38)

Restrictive 

pattern 

(n=45)
E(cm/s) 52±4 84±6 96±7

A(cm/s) 76±3 62±5 48±6
E/A 0.68±0.16 1.39±0.14 1.99±0.15
DT(msec) 234±12 166±14 135±11

IVRT(msec) 116±9 84±8 56±7

Ps/Pd 1.3±0.2 0.74±0.3 0.68±0.2

Pa(cm/s) –32±3 –43±5 –48±6

(Pa-dur)—(Ma-
dur) (msec)

–32±6 +36±4 +40±5

EF % 48±13 45±15 40±14

Conventional transmitral and pulmonary venous flow showed impaired relaxation filling pattern 

in 17 patients, pseudonormal filling pattern in 38 patients and restrictive filling pattern in 45 patients. 

There was no linear relationship between ejection fraction and severity of pattern abnormality. Even 

the patients with normal EF had severe form of diastolic dysfunction.

The DT value less than 140 msec was significantly associated with increased morbidity and 

mortality with hazard ratio of 2.4 (95% CI 1.2 to 3.6). Likewise the IVRT value less than 60 msec was 

also a marker for increased morbitity and mortality with relative risk of 2.1( 95% CI 1.5 to 2.7). Totally 

there were 25 symptomatic patients due to diastolic dysfunction. Most of symptomatic patients had 

restrictive pattern of diastolic filling, 15out of 25 symptomatic patients had restrictive pattern of filling 

with E/Ea value more than 15(60%)p<0.005.

Transpulmonary venous flow doppler pattern in TEE showed impaired relaxation in 17 patients, 

pseudonormal  pattern  in  38  patients  and  restrictive  pattern  in  45  patients.  In  patients  with 

pseudonormal pattern in transmitral and transpulmonary flow pattern, diffentiation from normal pattern 

was consistently and reproducibly  possible with the tissue doppler imaging .If Ea value was less than 



that of Aa value,  the absolute Ea value less than 8 and if E/Ea more than 15 then the pseudonormal 

pattern was confirmed.

Table 4.Tissue Doppler annular velocities parameters: n=100

Parameters Impaired relaxation 

pattern (n=17) 17%

Pseudonormal filling 

pattern (n=38) 38%

Restrictive filling 

pattern (n=45) 45%

Ea(cm/s) 7.2±2.2 6.3±1.7 5.2±1.6
Aa(cm/s) 9.1±3.1 7.3±2.8 4.4±1.8

Ea/Aa 0.78±0.2 0.86±0.3 1.25±0.28
E/Ea 7.43±2.3 14.2±2.6 18.4±3.3

Sa(cm/s) 8.1±3.4 6.3±2.7 6.1±1.3

            The absolute Ea , Aa and Sa values did not correlate with degree of diastolic dysfunction. E/Ea 

ratio was very much reliable indicator of elevated PCWP/LVEDP. It was well correlated with clinical 

features, morbidity and mortality of the patients with diastolic dysfunction as in other studies. If the E/

Ea value was more than 15 then it  showed features  increased LV filling pressures in the form of 

breathlessness,  orthopnea,  brank  pulmonary  edema,  S3,  S4,  wheezing  and  bilateral  lung 

crepitatation.Severe degree of restrictive pattern of diastolic dysfunction.

Table 5.Morbidity and mortality associated with diastolic dysfunction in correlation with E/Ea 

value

E/Ea  <8 n=14 E/Ea  8-15 n=33 E/Ea  >15 n=50
Breathlessness 2 8 15

S3 0 7 10
S4 1 3 4

LUNG SIGNS
LOWER 1/3

2 7 6

>LOWER 1/3 0 3 12
CARDIOGENIC SHOCK 0 4 9

MORTALITY 0 4 11

     There were totally 15 deaths in this study during the hospital stay of 10 days. Eleven death were 

occurred in patients with E/Ea more than 15(30%), 4  death were occurred in patients with E/Ea less 

than 15(12%) p< o.003.

Patients with anterior wall myocardial infarction had more patients with E/Ea more than 15 and 

patients with restrictive pattern of   filling. Out of 65 patients with anterior wall infarction 33 (51%) 



had restrictive pattern of filling with E/Ea more than 15 p<0.03.The average  E/Ea value in anterior 

wall infarction was 15.60.

         The patients with inferior wall infarction showed 34% (n=12) with restrictive pattern, 46 % (16) 

with pseudonormal pattern and 20% (n=7) with impaired relaxation .The average E/Ea value in patients 

with  inferior  wall  infarction  was  12.31.When  compared  with  anterior  wall  infarction  this  value 

significantly lower p<0.04.

Table 5. Diastolic filling pattern in Anterior Wall Myocardial Infarction. n=65

Parameters
Impaired 

relaxation pattern 
(n=10) 15%

Pseudonormal filling 
pattern(n=22) 34%

Restrictive filling 
pattern(n=33) 51%

E(cm/s) 48±5 88±7 97±6

A(cm/s) 72±7 58±6 49±4

E/A 0.67±0.3 1.48±0.28 1.97±0.25

DT(msec) 226±12 158±14 132±11

IVRT(msec) 118±9 76±8 48±7

Ps/Pd 1.18±0.2 0.71±0.3 0.65±0.2

Pa(cm/s) –33±3 –45±5 –53±6

(Pa-dur)—(Ma-
dur) (msec)

–30±6 +38±4 +43±5

Ea(cm/s) 8.3±3.2 6.2±2.5 5.4±2.6

Aa(cm/s) 9.2±3.1 8.1±2.8 4.3±1.8

Ea/Aa 0.89±0.3 0.75±0.4 1.25±0.38

E/Ea 6.2±1.3 14.7±1.6 19.3±2.3

Sa(cm/s) 8.2±3.4 6.3±2.7 5.2±1.3
EF% 46±11 40±13 38±14

Table 6.Diastolic filling pattern in Inferior Wall Myocardial Infarction n=35

Parameters Impaired relaxation 
pattern (n=07) 20%

Pseudonormal filling 
pattern(n=16) 46%

Restrictive filling 
pattern(n=12) 34%

E(cm/s) 68±6 85±8 90±5

A(cm/s) 79±6 55±6 47±4

E/A 0.67±0.3 1.48±0.28 1.91±0.25

DT(msec) 218±12 156±14 134±11

IVRT(msec) 112±9 78±8 54±7

Ps/Pd 1.3±0.2 0.76±0.3 0.68±0.2

Pa(cm/s) –35±3 –40±5 –51±6

(Pa-dur)—(Ma-
dur) (msec)

–29±6 +34±4 +42±5



Ea(cm/s) 9.3±3.2 7.2±2.5 6.1±2.6

Aa(cm/s) 11.1±3.1 9.2±2.8 5.4±1.8

Ea/Aa 0.82±0.4 0.78±0.5 1.20±0.5

E/Ea 7.56±1.3 12.4±1.6 15±2.3

Sa(cm/s) 9±3.4 8±2.7 6±1.3

EF% 50±14 51±13 45±14

Table 7. Diastolic filling pattern in male patients n=78

Parameters Impaired relaxation 
pattern (n=12) 15%

Pseudonormal filling 
pattern(n=31) 40%

Restrictive filling 
pattern(n=35) 45%

E(cm/s) 65±6 82±8 92±5
A(cm/s) 73±6 56±6 47±4

E/A 0.89±0.3 1.46±0.28 1.96±0.25
DT(msec) 222±12 164±14 130±11

IVRT(msec) 116±9 74±8 52±7
Ps/Pd 1.4±0.2 0.72±0.3 0.63±0.2

Pa(cm/s) –32±3 –39±5 –48±6
(Pa-dur)—(Ma-

dur) (msec)
–33±6 +38±4 +46±5

Ea(cm/s) 8.1±3.2 6.2±2.5 5.3±2.6
Aa(cm/s) 10.1±3.1 8.3±2.8 4.3±1.8

Ea/Aa 0.80±0.4 0.75±0.5 1.25±0.5
E/Ea 8.13±1.3 13.67±1.6 18.4±2.3

Sa(cm/s) 8.2±3.4 6.1±2.7 5.2±1.3
EF% 48±14 45±13 40±14

There was no much difference in filling pattern between male female patients but there was 

slight increase in the average E/Ea value in female patients .The average E/Ea value in male patients 

was 14.94 and in female patients was 15.10p<0.08 statistically not significant.

Table 8. Diastolic filling pattern in female patients n=22

Parameters Impaired 
relaxation pattern 

(n=05) 23%

Pseudonormal 
filling 

pattern(n=07) 
32%

Restrictive filling 
pattern(n=10) 45%

E(cm/s) 60±4 88±7 96±6
A(cm/s) 76±6 59±6 45±4

E/A 0.79±0.29 1.49±0.26 2.13±0.3
DT(msec) 230±12 158±14 128±11

IVRT(msec) 112±9 74±8 54±7
Ps/Pd 1.3±0.2 0.73±0.3 0.65±0.2

Pa(cm/s) –31±4 –41±5 –46±7
(Pa-dur)—(Ma-

dur) (msec)
–32±6 +36±4 +44±5

Ea(cm/s) 8.2±3.2 6.2±2.5 5.3±2.6
Aa(cm/s) 9.1±3.1 9.2±2.8 4.2±1.8

Ea/Aa 0.89±0.4 0.67±0.5 1.25±0.5



E/Ea 7.5±1.3 14.67±1.6 19.20±2.3
Sa(cm/s) 8.1±3.4 6.3±2.7 5.2±1.3

EF% 48±16 45±13 40±12
                     

There were 27 patients  with normal  left  ventricular ejection fraction above 50%.They have 

showed  restrictive  pattern  in  30  % (n=08),  pseudonormal  pattern  in  44% (n=12)   and   impaired 

relaxation  pattern  in  26%  (n=7)  patients.  This  shows  the  importance  of  the  assessment  diastolic 

dysfunction  patients  with  normal  left  ventricular  ejection  fraction  in  acute  myocardial  infarction 

patients.

Table 9. Diastolic filling pattern in patients with normal ejection fraction (>50%)   n=27

Parameters Impaired relaxation 

pattern (n=07) 26%

Pseudonormal filling 

pattern(n=12) 44%

Restrictive filling 

pattern(n=08) 30%
E(cm/s) 68±6 85±8 96±6
A(cm/s) 79±6 55±6 48±4

E/A 1.27±0.3 1.48±0.28 1.99±0.3
DT(msec) 218±12 156±14 128±11

IVRT(msec) 112±9 78±8 54±7
Ps/Pd 1.3±0.2 0.76±0.3 0.65±0.2

Pa(cm/s) –35±3 –40±5 –46±7
(Pa-dur)—(Ma-

dur) (msec)

–29±6 +34±4 +44±5

Ea(cm/s) 9.2±3.2 7.3±2.5 5.2±2.6
Aa(cm/s) 10.1±3.1 9.1±2.8 4.3±1.8

Ea/Aa 0.90±0.4 0.78±0.5 1.25±0.5
E/Ea 7.56±1.3 12.4±1.6 19.20±2.3

Sa(cm/s) 9.2±3.4 8.2±2.7 5.1±1.3
EF% >50 >50 >50

Thrombolysis definitely improves diastolic function in acute myocardial infarction patients. In 

this study ¸there was significant increase in E/Ea value in non thrombolysed patients. The average E/Ea 

value in thrombolysed patient was 14.8 and in non-thrombolysed patients was 17.1 p<0.004.

Table 10 . Diastolic filling pattern in thrombolysed patients n=72

Parameters Impaired relaxation 
pattern (n=12) 16%

Pseudonormal filling 
pattern(n=30) 42%

Restrictive filling 
pattern(n =30) 42%

E(cm/s) 58±6 83±8 91±5

A(cm/s) 76±6 54±6 45±4

E/A 0.76±0.3 1.54±0.28 2.02±0.25

DT(msec)            222±12 164±14 130±1 1

IVRT(msec) 112±9 72±8 53±7



Ps/Pd 1.3±0.2 0.73±0.3 0.65±0.2

Pa(cm/s) –33±3 –38±5 –45±6

(Pa-dur)—(Ma-
dur) (msec)

–33±6 +38±4 +46±5

Ea(cm/s) 8.2±3.2 5.8±2.5 5.1±2.6

Aa(cm/s) 9.8±3.1 8.7±2.8 4.5±1.8

Ea/Aa 0.89±0.4 0.67±0.5 1.13±0.5

E/Ea 7.02±1.3 14.37±1.6 18.4±2.3

Sa(cm/s) 8.2±3.4 6.1±2.7 5.2±1.3

EF% 49±13 45±12 40±12

Table 11 . Diastolic filling pattern in non-thrombolysed patients n=28

Parameters Impaired relaxation 
pattern (n=5) 18%

Pseudonormal 
filling 

pattern(n=8) 29%

Restrictive filling 
pattern(n=15) 

54%
E(cm/s) 56±6 88±8 98±5
A(cm/s) 76±6 48±6 45±4

E/A 0.76±0.3 1.54±0.28 2.02±0.25
DT(msec) 223±12 174±14 130±11

IVRT(msec) 108±9 68±8 50±7
Ps/Pd 1.2±0.2 0.72±0.3 0.64±0.2

Pa(cm/s) –32±3 –39±5 –44±6
(Pa-dur)—(Ma-

dur) (msec)
–30±6 +37±4 +43±5

Ea(cm/s) 7.8±3.2 5.4±2.5 4.8±2.6
Aa(cm/s) 9.5±3.1 9.2±2.8 4.5±1.4

Ea/Aa 0.89±0.4 0.67±0.5 1.13±0.5
E/Ea 7.1±1.3 16.30±1.6 20.42.4±2.3

Sa(cm/s) 8.2±3.4 6.1±2.7 5.2±1.3
EF% 44±13 41±12 39±2



DISCUSSION

In the absence of direct measurements of filling pressures, noninvasive estimation of filling 

pressures with the use of E/Vp or E/Ea could prove useful. This was demonstrated in a retrospective 

study of 250 patients with AMI; an increased (>15) E/Ea ratio was found to be an important predictor 

of all-cause mortality incremental to LVEF, age,  and a restrictive filling transmitral  filling pattern. 

Importantly, E/Ea allowed risk stratification among patients with preserved as well as depressed LV 

systolic function. This supports the finding of an adverse outcome in patients with pseudonormal filling 

(moderate increase in filling pressures) despite preserved LV systolic function and concurs with the 

results  of studies in  which the E/Vp ratio  was used.  When LV filling is  assessed with the use of 

transmitral,  color  M-mode,  and  tissue  Doppler  echocardiography,  an  instantaneous  assessment  of 

filling dynamics will be obtained.

       In a recent study of postinfarction patients with left ventricular ejection fraction less than 35%, 

a mitral deceleration time of less than 120 msec was highly predictive of a pulmonary capillary wedge 

pressure of  greater  than 20 mm Hg.  In  a  second study of  patients  with  systolic  dysfunction  after 

infarction (ejection fraction >40%),  there  was an increased rate  of adverse events in  two years  of 

follow-up in patients with higher mitral E/A ratios and shorter deceleration times. This finding has been 

confirmed in subsequent studies. Several new parameters of diastolic function have been studied in 

postinfarction patients. The deceleration time of the diastolic component of pulmonary venous flow has 

a better correlation with wedge pressure in post patients with myocardial infarction than does the mitral 

deceleration time. The sensitivity and specificity of a pulmonary venous deceleration time less than 160 

msec in predicting greater than or equal to 18 mm Hg in pulmonary capillary wedge pressure were 

97%  and  96%,  respectively,  compared  with  86%  and  59%,  respectively,  for  a  mitral 

deceleration time of less than 130 msec. The propagation velocity of mitral inflow measured 

on M-mode color Doppler echocardiography also has prognostic significance.



               The prognostic importance of a restrictive filling pattern after AMI was initially reported by 

Oh et al in 1992. In a cohort of 62 patients, a restrictive filling pattern was associated with a high 

occurrence of in-hospital congestive heart failure. 

            This was confirmed by Poulsen et al 52 in an age-selected population with a first AMI in which 

Doppler echocardiography was performed within 1 hour of hospital admission. 

In 1997, Nijland et al reported in a study of 95 patients with first AMI those DT <140 ms was 

associated  with  a  22% survival  rate  at  3  years  compared  with  100% in  the  nonrestrictive  group. 

Although the study was limited by a small number of deaths (n=8), this finding has subsequently been 

confirmed in  several  studies.  In  these  studies,  patients  with  a  restrictive  filling  pattern  have  been 

characterized by higher age, more advanced LV systolic dysfunction, and a high risk of in-hospital 

heart failure. A restrictive filling pattern seems to have the same prognostic importance in Stand non–

ST-segment elevation AMI and in patients treated with thrombolysis or primary angioplasty. Although 

the results of those studies have been strikingly similar, many have been limited by small populations 

and few events. However, in 799 patients with assessment of LV filling within 6 days of AMI, DT 

<140 ms was a predictor of all-cause mortality, with a hazard ratio of 2.1 (95% CI, 1.5 to 3.1), after 

adjustment for various clinical variables including in-hospital heart failure and LV systolic function. 

This has recently been replicated in 2 other large studies. These studies of 2500 patients have shown 

that  an  abnormally  short  DT  is  an  independent  predictor  of  adverse  outcome  after  AMI  and  is 

incremental to conventional indicators of poor outcome such as age, Killip class, enzymatic infarct 

size, ejection fraction, wall motion score index, and end-systolic volume.

      In this study also results were in concurrence with the finding in previous other study.So the 

tissue doppler study gives reproducible results not affected by preloading conditions that affects the 

conventional transmitral and transpulmonary flow doppler pattern.E/Ea value more than 15, IVRT less 

than 60 msec and DT less than140 were the reliable predictors of morbidity and mortality following 

acute myocardial infarction.Thrombolysis was associated with improvement in the diastolic function.



        This study was simple noninvasive assessment diastolic function in acute myocardial infarction 

to prognosticate the patients with normal or low left ventricular ejection fraction. 

           The correlation between the left atrial size as marker of diastolic dysfunction to prognosticate 

the patients with acute myocardial infarction was well documented in various studies in comparisons 

with the conventional doppler method and tissue doppler method. The doppler E/Ea value was in linear 

relationship with the left atrial size in prognosticating the patients’ acute myocardial infarction.

LIMITATIONS OF THE STUDY

1. This noninvasive method of pulmonary capillary wedge pressure measurement not compared 

with the invasive measurement method.

2. The patients were followed up for 2 weeks only. This is insufficient to prognosticate on long 

term basis.

3. Not compared with the left atrial size.

4. Other compounding factors that affect the diastolic function could not be separated  to measure 

the diastolic dysfunction caused by acute myocardial infarction such as systemic hypertension, 

diabetes mellitus ,chronic renal failure,hypothyroidismand pericardial diseases

5. Role of previous angina, stunned myocardium and hibernating myocardium in producing the 

diastolic dysfunction could not be quantified.



CONCLUSIONS

1. Thrombolysed patients showed average E/Ea value 14.8 and non-thrombolysed patients showed 

average E/Ea 17.1.

2. This study showed increased morbidity and mortality in patients with E/Ea value more than 15. 

3. Tissue doppler imaging is a simple noninvasive investigation to diagnose the diastolic dysfunction 

and prognosticate the patients with acute myocardial infarction.

4. Pulsed Tissue Doppler imaging for myocardial velocities is far more practical, as the analysis can 

be performed on-line and does not require sophisticated time-consuming post-processing and which 

makes the method useful for daily clinical practice. 

5. The proposed method is technically simple and can be easily performed using any  echo machine 

equipped with conventional pulsed Doppler myocardial imaging.

6. Pulsed  TD  derived  echocardiographic  methods  are  quantifiable,  reproducible,  and  noninvasive 

techniques for assessing the presence of diastolic dysfunction in acute myocardial infarction.
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                                                    PPENDIX-III

LIST OF ABBREVIATIONS

2-D         Two-dimensional

Am         Late diastolic mitral annulus velocity

A dur                   Late diastolic mitral flow wave duration

A dur                   Late diastolic mitral annulus velocity duration

A-wave          Late diastolic mitral flow wave

DT                        E Wave deceleration time

ECG          Electrocardiogram

ECHO          Echocardiography

EF          Ejection fraction

E-wave          Early diastolic mitral flow wave

Em          Early diastolic mitral annulus velocity

IVCT          Isovolumic contraction

IVRT          Isovolumic relaxation

LA          Left atrium / atrial

LV          Left ventricle / ventricular

LAD          Left anterior descending coronary artery

M-mode          Motion mode

Ps                         Pulmonary venous peak systolic velocity

Pd                         Pulmonary venous peak diastolic velocity

Pa                         Pulmonary venous atrial reversal velocity

PSV          Peak systolic velocity

Sm          Systolic Mitral annulus Velocity

TDI          Tissue Doppler imaging



APPENDIX-II

PROFORMA

ASSESSMENT OF LEFT VENTRICULAR DIASTOLIC DYSFUNCTION BY TISSUE 

DOPPLER IMAGING IN ACUTE MYOCARDIAL INFARCTION

 SERIAL NO:                                   IP  NO:                                  CD NO:

   

NAME :                                       AGE :                SEX :          OCCUPATION:

ADDRESS:

DIAGNOSIS:

COMPLAINTS:

      CHEST PAIN  YES /  NO,  BREATHLESSNESS YES /  NO, SYNCOPE  YES / NO

PAST HISTORY:  SHT   / DMT2     /ANGINA     / MI       / TIA    /PVD     /SIMILAR  ILLNESS

PERSONAL HISTORY:  SMOKING     / ALCOHOLIC    /TOBACCO USE

VITALS ON ADMISSION:

HT                           WT                             BM I                         WAIST HIP RATIO

PR:                     BP:                             JVP                      DYSPNEA     YES  / NO

CYANOSIS    YES  / NO    PALLOR     YES /NO   PEDAL EDEMA  YES  /NO

CARDIOVASCULAR SYSTEM :API

 S1         S2          S3        S4        THRILL          M URM U R 

RESPIRATORY SYSTEM   :

ABDOMEN

CENTRAL  NERVOUS SYSTEM:

INVESIGATIONS:

HB%           BL.UREA         mgs%    BL.SUGAR           mgs%     Sr.CREATININE        mgs%

LIPID PROFILE  : TCL              LDL               HDL              VLDL                 TGL

THROMBOLYSED NONTHROMBOLYSED
MEDIAN DELAY CONTRAINDICATION
ECG

RATE RHYTHM
INTERVAL AXIS

PR QTc P QRS
Q WAVE ST-SEGMENT T-WAVE

   TTE  RWMA



M-MODE

DIASTOLIC SYSTOLIC EDV SV

LVID

IVS ESV LVEF

PW

PULSE DOPPLER TRANSMITRAL PARAMETERS

E cms/s A cms/s E/A DT IVRT A dur

TISSUE DOPPLER  MITRA SNNULAR PARAMETERS

S’ cms /s E’ cms /s A’ cms /s E/E’ E’/A’

SEPTAL

PULMONARY VENOUS FLOW PARAMETERS

Ps   cms/s Pd  cms/s Pa cms/s Pa dur

B.AS
B.AW

B.S B.LW

MAS MAW

MS AS
AL

AA

AI

B.IN B.PW

MI MP

ML
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